本第8讲矩阵分块法矩阵运算知识题
- 格式:ppt
- 大小:642.52 KB
- 文档页数:21
矩阵分块法
矩阵分块法是一种将大型矩阵分解成较小矩阵的方法,以便更高效地进行计算。
这种方法在高性能计算和科学计算中得到了广泛应用。
矩阵分块法是将一个大的矩阵分成若干个块,每个块都是一个小的矩阵。
这些小的矩阵可以更容易地进行计算,而且可以更好地利用计算机的并行处理能力。
在矩阵分块法中,矩阵被分成若干行和列的块。
例如,一个n×n的矩阵可以被分成四个n/2×n/2的块,每个块都是一个n/2×n/2的矩阵。
这种分块方法可以继续递归地应用,直到矩阵被分成足够小的块。
矩阵分块法可以用于各种各样的计算,例如矩阵乘法、矩阵求逆、矩阵特征值等。
在矩阵乘法中,矩阵分块法可以将一个大的矩阵乘法变成许多小的矩阵乘法,从而提高计算效率。
在矩阵求逆和矩阵特征值中,矩阵分块法可以将一个大的矩阵分解成多个小的矩阵,从而简化计算。
矩阵分块法的实现需要考虑许多因素,例如矩阵块的大小、矩阵块之间的通信、矩阵块的分配等。
这些因素可以影响矩阵分块法的性能和可扩展性。
因此,在实现矩阵分块法时需要仔细考虑这些因素,并进行优化。
矩阵分块法是一种非常重要的技术,在高性能计算和科学计算中得到了广泛应用。
矩阵分块法可以将一个大的矩阵分解成多个小的矩阵,从而更高效地进行计算。
在实现矩阵分块法时需要考虑许多因素,并进行优化,以提高性能和可扩展性。
拉普拉斯分块矩阵公式例题【原创版】目录一、拉普拉斯分块矩阵公式的概念与意义二、拉普拉斯分块矩阵公式的例题解析三、拉普拉斯分块矩阵公式在实际应用中的价值正文一、拉普拉斯分块矩阵公式的概念与意义拉普拉斯分块矩阵公式是线性代数中一种重要的矩阵分解方法,它将高阶矩阵分解为低阶矩阵的乘积,从而简化了矩阵的运算过程。
在拉普拉斯分块矩阵公式中,分块矩阵是一种重要的工具,它能够将高阶矩阵转化为低阶矩阵,使矩阵的结构变得更加简单和清晰。
二、拉普拉斯分块矩阵公式的例题解析举例来说,假设有一个 4 阶矩阵 A,我们可以通过拉普拉斯分块矩阵公式将其分解为两个 2 阶矩阵的乘积,即 A=PDP^-1,其中 P 是投影矩阵,D 是对角矩阵,P^-1 是 P 的逆矩阵。
具体来说,我们可以先将矩阵 A 分解为它的特征值对角矩阵和特征向量矩阵的乘积,即 A=UDU^-1,其中 U 是特征向量矩阵,D 是特征值对角矩阵。
然后,我们再将特征向量矩阵 U 分解为两个投影矩阵 P 和 Q 的乘积,即 U=PQ,那么原矩阵 A 就可以表示为 A=PDP^-1 的形式。
三、拉普拉斯分块矩阵公式在实际应用中的价值拉普拉斯分块矩阵公式在实际应用中有着广泛的应用价值。
例如,在复杂网络聚类算法中,基于拉普拉斯特征值的谱聚类方法具有严密的数学理论和较高的精度,但受限于该方法对簇结构数量、规模等先验知识的依赖,难以实际应用。
针对这一问题,基于拉普拉斯矩阵的 Jordan 型变换,提出了一种先验知识的自动获取方法,实现了基于 Jordan 矩阵特征向量的初始划分。
基于 Jordan 型特征值定义了簇结构的模块化密度函数,并使用该函数和初始划分结果完成了高精度聚类算法。
此外,拉普拉斯分块矩阵公式在信号处理、图像处理、机器学习等领域也有着广泛的应用。
矩阵分块知识点总结一、矩阵分块的基本概念1.1 矩阵分块的定义矩阵分块是一种对矩阵进行分割的方法,将一个大的矩阵分割成若干个较小的子矩阵,这些子矩阵可以是行向量、列向量或者更小的矩阵。
矩阵分块的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
1.2 矩阵分块的表示形式矩阵分块可以采用不同的表示形式,其中包括方括号表示、圆括号表示和其他符号表示。
以方括号表示为例,一个矩阵可以分割成四个子矩阵,如下所示:A = [ A11, A12A21, A22 ]其中A11、A12、A21、A22为子矩阵,分别表示矩阵A的四个子块。
1.3 矩阵分块的基本性质矩阵分块具有很多基本的性质,其中包括可交换性、可加性、可乘性等。
具体而言,如果矩阵A和B可以进行相应的分块操作,则有以下性质:可交换性:A和B的分块顺序可以交换,即A*B = B*A。
可加性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A + B) = A + B。
可乘性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A * B) = A * B。
1.4 矩阵分块的应用矩阵分块在实际中有着广泛的应用,其中包括矩阵的运算、方程组的求解、特征值与特征向量的计算等方面。
矩阵分块能够简化问题的处理过程,提高计算的效率,使得矩阵的性质更加清晰和易于理解,因此在很多领域中得到了广泛的应用。
二、矩阵分块的基本类型2.1 行分块矩阵行分块矩阵是将一个大的矩阵按照行进行分块,将每一行的元素划分成若干个较小的行向量,从而形成一个行分块矩阵。
行分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
2.2 列分块矩阵列分块矩阵是将一个大的矩阵按照列进行分块,将每一列的元素划分成若干个较小的列向量,从而形成一个列分块矩阵。
列分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
矩阵分块法矩阵分块法是一种常用的矩阵计算方法,它将大规模的矩阵分割成若干个小块,然后对每个小块进行计算,最终将结果合并得到原始矩阵的计算结果。
这种方法可以有效地提高计算速度和减少内存占用。
一、矩阵分块法的基本思想矩阵分块法的基本思想是将大规模的矩阵划分成若干个小块,然后对每个小块进行计算。
这种方法可以有效地减少内存占用和提高计算速度。
具体来说,可以将一个 $n \times n$ 的矩阵划分成 $\sqrt{p} \times \sqrt{p}$ 个大小为 $\frac{n}{\sqrt{p}} \times\frac{n}{\sqrt{p}}$ 的子矩阵。
其中 $p$ 表示处理器数量。
二、矩阵乘法的分块实现对于两个 $n \times n$ 的矩阵 $A$ 和 $B$ 的乘积 $C = AB$,可以采用如下的分块实现:1. 将 $A$ 和 $B$ 分别划分为 $\sqrt{p} \times \sqrt{p}$ 个子矩阵:$$\begin{bmatrix}A_{11} & A_{12} & \cdots & A_{1\sqrt{p}} \\A_{21} & A_{22} & \cdots & A_{2\sqrt{p}} \\\vdots & \vdots & \ddots & \vdots \\A_{\sqrt{p}1} & A_{\sqrt{p}2} & \cdots & A_{\sqrt{p}\sqrt{p}} \end{bmatrix},B =\begin{bmatrix}B_{11} & B_{12} & \cdots & B_{1\sqrt{p}} \\B_{21} & B_{22} & \cdots & B_{2\sqrt{p}} \\\vdots & \vdots & \ddots& \vdots \\B_{\sqrt{p}1}& B_{\sqrt{p}2}& \cdots& B_{\sqrt{p}\sqrt{p}}\end{bmatrix}.$$其中 $A_{ij}$ 和 $B_{ij}$ 分别表示 $A$ 和 $B$ 的第 $i$ 行第 $j$ 列的子矩阵。
1分块矩阵的应用相关例题分块矩阵是为了简化矩阵的运算而产生的一种工具,在处理高阶矩阵的时 候,可以将大矩阵看成是由一些小矩阵组成的,这就将矩阵中的元素由数扩展为 矩阵,在运算时,把这些小矩阵当作数来处理,这就是分块矩阵的运算。
分块矩 阵的运算在形式上和数字矩阵完全一样,在本文中不再叙述。
本文主要列举了分块矩阵在高等代数课程中的若干应用。
分为三章,第一章 讲了分块矩阵在化简运算方面的应用,包括对矩阵乘法新的理解和Gramer 法则 的证明。
第二章讲了分块矩阵的思想在证明一些经典定理中的应用,主要证明了 Cayley-Hamilton 定理和齐次线性方程组解的结构定理。
第三章列举了一些运用 分块矩阵的例题。
关键词:高等代数;分块矩阵:化简运算。
1.1.1 例题1:给定〃X”?矩阵A .试求出下面矩阵方程的通解: 4X=X'A.解:设矩阵A 的秩为已知存在〃阶非异方阵尸和川阶非异方阵。
,使得由此可知此=kA 。
,所以(kAQ-i)' X = X /-么。
7,即(。
『A'(P 广 X = X' P-AQ-I .等式两边左乘以。
、再右乘以。
,于是等式变成A'(P")'XQ = Q'X'P7A = ((P-|)'X0)'A.利用矩阵的分块,将〃 X ,n 矩阵(P-) X 。
和A 同法分块,即记(P-,,XQ =PAQ = A =E r 0、 、02即左=0, %=丫」.所以Y 0 (PT)'X0=" I 21 22 )这证明了所求的〃 X m 矩阵X 可表为x = p ,j 。
-\7 21 ^22 7反之,任意上面形式的〃 X m 矩阵X ,只要,•阶方阵适合条件% ' = % ,则 4X=X ,A.故求出了矩阵方程4X = X ,A 的通解.1.1.2 例题2:设A8分别为数域户上的机阶方阵和〃阶方阵,C 为数域尸上秩 为,的m x 〃阶矩阵,其中机>〃且AC = CB .证明:A 与8至少有r 个公共特征值, 且1 >若A 与8的特征多项式互素,则C = 0.2>若C 为列满秩矩阵,则B 的特征值全部为A 的特征值.证明:首先对特殊的C 进行证明,假设°) 4)(。
分块矩阵的应用相关例题分块矩阵是为了简化矩阵的运算而产生的一种工具,在处理高阶矩阵的时候,可以将大矩阵看成是由一些小矩阵组成的,这就将矩阵中的元素由数扩展为矩阵,在运算时,把这些小矩阵当作数来处理,这就是分块矩阵的运算。
分块矩阵的运算在形式上和数字矩阵完全一样,在本文中不再叙述。
本文主要列举了分块矩阵在高等代数课程中的若干应用。
分为三章,第一章讲了分块矩阵在化简运算方面的应用,包括对矩阵乘法新的理解和Gramer 法则的证明。
第二章讲了分块矩阵的思想在证明一些经典定理中的应用,主要证明了Cayley-Hamilton 定理和齐次线性方程组解的结构定理。
第三章列举了一些运用分块矩阵的例题。
关键词:高等代数;分块矩阵;化简运算。
1.1 例题1.1.1 例题1:给定n m ⨯矩阵A ,试求出下面矩阵方程的通解:''A X X A =.解:设矩阵A 的秩为r .已知存在n 阶非异方阵P 和m 阶非异方阵Q ,使得000rEPAQ ⎛⎫=Λ= ⎪⎝⎭. 由此可知11A P Q --=Λ,所以1111()''P Q X X P Q ----Λ=Λ,即1111(')'(')'Q P X X P Q ----Λ=Λ.等式两边左乘以'Q ,再右乘以Q ,于是等式变成111'()'''(()')'P XQ Q X P P XQ ---Λ=Λ=Λ.利用矩阵的分块,将n m ⨯矩阵1()'P XQ -和Λ同法分块,即记111212122()'Y Y P XQ Y Y -⎛⎫= ⎪⎝⎭,于是有 1112112121221222''00''0000rr Y Y Y Y EE Y Y Y Y ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 因此 11111212'0'000Y Y Y Y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,即120Y =,1111'Y Y =.所以11121220()'YP XQ Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.这证明了所求的n m ⨯矩阵X 可表为11121220'Y X P Q Y Y -⎛⎫= ⎪⎝⎭,1111'Y Y =.反之,任意上面形式的n m ⨯矩阵X ,只要r 阶方阵适合条件1111'Y Y =,则''A X X A =.故求出了矩阵方程''A X X A =的通解.1.1.2 例题2:设,A B 分别为数域F 上的m 阶方阵和n 阶方阵,C 为数域F 上秩为r 的m n ⨯阶矩阵,其中m n >且AC CB =.证明:A 与B 至少有r 个公共特征值,且1>若A 与B 的特征多项式互素,则0C =.2>若C 为列满秩矩阵,则B 的特征值全部为A 的特征值. 证明:首先对特殊的C 进行证明,假设000rI C ⎛⎫= ⎪⎝⎭,11122122A A A A A ⎛⎫= ⎪⎝⎭,11122122B B B B B ⎛⎫= ⎪⎝⎭, 则 112100A AC A ⎛⎫= ⎪⎝⎭,111200B B CB ⎛⎫=⎪⎝⎭. 由AC CB =得1111A B =,210A =,120B =.显然,A 和B 至少有r 个相同的特征值.现在来证明一般情形.因为C 的秩等于r ,不妨设000rE C P Q ⎛⎫=⎪⎝⎭,其中P 是m 阶可逆矩阵,Q 是n 阶可逆矩阵,则000000rrEE AC AP Q CB P QB ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.于是 11000000rr EE P AP QBQ --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 由前面的证明,1P AP -和1QBQ -至少有r 个相同的特征值,因此A 和B 至少有r 个相同的特征值.1>A 与B 的特征多项式互素,说明A 与B 有零个公共特征值,则矩阵C 秩为零,所以0C =.2>若C 为列满秩矩阵,即C 的秩为n ,则A 与B 至少有n 个公共特征值,又因为B 是n 阶方阵,故B 的特征值全部为A 的特征值.1.1.3 例题3:令A ,B ,C 为数域F 上的n 阶方阵,A 可逆,并且0i CB CA B ==,1,2,,i n =.证明:A B C A ⎛⎫⎪⎝⎭可逆,并求其逆矩阵.证明:先证()()r C r B n +=的情形.设()r C r =,我们知道存在n 阶可逆矩阵P 和Q ,使得 000rEPCQ ⎛⎫= ⎪⎝⎭,1112112122B B Q BP B B --⎛⎫= ⎪⎝⎭,111212122A A Q AQ A A -⎛⎫= ⎪⎝⎭, 其中矩阵分块方式都遵照PCQ 的形式. 由条件0i CB CA B ==,1,2,,i n =.及分块矩阵运算可知110B =,120B =.()()122122122221220i A B B A A B B ==,1,2,,1i n =-. (7)则可记 11121212221221000000**0**r A A A B Q A A B B Q M C A P E P --⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, 其中1****PAP -⎛⎫= ⎪⎝⎭.由于11()()r Q BP r B n r --==-和式(7)知,()2122B B 中存在()()n r n r -⨯-可逆矩阵022B 使得012220A B =,则120A =.所以11122det()det()det()0Q AQ A A -=⋅≠,则11A 可逆.于是我们可以对M 左乘初等行变换矩阵1P ,使得1112122212211100000000**0**A A B Q A A B B Q PM P C A P P --⎛⎫⎪⎛⎫⎛⎫⎛⎫ ⎪==⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭, (8) 故 1121det()det()det()det()0PM Q AQ PAP A --=⋅=≠, 这就说明det 0A B C A ⎛⎫≠ ⎪⎝⎭,A B C A ⎛⎫⎪⎝⎭可逆得证.由于以上对A B C A ⎛⎫ ⎪⎝⎭的操作都是可逆的,并且上三角可逆矩阵0a b c ⎛⎫⎪⎝⎭的逆矩阵是11110a a bc c ----⎛⎫- ⎪⎝⎭,则可以求出A B C A ⎛⎫⎪⎝⎭的逆矩阵,对之后讨论的情形,求逆矩阵方式都类似,不再赘述.我们还是把重点放在证明上. 下面证()()r C r B n +<的情形.易知()0r C =或()0r B =时结论一定成立,设()0r C r =>,()0r B s =>. 我们先从简单情形入手,令3n =,1r =,1s =,这时1112212221221000**0**a A A A B B M E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭, 可对其进行初等行变换消去()2122B B 的一行并对M 进行初等列变换让33b 为可逆量(此时即非零量)11121313233100000**0**00**a A M b b b E ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭,即111213222321133331000****0**00**a a a a a a M a b E ⎛⎫⎪⎪ ⎪=⎪⎪ ⎪⎝⎭,其中*代表无关紧要的量.由条件式(7)计算后可知130a =,12230a a =,1222230a a a =.若120a =,则110a ≠,经初等行变换可消去1E ,得类似式(8)的11222321233330000000****00**00**a a a a M a b ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,随即得证.若230a =,则330a ≠,经初等列变换消去()2122B B 的最后一行,得到1112222123310000000**0000**00**a a a a M a E ⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭,类似之前的讨论也可证明结论成立.到此3n ≤时结论成立.以上讨论是从求C 的等价标准型的角度出发,若从求B 的等价标准型开始,也能得到以上结论,也就是说C 和B 有某种“对称性”,所以我们只考虑()()r C r B ≤的情形.再证一下4n =的情形,则需要考虑的有两种情况:()()1r C r B ==或()1r C =,()2r B =.()()1r C r B ==时,对M 进行类似之前的处理后得111222214414410000*****0**00**a A A Ab M a E ⨯⨯⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭, 其中m n A ⨯代表矩阵A 中的m n ⨯小矩阵. 由条件式(7)计算后可知12210A A ⨯⨯=,1222210i A A A ⨯⨯⨯=,1,2i =. (9)若120A ⨯=或210A ⨯=,则对应的11a 可逆或33a 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,1221()()1r A r A ⨯⨯==,对1M 中12A ⨯所在的列进行初等列变换,对21A ⨯所在的行进行初等行变换,得111222233334442441000000*******0**00**a a a a a ab M a E ⎛⎫ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 由条件式(9)得230a =,22330a a =,2232330a a a =,则220a =或330a =,对应的进行初等行变换或列变换可以消去12a 或34a ,进而可消去1E 或44b ,进而可证结论成立.()1r C =,()2r B =时, 对M 进行类似之前的处理后得1112221222122100000****0**00**a a a A B M A E ⨯⨯⨯⎛⎫ ⎪⎪⎪= ⎪⎪ ⎪⎝⎭,由条件式(7)知12120a A ⨯=,由此说明120a =或120A ⨯=,则类似之前讨论,可证结论成立.最后证一般情形,处理后的()()()()()()()000000**00**rrr n r s n r s n r s n r s sn r rs n r s ss s n r s ss sr rA A A A AA AB B M B E ⨯----⨯----⨯-⨯⨯--⨯--⎛⎫⎪ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭, 其中ss B 是可逆矩阵. 由条件式(7)可得()()()()()()0i r n r s n r s s r n r s n r s n r s n r s s A A A A A ⨯----⨯⨯----⨯----⨯==,1,2,,2i n =-. (10)若()0r n r s A ⨯--=或()0n r s s A --⨯=,则对应的rr A 可逆或ss A 可逆,则进行适当的初等行变换或列变换就得到我们想要的式(8)或“对称”的类似式,总之都能得证.反之,我们可以继续对()()()(),,r n r s n r s n r s n r s s A A A ⨯----⨯----⨯仿照矩阵,,C A B 的形式进行分块,经过适当处理后可得到()()n r s n r s A --⨯--中类似式(10)的条件式,并重复上述判别,若能消去()r n r s A ⨯--或()n r s s A --⨯中对应的类似“r E ”或“ss B ”的矩阵,则能消去r E 或ss B ,进而证明结论.不行的话就对新得到的条件式中的相应矩阵再分块…,由于n 是有限数,如此进行下去,最终能得到条件0LN =,而其中一定有一个矩阵是一阶的,也就是一定有0L =或0M =,再经过适当行变换列变换可使M 变成类似式(8)的矩阵,从而结论得证.。