矩阵分块法
- 格式:ppt
- 大小:1015.50 KB
- 文档页数:21
矩阵分块知识点总结一、矩阵分块的基本概念1.1 矩阵分块的定义矩阵分块是一种对矩阵进行分割的方法,将一个大的矩阵分割成若干个较小的子矩阵,这些子矩阵可以是行向量、列向量或者更小的矩阵。
矩阵分块的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
1.2 矩阵分块的表示形式矩阵分块可以采用不同的表示形式,其中包括方括号表示、圆括号表示和其他符号表示。
以方括号表示为例,一个矩阵可以分割成四个子矩阵,如下所示:A = [ A11, A12A21, A22 ]其中A11、A12、A21、A22为子矩阵,分别表示矩阵A的四个子块。
1.3 矩阵分块的基本性质矩阵分块具有很多基本的性质,其中包括可交换性、可加性、可乘性等。
具体而言,如果矩阵A和B可以进行相应的分块操作,则有以下性质:可交换性:A和B的分块顺序可以交换,即A*B = B*A。
可加性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A + B) = A + B。
可乘性:矩阵A和B的分块和形式,若A和B可以相应分块,则有(A * B) = A * B。
1.4 矩阵分块的应用矩阵分块在实际中有着广泛的应用,其中包括矩阵的运算、方程组的求解、特征值与特征向量的计算等方面。
矩阵分块能够简化问题的处理过程,提高计算的效率,使得矩阵的性质更加清晰和易于理解,因此在很多领域中得到了广泛的应用。
二、矩阵分块的基本类型2.1 行分块矩阵行分块矩阵是将一个大的矩阵按照行进行分块,将每一行的元素划分成若干个较小的行向量,从而形成一个行分块矩阵。
行分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
2.2 列分块矩阵列分块矩阵是将一个大的矩阵按照列进行分块,将每一列的元素划分成若干个较小的列向量,从而形成一个列分块矩阵。
列分块矩阵的表示形式可以是方括号、圆括号或者其他符号,不同的表示形式能够提供更加清晰和易于理解的矩阵分块结构。
分块矩阵是指将一个矩阵按照一定的规则分成若干个小块,每个小块都是一个矩阵。
分块矩阵在矩阵运算中具有重要的作用,可以简化计算过程。
下面通过例题来详解分块矩阵的运算方法。
例题1:设A = ⌈⌉,B = ⌉⌋,其中a、b、c、d均为常数,求AB和BA。
解:根据分块矩阵的定义,有A = ⎡⎡ a b c d ⎡⎡⎡⎡ e f g h ⎡⎡B = ⎡⎡ i j k l ⎡⎡⎡⎡ m n o p ⎡⎡则AB = ⎡⎡ ai+ej bi+fj ci+gj di+hj ⎡⎡⎡⎡ mi+nj ni+oj pi+qj ri+sj ⎡⎡BA = ⎡⎡ ai+ej bi+fj ci+gj di+hj ⎡⎡⎡⎡ mi+nj ni+oj pi+qj ri+sj ⎡⎡可以看出,AB和BA的每个元素都是原矩阵对应位置元素的乘积之和,因此可以直接计算得到结果。
例题2:设A = ⌈⌉,B = ⌉⌋,其中a、b、c、d均为常数,求A^2和(AB)^2。
解:根据分块矩阵的定义,有A = ⎡⎡ a b c d ⎡⎡⎡⎡ e f g h ⎡⎡B = ⎡⎡ i j k l ⎡⎡⎡⎡ m n o p ⎡⎡则A^2 = AB * BA = ⎡⎡ ai+ej bi+fj ci+gj di+hj ⎡⎡⎡⎡ mi+nj ni+oj pi+qj ri+sj ⎡⎡×⎡⎡ ai+ej bi+fj ci+gj di+hj ⎡⎡⎡⎡ mi+nj ni+oj pi+qj ri+sj ⎡⎡= (ai*mi + ai*ni + bi*mi + bi*ni + ...) * (mi*ai + mi*ai + ni*bi + ni*bi + ...)= (a^2 + b^2) * (a^2 + b^2) = a^4 + b^4 + 2a^2b^2.同理可得,(AB)^2 = (a^2 + b^2)(m^2 + n^2) = a^4 + b^4 + a^2m^2 + b^2n^2.。
§4 矩阵分块法本节我们将介绍矩阵运算的一种有用的技巧——矩阵的分块,这种技巧在处理某些较高阶的矩阵时常常被用到。
一、分块矩阵的概念设A 是一个矩阵,我们在它的行或列之间加上一些直线,把这个矩阵分成若干个小块,例如,设A 是一个43⨯矩阵111213212223313233414243a a a a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭ 我们可以把它分成如下的四块111213212223313233414243a a a a a a A a a a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭用这种方法被分成若干个小块的矩阵称为分块矩阵,每一个小块称为A 的一个子块。
在一个分块矩阵中,每一个小块也可以看成是一个矩阵。
例如,上面的分块矩阵A 是由以下四个矩阵组成的111121a A a ⎛⎫= ⎪⎝⎭ 1213122223a a A a a ⎛⎫= ⎪⎝⎭ 312141a A a ⎛⎫= ⎪⎝⎭ 3233224243a a A a a ⎛⎫= ⎪⎝⎭我们可以把A 简单地写成11122122A A A A A ⎛⎫=⎪⎝⎭对一个矩阵来讲,可以有各种不同的分法。
二、分块矩阵的运算规则分块矩阵的运算规则与普通矩阵的运算规则相类似,分别说明如下:(1)分块矩阵的加法设()ij m n A a ⨯=,()ij m n B b ⨯=,采用同样的分块方法得1111r s sr A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ , 1111r s sr B B B B B ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中ij A 与ij B 的行数与列数都相同,则11111111r r s s sr sr A B A B A B A B A B ++⎛⎫ ⎪+= ⎪ ⎪++⎝⎭(2)数乘分块矩阵设1111r s sr A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭ ,λ为实数,则1111r s sr A A A A A λλλλλ⎛⎫⎪= ⎪ ⎪⎝⎭(3)分块矩阵的乘法设()ij m l A a ⨯=,()ij l n B b ⨯=,分别分块成1111t s st A A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭ , 1111r t tr B B B B B ⎛⎫⎪= ⎪ ⎪⎝⎭其中12,,i i it A A A (1,2,,i s = )的列数分别等于12,,,j j t j B B B (1,2,,j r = )的行数,则1111r s sr C C AB C A ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中1tij ik kj k C A B ==∑(1,2,,i s = ,1,2,,j r = )例1 设1000010012101101A ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭, 1010120110411120B ⎛⎫ ⎪-⎪= ⎪ ⎪--⎝⎭求乘积AB解 为了求乘积AB ,我们可以对A 、B 进行如下的分块1000010012101101A ⎛⎫ ⎪ ⎪= ⎪- ⎪⎝⎭1E O A E ⎛⎫= ⎪⎝⎭,1010120110411120B ⎛⎫ ⎪- ⎪= ⎪ ⎪--⎝⎭112122B E B B ⎛⎫= ⎪⎝⎭按分块矩阵的乘法可得11111212211121122E O B E B EAB A E B B A B B A B ⎛⎫⎛⎫⎛⎫== ⎪⎪⎪++⎝⎭⎝⎭⎝⎭而 11121121010111211A B B -⎛⎫⎛⎫⎛⎫+=+⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭2411-⎛⎫= ⎪-⎝⎭122124133112031A B -⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故 1010120124331131AB ⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭(4)分块矩阵的转置设1111r s sr A A A A A ⎛⎫⎪= ⎪ ⎪⎝⎭ , 则1111T T s T T T r srA A A A A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(5)分块对角阵在n 阶方阵A 的分块矩阵中,如果只有在主对角线上有非零的小方阵,而其余子块均为零矩阵,即12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭则A 称为分块对角阵。