1第一讲 集合与简易逻辑 高考数学专题复习双基 典例 精炼
- 格式:doc
- 大小:120.50 KB
- 文档页数:5
高中数学复习讲义 第一章 集合与简易逻辑第1课时 集合的概念及运算【考点导读】1. 了解集合的含义,体会元素与集合的属于关系;能选择自然语言,图形语言,集合语言描述不同的具体问题,感受集合语言的意义和作用.2. 理解集合之间包含与相等的含义,能识别给定集合的子集;了解全集与空集的含义.3. 理解两个集合的交集与并集的含义,会求两个集合的交集与并集;理解在给定集合中一个子集补集的含义,会求给定子集的补集;能使用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.4. 集合问题常与函数,方程,不等式有关,其中字母系数的函数,方程,不等式要复杂一些,综合性较强,往往渗透数形思想和分类讨论思想.【基础练习】1.集合用列举法表2.设集合,,则3.已知集合,,则集合_4.设全集,集合,,则实数a 的值为_____.【范例解析】例.已知为实数集,集合.若,或,求集合B .【反馈演练】1.设集合,,,则=_________. 2.设P ,Q 为两个非空实数集合,定义集合P +Q =,则P +Q 中元素的个数是______个.3.设集合,.(1)若,求实数a 的取值范围;{(,)02,02,,}x y x y x y Z ≤≤≤<∈{21,}A x x k k Z ==-∈{2,}B x x k k Z ==∈A B ⋂={0,1,2}M ={2,}N x x a a M ==∈M N ⋂={1,3,5,7,9}I ={1,5,9}A a =-{5,7}I C A =R 2{320}A x x x =-+≤R B C A R ⋃={01R B C A x x ⋂=<<23}x <<{}2,1=A {}3,2,1=B {}4,3,2=C ()C B A U ⋂},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q 2{60}P x x x =--<{23}Q x a x a =≤≤+P Q P ⋃=(2)若,求实数a 的取值范围;(3)若,求实数a 的值.第3 课时 充分条件和必要条件【考点导读】1. 理解充分条件,必要条件和充要条件的意义;会判断充分条件,必要条件和充要条件.2. 从集合的观点理解充要条件,有以下一些结论:若集合,则是的充分条件;若集合,则是的必要条件;若集合,则是的充要条件.3. 会证明简单的充要条件的命题,进一步增强逻辑思维能力.【基础练习】1.若,则是的充分条件.若,则是的必要条件.若,则是的充要条件.2.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)已知,,那么是的_____充分不必要___条件.(2)已知两直线平行,内错角相等,那么是的____充要_____条件.(3)已知四边形的四条边相等,四边形是正方形,那么是的___必要不充分__条件.3.若,则的一个必要不充分条件是.【范例解析】P Q ⋂=∅{03}P Q x x ⋂=≤<P Q ⊆P Q P Q ⊇P Q P Q =P Q p q ⇒p q q p ⇒p q p q ⇔p q :2p x >:2q x ≥p q :p :q p q :p :q p q x R ∈1x >0x >例.用“充分不必要条件,必要不充分条件,充要条件和既不充分也不必要条件”填空.(1)是的___________________条件;(2)是的___________________条件; (3)是的___________________条件;(4)是或的___________________条件.分析:从集合观点“小范围大范围”进行理解判断,注意特殊值的使用. 点评:①判断p 是q 的什么条件,实际上是判断“若p 则q ”和它的逆命题“若q 则p ”的真假,若原命题为真,逆命题为假,则p 为q 的充分不必要条件;若原命题为假,逆命题为真,则p 为q 的必要不充分条件;若原命题为真,逆命题为真,则p 为q 的充要条件;若原命题,逆命题均为假,则p 为q 的既不充分也不必要条件.②在判断时注意反例法的应用.③在判断“若p 则q ”的真假困难时,则可以判断它的逆否命题“若q 则p ”的真假.【反馈演练】1.设集合,,则“”是“”的_条件.2.已知p :1<x <2,q :x (x -3)<0,则p 是q 的 条件.3.已知条件,条件.若是的充分不必要条件,求实数a 的取值范围.2,2.x y >⎧⎨>⎩4,4.x y xy +>⎧⎨>⎩(4)(1)0x x -+≥401x x -≥+αβ=tan tan αβ=3x y +≠1x ≠2y ≠⇒⌝⌝}30|{≤<=x x M }20|{≤<=x x N M a ∈N a ∈2:{10}p A x R x ax =∈++≤2:{320}q B x R x x =∈-+≤q ⌝p ⌝。
第一章复习集合与简易逻辑一、本讲进度《集合与简易逻辑》复习二、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
三、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。
4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。
对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。
(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。
高中数学第一章集合与常用逻辑用语考点专题训练单选题1、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.2、已知集合M={x|x=m−56,m∈Z},N={x|x=n2−13,n∈Z},P={x|x=p2+16,p∈Z},则集合M,N,P的关系为()A.M=N=P B.M⊆N=PC.M⊆N P D.M⊆N,N∩P=∅答案:B分析:对集合M,N,P中的元素通项进行通分,注意3n−2与3p+1都是表示同一类数,6m−5表示的数的集合是前者表示的数的集合的子集,即可得到结果.对于集合M={x|x=m−56,m∈Z},x=m−56=6m−56=6(m−1)+16,对于集合N={x|x=n2−13,n∈Z},x=n2−13=3n−26=3(n−1)+16,对于集合P={x|x=p2+16,p∈Z},x=p2+16=3p+16,由于集合M,N,P中元素的分母一样,只需要比较其分子即可,且m,n,p∈Z,注意到3(n−1)+1与3p+1表示的数都是3的倍数加1,6(m−1)+1表示的数是6的倍数加1,所以6(m−1)+1表示的数的集合是前者表示的数的集合的子集,所以M⊆N=P.故选:B.3、下列各式中关系符号运用正确的是()A.1⊆{0,1,2}B.∅⊄{0,1,2}C.∅⊆{2,0,1}D.{1}∈{0,1,2}答案:C分析:根据元素和集合的关系,集合与集合的关系,空集的性质判断即可.根据元素和集合的关系是属于和不属于,所以选项A错误;根据集合与集合的关系是包含或不包含,所以选项D错误;根据空集是任何集合的子集,所以选项B错误,故选项C正确.故选:C.4、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|〉3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D5、设全集U={1,2,3,4,5},集合M满足∁U M={1,3},则()A.2∈M B.3∈M C.4∉M D.5∉M答案:A分析:先写出集合M,然后逐项验证即可由题知M={2,4,5},对比选项知,A正确,BCD错误故选:A6、已知集合A={(x,y)|x,y∈N∗,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.6答案:C分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B中的元素满足{y≥xx+y=8,且x,y∈N∗,由x+y=8≥2x,得x≤4,所以满足x+y=8的有(1,7),(2,6),(3,5),(4,4),故A∩B中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.7、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.8、已知U=R,M={x|x≤2},N={x|−1≤x≤1},则M∩∁U N=()A.{x|x<−1或1<x≤2}B.{x|1<x≤2}C.{x|x≤−1或1≤x≤2}D.{x|1≤x≤2}答案:A分析:先求∁U N,再求M∩∁U N的值.因为∁U N={x|x<−1或x>1},所以M∩C U N={x|x<−1或1<x≤2}.故选:A.多选题9、已知集合A={0,1,2},B={a,2},若B⊆A,则a=()A.0B.1C.2D.0或1或2答案:AB分析:由B⊆A,则B={0,2}或B={1,2},再根据集合相等求出参数的值;解:由B⊆A,可知B={0,2}或B={1,2},所以a=0或1.故选:AB.小提示:本题考查根据集合的包含关系求参数的值,属于基础题.10、已知集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},且x1、x2∈A,x3∈B,则下列判断正确的是()A.x1x2∈A B.x2x3∈BC.x1+x2∈B D.x1+x2+x3∈A答案:ABC分析:本题首先可根据题意得出A表示奇数集,B表示偶数集,x1、x2是奇数,x3是偶数,然后依次对x1x2、x2x3、x1+x2、x1+x2+x3进行判断,即可得出结果.因为集合A={x|x=2m−1,m∈Z},B={x|x=2n,n∈Z},所以集合A表示奇数集,集合B表示偶数集,x1、x2是奇数,x3是偶数,A项:因为两个奇数的积为奇数,所以x1x2∈A,A正确;B项:因为一个奇数与一个偶数的积为偶数,所以x2x3∈B,B正确;C项:因为两个奇数的和为偶数,所以x1+x2∈B,C正确;D项:因为两个奇数与一个偶数的和为偶数,所以x1+x2+x3∈B,D错误,故选:ABC.11、已知命题p:∃x∈R,ax2−4x−4=0,若p为真命题,则a的值可以为()A.-2B.-1C.0D.3答案:BCD分析:根据给定条件求出p为真命题的a的取值范围即可判断作答,当a=0时,x=−1,p为真命题,则a=0,当a≠0时,若p为真命题,则Δ=16+16a≥0,解得a≥−1且a≠0,综上,p为真命题时,a的取值范围为a≥−1.故选:BCD12、已知集合A={x∈R|x2−3x−18<0},B={x∈R|x2+ax+a2−27<0},则下列命题中正确的是()A.若A=B,则a=−3B.若A⊆B,则a=−3C.若B=∅,则a≤−6或a≥6D.若B A时,则−6<a≤−3或a≥6答案:ABC分析:求出集合A,根据集合包含关系,集合相等的定义和集合的概念求解判断.A={x∈R|−3<x<6},若A=B,则a=−3,且a2−27=−18,故A正确.a=−3时,A=B,故D不正确.若A⊆B,则(−3)2+a⋅(−3)+a2−27≤0且62+6a+a2−27≤0,解得a=−3,故B正确.当B=∅时,a2−4(a2−27)≤0,解得a≤−6或a≥6,故C正确.故选:ABC.13、已知集合P={1,2},Q={x|ax+2=0},若P∪Q=P,则实数a的值可以是()A.−2B.−1C.1D.0答案:ABD分析:由题得Q⊆P,再对a分两种情况讨论,结合集合的关系得解.因为P∪Q=P,所以Q⊆P.由ax+2=0得ax=−2,当a=0时,方程无实数解,所以Q=∅,满足已知;当a≠0时,x=−2a ,令−2a=1或2,所以a=−2或−1.综合得a=0或a=−2或a=−1.故选:ABD小提示:易错点睛:本题容易漏掉a=0. 根据集合的关系和运算求参数的值时,一定要注意考虑空集的情况,以免漏解.填空题14、已知集合A={x|3≤x<7},C={x|x>a},若A⊆C,求实数a的取值范围_______.答案:(−∞,3)分析:根据集合的包含关系画出数轴即可计算.∵A⊆C,∴A和C如图:∴a<3.所以答案是:(−∞,3).15、若A={x|x2+(m+2)x+1=0,x∈R},且A∩R+=∅,则m的取值范围是__.答案:m>﹣4.解析:根据题意可得A是空集或A中的元素都是小于等于零的,然后再利用判别式以及韦达定理求解即可.解:A∩R+=∅知,A有两种情况,一种是A是空集,一种是A中的元素都是小于等于零的,若A=∅,则Δ=(m +2)2﹣4<0,解得﹣4<m<0 ,①若A≠∅,则Δ=(m +2)2﹣4≥0,解得m≤﹣4或m≥0,又A中的元素都小于等于零∵两根之积为1,∴A中的元素都小于0,∴两根之和﹣(m+2)<0,解得m>﹣2∴m≥0,②由①②知,m>﹣4,所以答案是:m>﹣4.小提示:易错点点睛:本题考查利用交集的结果求参数,本题在求解中容易忽略A=∅的讨论,导致错解,同时本题也可以采取反面考虑结合补集思想求解.16、设集合A={−4,2m−1,m2},B={9,m−5,1−m},又A∩B={9},求实数m=_____.答案:−3分析:根据A∩B={9}得出2m−1=9或m2=9,再分类讨论得出实数m的值.因为A∩B={9},所以9∈A且9∈B,若2m−1=9,即m=5代入得A={−4,9,25},B={9,0,−4},∴A∩B={−4,9}不合题意;若m2=9,即m=±3.当m=3时,A={−4,5,9},B={9,−2,−2}与集合元素的互异性矛盾;当m=−3时,A={−4,−7,9},B={9,−8,4},有A∩B={9}符合题意;综上所述,m=−3.所以答案是:−3解答题17、已知集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0},集合C={x|x2+2x−8=0}.(1)若A∩B={2},求实数a的值;(2)若A∩B≠∅,A∩C=∅,求实数a的值.答案:(1)−3(2)−2分析:(1)求出集合B={2,3},由A∩B={2},得到2∈A,由此能求出a的值,再注意3∉A检验即可;(2)求出集合C={−4,2},由A∩B≠∅,A∩C=∅,得3∈A,由此能求出a,最后同样要注意检验.(1)因为集合A={x|x2−ax+a2−19=0},集合B={x|x2−5x+6=0}={2,3},且A∩B={2},所以2∈A ,所以4−2a +a 2−19=0,即a 2−2a −15=0,解得a =−3或a =5.当a =−3时,A ={x |x 2+3x −10=0}={−5,2},A ∩B ={2},符合题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},A ∩B ={2,3},不符合题意.综上,实数a 的值为−3.(2)因为A ={x |x 2−ax +a 2−19=0},B ={2,3},C ={x |x 2+2x −8=0}={−4,2},且A ∩B ≠∅,A ∩C =∅,所以3∈A ,所以9−3a +a 2−19=0,即a 2−3a −10=0,解得a =−2或a =5.当a =−2时,A ={x |x 2+2x −15=0}={−5,3},满足题意;当a =5时,A ={x |x 2−5x +6=0}={2,3},不满足题意.综上,实数a 的值为−2.18、设α:m −1≤x ≤2m ,β:2≤x ≤4,m ∈R ,α是β的必要条件,但α不是β的充分条件,求实数m 的取值范围.答案:[2,3]分析:由题意可知α是β的必要不充分条件,可得出集合的包含关系,进而可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.由题意可知,α是β的必要不充分条件,所以,{x |m −1≤x ≤2m }{x |2≤x ≤4},所以{m −1≤22m ≥4,解之得2≤m ≤3. 因此,实数m 的取值范围是[2,3].。
计时双基练一集合A组基础必做1.下列集合中表示同一集合的是( )A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}解析选项A中的集合M表示由点(3,2)所组成的单点集,集合N表示由点(2,3)所组成的单点集,故集合M与N不是同一个集合,选项C中的集合M表示由直线x+y=1上的所有点组成的集合,集合N表示由直线x+y=1上的所有点的纵坐标组成的集合,即N={y|x+y=1}=R,故集合M与N不是同一个集合,选项D中的集合M是数集,而集合N是点集,故集合M与N不是同一个集合,对选项B,由集合元素的无序性,可知M,N表示同一个集合。
答案 B2.(2015·某某卷)已知集合A={1,2,3},B={2,3},则( )A.A=B B.A∩B=∅C.A B D.B A解析因为A={1,2,3},B={2,3},所以B A。
答案 D3.(2015·某某卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=( )A.[0,1] B.(0,1]C.[0,1) D.(-∞,1]解析解x2=x,得x=0或x=1,故M={0,1}。
解lg x≤0,得0<x≤1,故N=(0,1],故M∪N=[0,1],选A。
答案 A4.(2015·某某卷)设全集U={1,2,3,4,5,6},A={1,2},B={2,3,4},则A∩(∁U B)=( )A.{1,2,5,6} B.{1}C.{2} D.{1,2,3,4}解析由题意得∁U B={1,5,6},则A∩(∁U B)={1},因此选B。
答案 B5.(2015·课标全国Ⅰ卷)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为( )A.5 B.4C.3 D.2解析由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,所以A∩B={8,14},故选D。
1.1 集 合〖考纲要求〗理解集合、子集的概念,了解空集、属于、包含、相等的意义. 〖复习要求〗掌握子集的概念,正确使用符号:∈,∉,⊆,⊂,≠,Γ ,H 等〖复习建议〗集合是高考必考内容,一般考查两方面:集合自身的知识与集合语言与集合思想的应用。
复习时要抓住元素这个关键,遇到集合问题,首先要弄清集合里的元素是什么。
注意区别:a 与{a };{a ,b }与{(a ,b )},φ与{φ}〖双基回顾〗集合元素具有的三大特征是: 、 、 ;集合的表示方法: 、 、 ;集合的分类:有限集与无限集。
元素与集合只有两种关系: 、 ;子集的定义与集合的相等: n 元集合子集的个数= ;全集的意义;交集、并集、补集的定义与运算 提示:“和”、“或”、“且”体现在集合的运算中应该是 .一、知识点训练:1、用适当符号填空:0 {0,1};{a ,b } {b ,a };0 φ;{3+17} {x |x >6+3}2、用列举法表示{y |y =x 2-1,|x |≤2,x ∈Z}= .{(x ,y )|y =x 2-1,|x |≤2,x ∈Z}= . 3、M ={x |x 2+2x -a =0,x ∈R}≠φ,则实数a 的取值范围是……………………………………( ) (A )a ≤-1 (B ) a ≤1 (C ) a ≥-1 (D ) a ≥1. 4、已知集合A ={x |x 2-p x +15=0},B ={x |x 2-5x +q =0},如果A ∩B ={3},那么p +q = . 5、已知集合A ={x |-1≤x ≤2},B ={x |x <a },如果A ∩B =A ,那么a 的取值范围是 . 6、已知集合A ={x |x ≤2},B ={x |x >a },如果A ∪B =R ,那么a 的取值范围是 .二、典型例题分析:1、如果a ∈A 则a-11∈A(1)当2∈A 时,求A (2)如果A 是单元素集,求A .2、A ={x |x =y 2-2y -8},B ={y |y =-x 2+2x +3},求A ∩B .3、已知A ={x |x 2-a x +a 2-19=0},B ={x |log 2(x 2-5x +8)=1},C ={x |12822=-+x x },且A ∩B H Φ,A∩C =Φ,求实数a 及集合A .4、已知集合A ={x |x ≥|x 2-2x |},B ={x ||1|1xx x x -≥-},C ={x |a x 2+x +b <0},如果(A ∪B )∩C =φ,A ∪B ∪C =R ,求实数a 、b 的值.*5、S =[-1,a ],A ={y |y =x +1,x ∈S },B ={z|z=x 2,x ∈S },如果A =B ,求a 的值.*6、设f (x )=x 2+p x +q ,A ={x |f (x )=x ,x ∈R},B ={x |f (x -1)=x +1,x ∈R},C ={x |f (f (x ))=x }. (1)如果A ={2},求B .(2)如果证明A 是C 的子集三、课堂练习:1、如果{x |x 2-3x +2=0}⊇{x |a x -2=0},那么所有a 值构成的集合是 .2、A ={x |x =a 2+1,a ∈Z},B ={y |y =b 2-4b +5,b ∈Z},则A 、B 的关系是 .3、满足{0,1}ΓM ⊆{0,1,3,5,6}的集合M 的个数为 .4、设集合A ={x |10+3x -x 2≥0},B ={x |x 2+a <0},如果B ⊆A ,那么实数a 的取值范围是 .四、课堂小结:1、学习集合,关键在搞清集合中元素的构成.2、掌握元素互异性在集合中的应用.3、能利用集合中元素满足的条件进行解题.五、能力测试: 姓名 得分 .1、全集I={x |x ≤4,x ∈N *},A ={1,2,3},A ∩B ={2,3},那么B =…………………………( ) (A ){2,3} (B ) {2,3}或者{2,3,4} (C ){1,4} (D ) {1,4}或者{1}2、集合A ={3-2x ,1,3},B ={1,x 2},并且A ∪B =A ,那么满足条件的实数x 个数有………( ) (A )1 (B ) 2 (C )3 (D ) 43、三个集合A 、B 、C 满足A ∩B =C ,B ∩C =A ,那么有…………………………………………( ) (A )A =B =C (B ) A ⊆B (C )A =C ,A ≠B (D ) A =C ⊆B4、已知非空集合M ,N ,定义M -N ={x |x ∈M ,x ∉N },那么M -(M -N )=……………………( ) (A )M ∪N (B ) M ∩N (C )M (D ) N5、设M ={x |x ∈Z},N ={x |x =2n ,n ∈Z },P ={x |x =n +21},则下列关系正确的是………………( ) (A )N ⊂M (B ) N ⊂P (C )N =M ∪P (D ) N =M ∩P6、全集I={2,3,a 2+2a -3},A ={|a +1|,2},A ={5},则a =……………………………………( ) (A )2 (B ) –3或者1 (C )-4 (D )-4或者27、集合A ={x |x ≤1},B ={x |x >a },如果A ∩B =Φ,那么a 的取值范围是……………………( ) (A )a >1 (B ) a ≥1 (C ) a <1 (D ) a ≤18、集合A ={y |y =x 2+1},B ={y |y =x +1},则 A ∩B =………………………………………………( ) (A ){(1,2),(0,1)} (B ){0,1} (C ){1,2} (D )),1[+∞9、A ={x |x ≠1,x ∈R}∪{y |y ≠2,x ∈R },B ={z|z ≠1且z ≠2,z ∈R},那么……………………( ) (A )A =B (B )A ⊂B (C )A ⊃B (D )A ∩B =φ10、A ={x |f (x )=0},B ={x |g(x )=0},那么方程f 2(x )+g 2(x )=0的解集是……………………………( ) (A )A ∩B (B )A ∪B (C )A ∩B (D ) A ∪B11、非空集合S ⊆{1,2,3,4,5},并且满足a ∈S 则6-a ∈S ,那么这样的集合S 一共有 个. 12、设集合M ={x |x <5},N ={x |x >3},那么“x ∈M 或者x ∈N ”是“x ∈M ∩N ”的 条件. 13、用列举法化简集合M ={x |Z x Z x∈∈-,36}= . 14、如果集合A ={x |a x 2+2x +1=0}只有一个元素,则实数a 的值为 . 15、集合A ={x |x 2-3x +2=0}, B ={x |x 2-a x +a -1=0} ,C ={x |x 2-m x +2=0},若A ∪B =A ,A ∩C =C ,求实数a 、m 之值.*16、求集合{x |x 2+(b +2)x +b +1=0,b ∈R}的各元素之和.1.2 不等式的解法——绝对值不等式〖考纲要求〗在掌握一元一次与一元二次不等式解法的基础上掌握绝对值不等式解法.〖复习建议〗掌握绝对值的概念,会把绝对值问题转化为简单的问题;掌握去绝对值的基本方法:找零点分区间讨论法与换元法.一、知识点训练:1、不等式|2x -7|<3的解为………………………………………………………………………( ) (A )x >2 (B )2<x <5 (C )x <5 (D ) x >02、不等式(x -1)02≥+x 的解为……………………………………………………………( ) (A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠13、方程12|12|-+=-+x x x x 的解是…………………………………………………………………( ) (A )x =-2 (B ) x ≠1 (C ) x ≤-2或者x >1 (D ) -2≤x <1 4、不等式525≤-x 的解集为 ; 5、不等式129->-x x 的解集为 ;二、典型例题分析:1、解不等式:(1)392+≤-x x(2)x x 2212>-1332)3(2-<+-x x x2、⑴已知适合不等式5|3|||≤-++x p x 的x 的最大值为4,求实数p 之值(p =0).⑵已知适合不等式a x x >--+|3||1|的解集为R ,求实数a 的取值范围.3、关于x 的不等式2)1(|2)1(|22-≤+-a a x 与0)13(2)1(32≤+++-a x a x 的解集依次为A 、B ,如果A 是B 的子集,求实数a 的取值范围.三、课堂练习:1、不等式x x ≤-52 的解集为 ;2、不等式x x x ≥+-11的解集为 ; 3、如果不等式kx x >+|1|的解集为R ,则实数k 的取值范围是 .四、课堂小结:解绝对值不等式时,常需要分类讨论,有时也可以用绝对值的几何意义求解,以简化计算.五、能力测试:1、关于x 的不等式a x x <++-|2||1|解集为空集,则实数a 的取值范围是………………( ) (A )(3,+∞) (B )[3,+∞) (C )(-∞,3] (D )(-∞,3)2、不等式|log |2|log 2|22x x x x +<-的解集为…………………………………………………( ) (A )(1,2) (B )(0,1) (C )(1,+∞) (D )(2,+∞)3、若321><x x和同时成立,则x 满足是 ; 4、不等式02||2<--x x 的解集为 . 5、解不等式||1212x x ≤- 6、解下列不等式:5252)1(≤--x 432)2(+>+x x (3)311≥-+x x7、关于x 的不等式23+>ax x 与不等式|x -2-c |<c -2同解,求a 与c 的值.8、函数)(x f =2x -1,)(x g =1-x 2,定义函数⎩⎨⎧<-≥=))(|)((| )())(|)((| |)(|)(x g x f x g x g x f x f x F ,试化简此函数解析式,并研究其最值.1.3 不等式的解法——一次与二次〖考纲要求〗熟练掌握一元一次与一元二次不等式的解法.〖复习建议〗掌握不等式的性质,知道解不等式的基本思想:化归与转化,掌握一元一次不等式:.一、知识点训练:1、x =3在不等式 ax >b 的解集中,那么…………………………………………………………( ) (A)a >0,3a >b (B)a <0,3a <b(C) a >0,b =0 (D) a ≠0,3a >b 或者a =0,b <0 2、不等式ax 2+bx +c >0(a ≠0)的解集为Φ,那么………………………………………………( )(A)a <0,△>0 (B)a <0,△≤0 (C) a >0,△≤0 (D) a >0,△≥0 3、不等式(x -1)02≥+x 的解为………………………………………………………………( )(A )x ≥1 (B )x >1 (C ) x ≥1或者x =-2 (D ) x ≥-2且x ≠1 4、不等式ax 2+bx +2>0的解集为3121<<-x ,则a ;b . 5、不等式组⎩⎨⎧<-+>-+0820222x x x x 的解集为 .二、典型例题分析:1、 如果不等式(a +b )x +(2a -3b )<0的解集为}31|{-<x x ,求不等式(a -3b )x +b -2a >0的解集.2、不等式2)1()12(2≤->-m x m x 对满足的一切实数m 的值都成立,求实数x 的取值范围.3、解关于x 的不等式0)(22>-+-m m x x4、如果不等式b x ax +<的解集为(4,16),求a 、b 的值.5、已知a ≠b ,解关于x 的不等式222)]1([)1(x b ax x b x a -+≥-+.三、课堂练习:1、在实数集内,关于x 的一元二次不等式)0(02≠<++a c bx ax 的解集是空集,则………… ( ) (A )04,02>-<ac b a 且 (B )04,02≤-<ac b a 且(C ) 04,02≤->ac b a 且 (D ) 0402>->ac b a 且2、0)(≥x f 解集是F ,0)(<x g 解集是G ,定义域都为R ,则不等式组⎩⎨⎧≥<0)(0)(x g x f 解集是 ……( )(A )G F (B ) G F (C ) G F (D ) G F 3、不等式ax 2+bx +c >0的解集为212->-<x x 或,那么不等式ax 2-bx +c >0的解集为 . 4、关于x 的不等式:ax 2+4x -1≥-2x 2-a 恒成立,那么实数a ∈ .四、课堂小结:一元一次不等式的解法:关键是学会讨论,知道其解集情况与系数之间的关系。
高中数学第一章-集合考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义.§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾:(一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时 ,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.AB ⊆④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅) 4. ①n 个元素的子集有2n个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②1≠x 3.1或y = 2. 1≠∴y x 且3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件. . 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间) 则不等式)0)(0(0022110><>++++--a a x a xa x a n n n n的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互 R2.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高中数学必修一第一章集合与常用逻辑用语重难点归纳单选题1、若集合A ={x ∣|x |≤1,x ∈Z },则A 的子集个数为( )A .3B .4C .7D .8答案:D分析:先求得集合A,然后根据子集的个数求解即可.解:A ={x ∥x ∣≤1,x ∈Z } ={−1,0,1},则A 的子集个数为23=8个,故选:D.2、已知集合M ={x |1−a <x <2a },N =(1,4),且M ⊆N ,则实数a 的取值范围是( )A .(−∞,2]B .(−∞,0]C .(−∞,13]D .[13,2]答案:C分析:按集合M 是是空集和不是空集求出a 的范围,再求其并集而得解.因M ⊆N ,而ϕ⊆N ,所以M =ϕ时,即2a ≤1−a ,则a ≤13,此时M ≠ϕ时,M ⊆N ,则{1−a <2a 1−a ≥12a ≤4 ⇒{a >13a ≤0a ≤2,无解,综上得a ≤13,即实数a 的取值范围是(−∞,13].故选:C3、设全集U ={−3,−2,−1,0,1,2,3},集合A ={−1,0,1,2}, B ={−3,0,2,3},则A ∩(∁U B )=()A .{−3,3}B .{0,2}C .{−1,1}D .{−3,−2,−1,1,3}答案:C分析:首先进行补集运算,然后进行交集运算即可求得集合的运算结果.由题意结合补集的定义可知:∁U B ={−2,−1,1},则A ∩(∁U B )={−1,1}.故选:C.小提示:本题主要考查补集运算,交集运算,属于基础题.4、已知集合A={x|x+2x−4<0},B={0,1,2,3,4,5},则(∁R A)∩B=()A.{5}B.{4,5}C.{2,3,4}D.{0,1,2,3}答案:B分析:首先化简集合A,再根据补集的运算得到∁R A,再根据交集的运算即可得出答案.因为A={x|x+2x−4<0}=(−2,4),所以∁R A={x|x≤−2或x≥4}.所以(∁R A)∩B={4,5}故选:B.5、已知集合M={−1,0,1,2,3,4},N={1,3,5},P=M∩N,则P的真子集共有()A.2个B.3个C.4个D.8个答案:B分析:根据交集运算得集合P,再根据集合P中的元素个数,确定其真子集个数即可. 解:∵M={−1,0,1,2,3,4},N={1,3,5}∴P={1,3},P的真子集是{1},{3},∅共3个.故选:B.6、设集合A={x|x2=1},B={x|ax=1}.若A∩B=B,则实数a的值为()A.1B.−1C.1或−1D.0或1或−1答案:D分析:对a进行分类讨论,结合B⊆A求得a的值.由题可得A={x|x2=1}={1,−1},B⊆A,当a=0时,B=∅,满足B⊆A;当a≠0时,B={1a },则1a=1或1a=−1,即a=±1.综上所述,a=0或a=±1.故选:D.7、下列命题中正确的是()①∅与{0}表示同一个集合②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1}③方程(x−1)2(x−2)=0的所有解的集合可表示为{1,1,2}④集合{x∣4<x<5}可以用列举法表示A.只有①和④B.只有②和③C.只有②D.以上都对答案:C分析:由集合的表示方法判断①,④;由集合中元素的特点判断②,③.解:对于①,由于“0”是元素,而“{0}”表示含0元素的集合,而 ϕ 不含任何元素,所以①不正确;对于②,根据集合中元素的无序性,知②正确;对于③,根据集合元素的互异性,知③错误;对于④,由于该集合为无限集、且无明显的规律性,所以不能用列举法表示,所以④不正确.综上可得只有②正确.故选:C.8、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.小提示:本题考查了积事件的概率公式,属于基础题.多选题9、设集合M={x|a<x<3+a},N={x|x<2或x>4},则下列结论中正确的是()A.若a<−1,则M⊆N B.若a>4,则M⊆NC.若M∪N=R,则1<a<2D.若M∩N≠∅,则1<a<2答案:ABC解析:根据集合包含的定义即可判断AB;根据交集并集结果求出参数范围可判断CD.对于A,若a<−1,则3+a<2,则M⊆N,故A正确;对于B,若a>4,则显然任意x∈M,则x>4,则x∈N,故M⊆N,故B正确;对于C,若M∪N=R,则{a<23+a>4,解得1<a<2,故C正确;对于D,若M∩N=∅,则{a≥23+a≤4,不等式无解,则若M∩N≠∅,a∈R,故D错误.故选:ABC.10、定义:若集合A非空,且是集合B的真子集,就称集合A是集合B的孙子集.下列集合是集合B={1,2,3}的孙子集的是()A.∅B.{1}C.{1,2}D.{1,2,3}答案:BC分析:根据孙子集的定义,结合各选项集合与集合B的关系,即可确定正确选项.A:∅为集合B的真子集,当不是非空集,不合要求;B:{1}为集合B的真子集,且为非空集,符合要求;C:{1,2}为集合B的真子集,且为非空集,符合要求;D:{1,2,3}为集合B的子集,但不是真子集,不合要求.故选:BC11、已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、C关系是()A.B=A∩C B.B∪C=C C.B∩A=B D.A=B=C解析:根据集合A,B,C中角的范围,对选项逐一分析,由此得出正确选项.对于A选项,A∩C除了锐角,还包括其它角,比如−330∘,所以A选项错误.对于B选项,锐角是小于90∘的角,故B选项正确.对于C选项,锐角是第一象限角,故C选项正确.对于D选项,A,B,C中角的范围不一样,所以D选项错误.故选:BC小提示:本小题主要考查角的范围比较,考查集合交集、并集和集合相等的概念,属于基础题.填空题12、已知集合A={x|ax2﹣3x+1=0,a∈R},若集合A中至多只有一个元素,则a的取值范围是 _____.,+∞).答案:{0}∪[94分析:分类讨论方程解的个数,从而确定a的取值范围.当a=0时,方程可化为﹣3x+1=0,,故成立;解得x=13当a≠0时,Δ=9﹣4a≤0,;解得a≥94综上所述,a的取值范围是{0}∪[9,+∞).4,+∞).所以答案是:{0}∪[9413、已知命题“存在x∈R,使ax2−x+2≤0”是假命题,则实数a的取值范围是___________.答案:a>18分析:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题,根据二次函数知识列式可解得结果.因为命题“存在x∈R,使ax2−x+2≤0”是假命题,所以命题“∀x∈R,使得ax2−x+2>0”是真命题,当a=0时,得x<2,故命题“∀x∈R,使得ax2−x+2>0”是假命题,不合题意;当a≠0时,得{a>0Δ=1−8a<0,解得a>18.所以答案是:a>18小提示:关键点点睛:转化为命题“∀x∈R,使得ax2−x+2>0”是真命题求解是解题关键.14、已知集合A={x|x≥4或x<−5},B={x|a+1≤x≤a+3},若B⊆A,则实数a的取值范围_________.答案:{a|a<−8或a≥3}分析:根据B⊆A,利用数轴,列出不等式组,即可求出实数a的取值范围.用数轴表示两集合的位置关系,如上图所示,或要使B⊆A,只需a+3<−5或a+1≥4,解得a<−8或a≥3.所以实数a的取值范围{a|a<−8或a≥3}.所以答案是:{a|a<−8或a≥3}解答题15、用列举法表示下列集合(1)11以内非负偶数的集合;(2)方程(x+1)(x2−4)=0的所有实数根组成的集合;(3)一次函数y=2x与y=x+1的图象的交点组成的集合.答案:(1){0,2,4,6,8,10};(2){−2,−1,2}(3){(1,2)}分析:(1)根据偶数的定义即可列举所有的偶数,(2)求出方程的根,即可写出集合,(3)联立方程求交点,进而可求集合.(1)11以内的非负偶数有0,2,4,6,8,10,所以构成的集合为{0,2,4,6,8,10},(2)(x+1)(x2−4)=0的根为x1=−1,x2=2,x3=−2,所以所有实数根组成的集合为{−2,−1,2},(3)联立y=x+1和y=2x,解得{x=1y=2,所以两个函数图象的交点为(1,2),构成的集合为{(1,2)}。
2013高中数学精讲精练第二章函数【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.1.活用“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.2.重视“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.3.强化“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”.4.掌握“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =;②y x =,y =;③y =,y =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x =;⑤lg 1y x =-,lg 10xy =.其中表示同一个函数的有___②④⑤___.2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____②③____. 3.写出下列函数定义域:(1) ()13f x x =-的定义域为______________;(2) 21()1f x x =-的定义域为______________;(3) 1()f x x =的定义域为______________;(4) 0()f x =的定义域为_________________. 4.已知三个函数:(1)()()P x y Q x =;(2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________;(2)______________________; (3)______________________________. 5.写出下列函数值域:(1) 2()f x x x =+,{1,2,3}x ∈;值域是{2,6,12}.①②③④R {1}x x ≠± [1,0)(0,)-⋃+∞ (,1)(1,0)-∞-⋃- ()0Q x ≠ ()0P x ≥ ()0Q x >且()0P x >且()1Q x ≠(2) 2()22f x x x =-+; 值域是[1,)+∞. (3) ()1f x x =+,(1,2]x ∈. 值域是(2,3].【范例解析】例 1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x =③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,()f x 的定义域为{1}x x ≠,()g x 的定义域为R ,故不是同一函数;在②中,()f x 的定义域为[1,)+∞,()g x 的定义域为(,1][1,)-∞-⋃+∞,故不是同一函数;③④是同一函数.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可. 例2.求下列函数的定义域:①12y x =+- ②()f x =解:(1)① 由题意得:220,10,x x ⎧-≠⎪⎨-≥⎪⎩解得1x ≤-且2x ≠-或1x ≥且2x ≠,故定义域为(,2)(2,1][1,2)(2,)-∞-⋃--⋃⋃+∞.② 由题意得:12log (2)0x ->,解得12x <<,故定义域为(1,2).例3.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)221x y x =+()x R ∈; (3)y x =-分析:运用配方法,逆求法,换元法等方法求函数值域. (1) 解:2242(2)2y x x x =-+-=--+,[0,3)x ∈,∴函数的值域为[2,2]-; (2) 解法一:由2221111x y x x ==-++,21011x <≤+,则21101x -≤-<+,01y ∴≤<,故函数值域为[0,1).解法二:由221x y x =+,则21y x y=-,20x ≥,∴01y y ≥-,01y ∴≤<,故函数值域为[0,1).(3t =(0)t ≥,则21x t =-,2221(1)2y t t t ∴=--=--,当0t ≥时,2y ≥-,故函数值域为[2,)-+∞. 点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】1.函数f (x )=x 21-的定义域是___________. 2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________. 3. 函数21()1y x R x=∈+的值域为________________. 4.函数23y x =-+_____________. 5.函数)34(log 25.0x x y -=的定义域为_____________________.6.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B .(1) 求A ;(2) 若B ⊆A ,求实数a 的取值范围. 解:(1)由2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1, 即A =(-∞,-1)∪[1,+ ∞) . (2) 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1) . ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, ∴21≤a <1或a ≤-2,故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1).(,0]-∞ (1,2)(2,3)⋃ (0,1] (,4]-∞ 13[,0)(,1]44-⋃第2课 函数的表示方法【考点导读】1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式. 【基础练习】1.设函数()23f x x =+,()35g x x =-,则(()f g x =_________;(())g f x =__________.2.设函数1()1f x x =+,2()2g x x =+,则(1)g -=_____3_______;[(2)]f g =17;[()]f g x =213x +. 3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =__15___.4.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=_____________.5.如图所示的图象所表示的函数解析式为__________________________. 【范例解析】例1.已知二次函数()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式. 分析:给出函数特征,可用待定系数法求解.解法一:设2()(0)f x ax bx c a =++>,则26,426,4 4.4c a b c ac b a⎧⎪=⎪⎪++=⎨⎪-⎪=⎪⎩解得2,4,6.a b c =⎧⎪=-⎨⎪=⎩故所求的解析式为2()246f x x x =-+.解法二:(0)(2)f f =,∴抛物线()y f x =有对称轴1x =.故可设2()(1)4(0)f x a x a =-+>.将点(0,6)代入解得2a =.故所求的解析式为2()246f x x x =-+.第5题67x - 64x + 413 |1|2323--=x y (0≤x ≤2)解法三:设()() 6.F x f x =-,由(0)(2)6f f ==,知()0F x =有两个根0,2, 可设()()6(0)(2)F x f x a x x =-=--(0)a >,()(0)(2)6f x a x x ∴=--+,将点(1,4)代入解得2a =.故所求的解析式为2()246f x x x =-+. 点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式.例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式.分析:理解题意,根据图像待定系数法求解析式.解:当[0,30]x ∈时,直线方程为115y x =,当[40,60]x ∈1[0,30],15()2(30,40),1[40,60].210x x f x x x x ⎧⎪∈⎪∴=∈⎨⎪∈⎪-⎩点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域. 【反馈演练】1.若()2x x e e f x --=,()2x xe e g x -+=,则(2)f x =( D )A. 2()f x B.2[()(f x g x + C.2()g x D. 2[()()]f x g x ⋅2.已知1(1)232f x x -=+,且()6f m =,则m 等于________.3. 已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式. 解:设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故.14-第3课 函数的单调性【考点导读】1.理解函数单调性,最大(小)值及其几何意义;2.会运用单调性的定义判断或证明一些函数的增减性. 【基础练习】 1.下列函数中: ①1()f x x=; ②()221f x x x =++; ③()f x x =-; ④()1f x x =-.其中,在区间(0,2)上是递增函数的序号有___②___. 2.函数y x x =的递增区间是___ R ___. 3.函数y =的递减区间是__________. 4.已知函数()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________. 5.已知下列命题:①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数; ②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数; ③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函(,1]-∞- (1,)+∞数()f x 在R 上是增函数.其中正确命题的序号有_____②______. 【范例解析】例 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数. 分析:利用单调性的定义证明函数的单调性,注意符号的确定. 证明:(1)对于区间3(,]4-∞内的任意两个值1x ,2x ,且12x x <,因为22121122()()231(231)f x f x x x x x -=-+---+-2221122233x x x x =-+-1212()[32()]x x x x =--+,又1234x x <≤,则120x x -<,1232x x +<,得1232()0x x -+>, 故1212()[32()]0x x x x --+<,即12()()0f x f x -<,即12()()f x f x <. 所以,函数2()231f x x x =-+-在区间3(,]4-∞上是单调增函数. (2)对于区间(,1)-∞-内的任意两个值1x ,2x ,且12x x <, 因为1212122121()()11x x f x f x x x ---=-++12123()(1)(1)x x x x -=++, 又121x x <<-,则120x x -<,1(1)0x +<,2(1)0x +<得,12(1)(1)0x x ++> 故12123()0(1)(1)x x x x -<++,即12()()0f x f x -<,即12()()f x f x <.所以,函数21()1x f x x -=+在区间(,1)-∞-上是单调增函数. 同理,对于区间(1,)-+∞,函数21()1x f x x -=+是单调增函数;所以,函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调增函数.点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值1x ,2x ;(2)作差12()()f x f x -,化成因式的乘积并判断符号;(3)给出结论. 例2.确定函数()f x =分析:作差后,符号的确定是关键.解:由120x ->,得定义域为1(,)2-∞.对于区间1(,)2-∞内的任意两个值1x ,2x ,且12x x <,则12()()f x f x -===又120x x -<0>,12()()0f x f x ∴-<,即12()()f x f x <.所以,()f x 在区间1(,)2-∞上是增函数.点评:运用有理化可以对含根号的式子进行符号的确定.【反馈演练】1.已知函数1()21xf x =+,则该函数在R 上单调递__减__,(填“增”“减”)值域为_________. 2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =__25___.3.函数y =1[2,]2--.4. 函数2()1f x x x =-+的单调递减区间为1(,1],[,1]2-∞-.5. 已知函数1()2ax f x x +=+在区间(2,)-+∞上是增函数,求实数a 的取值范围. 解:设对于区间(2,)-+∞内的任意两个值1x ,2x ,且12x x <, 则12121211()()22ax ax f x f x x x ++-=-++2112(12)()0(2)(2)a x x x x --=<++, 120x x -<,1(2)0x +>,2(2)0x +>得,12(2)(2)0x x ++>,120a ∴-<,即12a >.(0,1)第4课 函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数. 【基础练习】1.给出4个函数:①5()5f x x x =+;②421()x f x x -=;③()25f x x =-+;④()x x f x e e -=-.其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____. 2. 设函数()()()xa x x x f ++=1为奇函数,则实数=a -1 .3.下列函数中,在其定义域内既是奇函数又是减函数的是( A )A.R x x y ∈-=,3B.R x x y ∈=,sinC.R x x y ∈=,D.R x xy ∈=,)21( 【范例解析】例1.判断下列函数的奇偶性:(1)2(12)()2x xf x +=; (2)()lg(f x x =;(3)221()lg lgf x x x =+; (4)()(1f x x =- (5)2()11f x x x =+-+; (6)22(0),()(0).x x x f x x x x ⎧-+≥⎪=⎨<+⎪⎩分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断.解:(1)定义域为x R∈,关于原点对称;2222(12)2(12)()222x x x x x x f x ----+⋅+-===⋅2(12)()2x xf x +=, 所以()f x 为偶函数. (2)定义域为x R∈,关于原点对称;()()lg(lg(lg10f x f x x x -+=-+==,()()f x f x ∴-=-,故()f x 为奇函数.(3)定义域为(,0)(0,)x ∈-∞⋃+∞,关于原点对称;()0f x =,()()f x f x ∴-=-且()()f x f x -=,所以()f x 既为奇函数又为偶函数.(4)定义域为[1,1)x ∈-,不关于原点对称;故()f x 既不是奇函数也不是偶函数. (5)定义域为x R ∈,关于原点对称;(1)4f -=,(1)2f =,则(1)(1)f f -≠且(1)(1)f f -≠-,故()f x 既不是奇函数也不是偶函数.(6)定义域为x R ∈,关于原点对称;22()()(0),()(0).()()x x x f x x x x ⎧--+-->⎪-=⎨-<-+-⎪⎩,22(0),()(0).x x x f x x x x ⎧-->⎪∴-=⎨<-⎪⎩又(0)0f =, 22(0),()(0).x x x f x x x x⎧--<⎪∴-=⎨≥-⎪⎩()()f x f x ∴-=-,故()f x 为奇函数.点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即()()f x f x -=-或()()f x f x -=判断,注意定义的等价形式()()0f x f x -+=或()()0f x f x --=.例2. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.分析:奇函数若在原点有定义,则(0)0f =. 解:设0x <,则0x ->,2()22f x x x ∴-=++.又()f x 是奇函数,()()f x f x ∴-=-,2()()22f x f x x x ∴=--=---. 当0x =时,(0)0f =.综上,()f x 的解析式为2222,0()0,0022,x x x f x x x x x ⎧-+>⎪==⎨⎪<---⎩. 作出()f x 的图像,可得增区间为(,1]-∞-,[1,)+∞,减区间为[1,0)-,(0,1].点评:(1)求解析式时0x =的情况不能漏;(2)两个单调区间之间一般不用“⋃”连接;(3)利用奇偶性求解析式一般是通过“x -”实现转化;(4)根据图像写单调区间.【反馈演练】1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( D )A .()()76f f >B .()()96f f >C .()()97f f >D .()()107f f > 2. 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( B )A.在区间[]1,2--上是增函数,区间[]4,3上是增函数B.在区间[]1,2--上是增函数,区间[]4,3上是减函数C.在区间[]1,2--上是减函数,区间[]4,3上是增函数D.在区间[]1,2--上是减函数,区间[]4,3上是减函数 3. 设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为____1,3 ___.254.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ________. 5.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取值范围是(-2,2).6. 已知函数21()ax f x bx c+=+(,,)a b c Z ∈是奇函数.又(1)2f =,(2)3f <,求a ,b ,c 的值;解:由()()f x f x -=-,得()bx c bx c -+=-+,得0c =.又(1)2f =,得12a b +=,而(2)3f <,得4131a a +<+,解得12a -<<.又a Z ∈,0a ∴=或1. 若0a =,则12b Z =∉,应舍去;若1a =,则1b Z =∈.所以,1,1,0a b c ===.综上,可知()f x 的值域为{0,1,2,3,4}.第5 课 函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;2.掌握画图像的基本方法:描点法和图像变换法. 【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1)2x y = 12x y -= 123x y -=+;(2)2log y x = 2log ()y x =-2log (3)y x =-.2.作出下列各个函数图像的示意图:(1)31xy =-; (2)2log (2)y x =-; (3)21xy x -=-. 解:(1)将3xy =的图像向下平移1个单位,可得31xy =-的图像.图略; (2)将2log y x =的图像向右平移2个单位,可得2log (2)y x =-的图像.图略;向右平移1个单位 向上平移3个单位 作关于y 轴对称的图形 向右平移3个单位(3)由21111x y x x -==---,将1y x =的图像先向右平移1个单位,得11y x =-的图像,再向下平移1个单位,可得21x y x -=-的图像.如下图所示:3.作出下列各个函数图像的示意图:(1)12log ()y x =-; (2)1()2xy =-; (3)12log y x =; (4)21y x =-.解:(1)作12log y x =的图像关于y 轴的对称图像,如图1所示;(2)作1()2xy =的图像关于x 轴的对称图像,如图2所示;(3)作12log y x =的图像及它关于y 轴的对称图像,如图3所示;(4)作21y x =-的图像,并将x 轴下方的部分翻折到x 轴上方,如图4所示.4. 函数()|1|f x x =-的图象是( B )图3图4例1.作出函数2()223f x x x =-++及()f x -,()f x -,(2)f x +,()f x ,()f x 的图像.分析:根据图像变换得到相应函数的图像. 解:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;将()y f x =的图像向左平移2个单位得到(2)y f x =+的图像;保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分;将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y 轴左边部分,并保留()y f x =在y 轴右边部分.图略.点评:图像变换的类型主要有平移变换,对称变换两种.平移变换:左“+”右“-”,上“+”下“-”;对称变换:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;()y f x =--与()y f x =的图像关于原点对称;()y f x =保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分;()y f x =将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y 轴左边部分,并保留()y f x =在y 轴右边部分. 例2.设函数54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明.分析:根据图像变换得到)(x f 的图像,第(3)问实质是恒成立问题. 解:(1)(2)方程5)(=x f 的解分别是4,0,142-和142+,由于)(x f 在]1,(-∞-和]5,2[上单调递减,在]2,1[-和),5[∞+上单调递增,因此(][)∞++-∞-=,142]4,0[142, A .由于A B ⊂∴->-<+,2142,6142.【反馈演练】11B )2. 为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象向右平移1个单位长度得到.3.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k =14-. 4.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线21=x 对称,则 f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_____0____ .5. 作出下列函数的简图:(1)2(1)y x x =-+; (2)21xy =-; (3)2log 21y x =-.第6课 二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1. 已知二次函数232y x x =-+,则其图像的开口向__上__;对称轴方程为32x =;顶点坐标为 31(,)24-,与x 轴的交点坐标为(1,0),(2,0),最小值为14-.2. 二次函数2223y x mx m =-+-+的图像的对称轴为20x +=,则m =__-2___,顶点坐标为(2,3)-,递增区间为(,2]-∞-,递减区间为[2,)-+∞. 3. 函数221y x x =--的零点为11,2-. 4. 实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件为0ac <;有两正根的充要条件为0,0,0b c a a ∆≥->>;有两负根的充要条件为0,0,0b ca a∆≥-<>.5. 已知函数2()23f x x x =-+在区间[0,]m 上有最大值3,最小值2,则m 的取值范围是__________.【范例解析】例1.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈. (1)讨论)(x f 的奇偶性;(2)若2a =时,求)(x f 的最小值. 分析:去绝对值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数.当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠.此时)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f . 故函数)(x f 在),(∞-∞内的最小值为43. 点评:注意分类讨论;分段函数求最值,先求每个区间上的函数最值,再确定最值中的最值. 例2.函数()f x 212ax x a =+-()a R ∈在区间的最大值记为)(a g ,求)(a g 的表达式.[1,2]分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况. 解:∵直线1x a =-是抛物线()f x 212ax x a =+-的对称轴,∴可分以下几种情况进行讨论:(1)当0>a 时,函数()y f x =,x ∈的图象是开口向上的抛物线的一段,由10x a=-<知()f x在x ∈上单调递增,故)(a g (2)f =2+=a ; (2)当0=a 时,()f x x =,x ∈,有)(a g =2;(3)当0<a 时,,函数()y f x =,x ∈的图象是开口向下的抛物线的一段,若1x a =-]2,0(∈即22-≤a 时,)(ag f = 若1x a =-]2,2(∈即]21,22(--∈a 时,)(a g 11()2f a a a =-=--, 若1x a =-),2(+∞∈即)0,21(-∈a 时,)(a g (2)f =2+=a .综上所述,有)(a g =⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-≤<---->+)22(2)2122(,21)21(2a a a a a a .点评:解答本题应注意两点:一是对0a =时不能遗漏;二是对0a ≠时的分类讨论中应同时考察抛物线的开口方向,对称轴的位置及()y f x =在区间上的单调性.【反馈演练】1.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是0b ≥.2.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为2215y x x =-++.3. 设0>b ,二次函数122-++=a bx ax y 的图象为下列四图之一:则a 的值为 ( B )A .1B .-1C .251-- D .251+- 4.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是5[,)2-+∞.5.若关于x 的方程240x mx -+=在[1,1]-有解,则实数m 的取值范围是(,5][5,)-∞-⋃+∞.6.已知函数2()223f x x ax =-+在[1,1]-有最小值,记作()g a . (1)求()g a 的表达式; (2)求()g a 的最大值.解:(1)由2()223f x x ax =-+知对称轴方程为2ax =, 当12a≤-时,即2a ≤-时,()(1)25g a f a =-=+; 当112a -<<,即22a -<<时,2()()322a a g a f =-=-;当12a≥,即2a ≥时,()(1)52g a f a ==-; 综上,225,(2)()3,(22)252,(2)a a a g a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩. (2)当2a ≤-时,()1g a ≤;当22a -<<时,()3g a ≤;当2a ≥时,()1g a ≤.故当0a =时,()g a 的最大值为3.7. 分别根据下列条件,求实数a 的值:(1)函数2()21f x x ax a =-++-在在[0,1]上有最大值2; (2)函数2()21f x ax ax =++在在[3,2]-上有最大值4.解:(1)当0a <时,max ()(0)f x f =,令12a -=,则1a =-; 当01a ≤≤时,max ()()f x f a =,令()2f a =,a ∴=; 当1a >时,max ()(1)f x f =,即2a =. 综上,可得1a =-或2a =.(2)当0a >时,max ()(2)f x f =,即814a +=,则38a =; 当0a <时,max ()(1)f x f =-,即14a -=,则3a =-.综上,38a =或3a =-. 8. 已知函数2(),()f x x a x R =+∈.(1)对任意12,x x R ∈,比较121[()()]2f x f x +与12()2x x f +的大小; (2)若[1,1]x ∈-时,有()1f x ≤,求实数a 的取值范围.解:(1)对任意1x ,2x R ∈,212121211[()()]()()0224x x f x f x f x x ++-=-≥ 故12121[()()]()22x x f x f x f ++≥. (2)又()1f x ≤,得1()1f x -≤≤,即211x a -≤+≤,得2max 2min (1),[1,1](1),[1,1]a x x a x x ⎧≥--∈-⎪⎨≤-+∈-⎪⎩,解得10a -≤≤.第7课 指数式与对数式【考点导读】1.理解分数指数幂的概念,掌握分数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质;3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算. 【基础练习】1.写出下列各式的值:(0,1)a a >≠=3π-; 238=____4____; 3481-=127; log 1a =___0_____; log a a =____1____;log 4=__-4__.2.化简下列各式:(0,0)a b >>(1)2111333324()3a ba b ---÷-=6a -;(2)2222(2)()a a a a ---+÷-=2211a a -+.3.求值:(1)35log(84)⨯=___-38____;(2)33(lg 2)3lg 2lg5(lg5)+⋅+=____1____;(3)234567log 3log 4log 5log 6log 7log 8⨯⨯⨯⨯⨯=_____3____. 【范例解析】 例1. 化简求值:(1)若13a a -+=,求1122a a --及442248a a a a --+-+-的值; (2)若3log 41x =,求332222x xx x--++的值.分析:先化简再求值. 解:(1)由13a a-+=,得11222()1a a --=,故11221a a--=±;又12()9a a -+=,227a a -+=;4447a a -∴+=,故44224438a a a a --+-=-+-. (2)由3log 41x =得43x=;则33227414223x x x xx x---+=-+=+. 点评:解条件求值问题:(1)将已知条件适当变形后使用;(2)先化简再代入求值.例2.(1)求值:11lg9lg 240211lg 27lg 35+-+-+;(2)已知2log 3m =,3log 7n =,求42log 56. 分析:化为同底.解:(1)原式=lg10lg3lg 240136lg10lg9lg5+-+-+1lg810lg8=+=;(2)由2lo g 3m =,得31lo g 2m=;所以33342333log 563log 2log 73log 56log 4213log 2log 71mnm mn++===++++. 点评:在对数的求值过程中,应注意将对数化为同底的对数. 例3. 已知35abc ==,且112a b+=,求c 的值. 分析:将a ,b 都用c 表示. 解:由35abc ==,得1log 3c a =,1log 5c b =;又112a b+=,则log 3log 52c c +=, 得215c =.0c >,c ∴=点评:三个方程三个未知数,消元法求解.【反馈演练】 1.若21025x=,则10x -=15. 2.设lg321a =,则lg 0.321=3a -. 3.已知函数1()lg1xf x x-=+,若()f a b =,则()f a -=-b . 4.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是(-∞,-1)∪(1,+∞).5.设已知f (x 6) = log 2x ,那么f (8)等于12. 6.若618.03=a,)1,[+∈k k a ,则k =__-1__.7.已知函数21(0)()21(1)xc cx x c f x c x -+⎧⎪=⎨⎪+≤⎩<<<,且89)(2=c f . (1)求实数c 的值; (2)解不等式182)(+>x f . 解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =. (2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()1f x >得,当102x <<12x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.第8课 幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】1.指数函数()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是(1,2).2.把函数()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =222x -+.3.函数220.3x x y --=的定义域为___R __;单调递增区间1(,]2-∞-;值域14(0,0.3].4.已知函数1()41x f x a =++是奇函数,则实数a 的取值12-.5.要使11()2x y m -=+的图像不经过第一象限,则实数m 的取值范围2m ≤-.6.已知函数21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为1(,0)2. 【范例解析】例1.比较各组值的大小: (1)0.20.4,0.20.2,0.22, 1.62;(2)ba -,ba ,aa ,其中01ab <<<;(3)131()2,121()3.分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性.解:(1)0.20.200.20.40.41<<=,而0.2 1.6122<<,0.20.20.2 1.60.20.422∴<<<.(2)01a <<且b a b -<<,b a ba a a -∴>>.(3)111322111()()()223>>.点评:比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注意通过0,1等数进行间接分类.例2.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数,求,a b 的值;解:因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++例3.已知函数2()(1)1xx f x a a x -=+>+,求证: (1)函数()f x 在(1,)-+∞上是增函数; (2)方程()0f x =没有负根. 分析:注意反证法的运用.证明:(1)设121x x -<<,122112123()()()(1)(1)xxx x f x f x a a x x --=-+++,1a >,210x x a a ∴->,又121x x -<<,所以210x x ->,110x +>,210x +>,则12()()0f x f x -<故函数()f x 在(1,)-+∞上是增函数.(2)设存在00x <0(1)x ≠-,满足0()0f x =,则00021x x ax -=-+.又001xa <<,002011x x -∴<-<+ 即0122x <<,与假设00x <矛盾,故方程()0f x =没有负根. 点评:本题主要考察指数函数的单调性,函数和方程的内在联系.【反馈演练】1.函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有( C ) A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+2.设713=x,则( A )A .-2<x <-1B .-3<x <-2C .-1<x <0D .0<x <13.将y =2x的图像 ( D ) 再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D . 先向下平行移动1个单位4.函数b x a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( C ) A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a5.函数x a y =在[]1,0上的最大值与最小值的和为3,则a 的值为___2__. 6.若关于x 的方程4220x xm ++-=有实数根,求实数m 的取值范围.解:由4220x xm ++-=得,219422(2)224xxxm =--+=-++<,(,2)m ∴∈-∞ 7.已知函数2()()(0,1)2x xa f x a a a a a -=->≠-. (1)判断()f x 的奇偶性;(2)若()f x 在R 上是单调递增函数,求实数a 的取值范围.解:(1)定义域为R ,则2()()()2x xa f x a a f x a --=-=--,故()f x 是奇函数. (2)设12x x R <∈,12121221()()()(1)2x x x x a f x f x a a a a-+-=-+-, 当01a <<时,得220a -<,即01a <<;当1a >时,得220a ->,即a >综上,实数a的取值范围是(0,1))⋃+∞.第9课 对数函数及其性质【考点导读】1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题. 【基础练习】1. 函数)26(log 21.0x x y -+=的单调递增区间是1[,2)4.2. 函数2()log 21f x x =-的单调减区间是1(,)2-∞. 【范例解析】例1. (1)已知log (2)a y ax =-在[0,1]是减函数,则实数a 的取值范围是_________. (2)设函数2()lg()f x x ax a =+-,给出下列命题:①)(x f 有最小值; ②当0=a 时,)(x f 的值域为R ; ③当40a -<<时,)(x f 的定义域为R ;④若)(x f 在区间),2[+∞上单调递增,则实数a 的取值范围是4-≥a . 则其中正确命题的序号是_____________. 分析:注意定义域,真数大于零.解:(1)0,1a a >≠,2ax ∴-在[0,1]上递减,要使log (2)a y ax =-在[0,1]是减函数,则1a >;又2ax -在[0,1]上要大于零,即20a ->,即2a <;综上,12a <<. (2)①)(x f 有无最小值与a 的取值有关;②当0=a 时,2()lg f x x R =∈,成立; ③当40a -<<时,若)(x f 的定义域为R ,则20x ax a +->恒成立,即240a a +<,即40a -<<成立;④若)(x f 在区间),2[+∞上单调递增,则2,2420.a a a ⎧-≤⎪⎨⎪+->⎩解得a ∈∅,不成立.点评:解决对数函数有关问题首先要考虑定义域,并能结合对数函数图像分析解决.例3.已知函数xx x x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性. 分析:利用定义证明复合函数的单调性.解:x 须满足,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x x x x 得由所以函数)(x f 的定义域为(-1,0)∪(0,1).因为函数)(x f 的定义域关于原点对称,且对定义域内的任意x ,有)()11log 1(11log 1)(22x f xx x x x x x f -=-+--=+---=-,所以)(x f 是奇函数. 研究)(x f 在(0,1)内的单调性,任取x 1、x 2∈(0,1),且设x 1<x 2 ,则,0)112(log )112(log ,011)],112(log )112([log )11(11log 111log 1)()(1222211222212222112121>----->------+-=-++--+-=-x x x x x x x x x x x x x x x f x f 由得)()(21x f x f ->0,即)(x f 在(0,1)内单调递减, 由于)(x f 是奇函数,所以)(x f 在(-1,0)内单调递减.点评:本题重点考察复合函数单调性的判断及证明,运用函数性质解决问题的能力. 【反馈演练】1.给出下列四个数:①2(ln 2);②ln(ln 2);③;④ln 2.其中值最大的序号是___④___.2.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),(8,2),则a b +等于___5_ _.3.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,则定点A 的坐标是(2,1)--.4.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为12. 5.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数有___3___个.6.下列四个函数:①lg y x x =+; ②lg y x x =-;③lg y x x =-+;④lg y x x =--.其中,函数图像只能是如图所示的序号为___②___.7.求函数22()log 2log 4x f x x =⋅,1[,4]2x ∈的最大值和最小值. 解:2222()log 2log (log 1)(log 2)4xf x x x x =⋅=+-222log log 2x x =-- 令2log t x =,1[,4]2x ∈,则[1,2]t ∈-,即求函数22y t t =--在[1,2]-上的最大值和最小值. 故函数()f x 的最大值为0,最小值为94-. 8.已知函数()log ax bf x x b+=-(0,1,0)a a b >≠>. (1)求()f x 的定义域;(2)判断()f x 的奇偶性;(3)讨论()f x 的单调性,并证明. 解:(1)解:由 0x bx b+>-,故的定义域为()(,)b b -∞-⋃+∞. (2)()log ()()a x bf x f x x b-+-==---,故()f x 为奇函数.(3)证明:设12b x x <<,则121221()()()()log ()()ax b x b f x f x x b x b +--=+-,12212121()()2()10()()()()x b x b b x x x b x b x b x b +---=>+-+-.当1a >时,12()()0f x f x ∴->,故)(x f 在(,)b +∞上为减函数;同理)(x f 在(,)b -∞-上也为减函数;当01a <<时,12()()0f x f x ∴-<,故)(x f 在(,)b +∞,(,)b -∞-上为增函数.第6题第10课 函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法. 【基础练习】1.函数2()44f x x x =++在区间[4,1]--有_____1 ___个零点.2.已知函数()f x 的图像是连续的,且x 与()f x 有如下的对应值表:则()f x 在区间[1,6]上的零点至少有___3__个. 【范例解析】例1.()f x 是定义在区间[-c ,c ]上的奇函数,其图象如图所示:令()()g x af x b =+, 则下列关于函数()g x 的结论:①若a <0,则函数()g x 的图象关于原点对称;②若a =-1,-2<b <0,则方程()g x =0有大于2的实根; ③若a ≠0,2b =,则方程()g x =0有两个实根; ④若0a ≠,2b =,则方程()g x =0有三个实根. 其中,正确的结论有___________. 分析:利用图像将函数与方程进行互化.解:当0a <且0b ≠时,()()g x af x b =+是非奇非偶函数,①不正确;当2a =-,0b =时,()2()g x f x =-是奇函数,关于原点对称,③不正确;当0a ≠,2b =时,2()f x a=-,由图知,当222a -<-<时,2()f x a=-才有三个实数根,故④不正确;故选②. 点评:本题重点考察函数与方程思想,突出考察分析和观察能力;题中只给了图像特征,因此,应用其图,察其形,舍其次,抓其本.例2.设2()32f x ax bx c =++,若0a b c ++=,(0)0f >,(1)0f >. 求证:(1)0a >且12-<<-ab; (2)方程()0f x =在(0,1)内有两个实根.分析:利用0a b c ++=,(0)0f >,(1)0f >进行消元代换. 证明:(1)(0)0f c =>,(1)320f a b c =++>,由0a b c ++=,得b a c =--,代入(1)f 得:0a c ->,即0a c >>,且01c a <<,即1(2,1)b ca a=--∈--,即证. (2)11()024f a =-<,又(0)0f >,(1)0f >.则两根分别在区间1(0,)2,1(,1)2内,得证.点评:在证明第(2)问时,应充分运用二分法求方程解的方法,选取(0,1)的中点12来考察1()2f 的正负是首选目标,如不能实现1()02f <,则应在区间内选取其它的值.本题也可选3b a-,也可利用根的分布来做.【反馈演练】1.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a 的取值范围是 1(,1)(,)2-∞-⋃+∞.2.设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =解的个数为( C )A .1B .2C.3。
第一章复习集合与简易逻辑一、本讲进度《集合与简易逻辑》复习二、复习要求1、理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、掌握含绝对值不等式及一元二次不等式的解法;3、理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系;5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。
三、学习指导1、集合的概念:(1)集合中元素特征,确定性,互异性,无序性;(2)集合的分类:①按元素个数分:有限集,无限集;②按元素特征分;数集,点集。
如数集{y|y=x2},表示非负实数集,点集{(x,y)|y=x2}表示开口向上,以y轴为对称轴的抛物线;(3)集合的表示法:①列举法:用来表示有限集或具有显著规律的无限集,如N+={0,1,2,3,…};②描述法。
2、两类关系:(1)元素与集合的关系,用∈或∉表示;(2)集合与集合的关系,用⊆,≠⊂,=表示,当A⊆B时,称A是B的子集;当A≠⊂B时,称A是B的真子集。
3、集合运算(1)交,并,补,定义:A∩B={x|x∈A且x∈B},A∪B={x|x∈A,或x∈B},C U A={x|x ∈U,且x∉A},集合U表示全集;(2)运算律,如A∩(B∪C)=(A∩B)∪(A∩C),C U(A∩B)=(C U A)∪(C U B),C U(A∪B)=(C U A)∩(C U B)等。
4、命题:(1)命题分类:真命题与假命题,简单命题与复合命题;(2)复合命题的形式:p且q,p或q,非p;(3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。
对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。
(3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q 则p “,逆否命题为”若非q 则非p “。
其中互为逆否的两个命题同真假,即等价。
因此,四种命题为真的个数只能是偶数个。
5、充分条件与必要条件(1)定义:对命题“若p 则q ”而言,当它是真命题时,p 是q 的充分条件,q 是p 的必要条件,当它的逆命题为真时,q 是p 的充分条件,p 是q 的必要条件,两种命题均为真时,称p 是q 的充要条件;(2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。
从集合角度看,若记满足条件p 的所有对象组成集合A ,满足条件q 的所有对象组成集合q ,则当A ⊆B 时,p 是q 的充分条件。
B ⊆A 时,p 是q 的充分条件。
A=B 时,p 是q 的充要条件;(3)当p 和q 互为充要时,体现了命题等价转换的思想。
6、反证法是中学数学的重要方法。
会用反证法证明一些代数命题。
7、集合概念及其基本理论是近代数学最基本的内容之一。
学会用集合的思想处理数学问题。
四、典型例题例1、已知集合M={y|y=x 2+1,x ∈R},N={y|y=x+1,x ∈R},求M ∩N 。
解题思路分析:在集合运算之前,首先要识别集合,即认清集合中元素的特征。
M 、N 均为数集,不能误认为是点集,从而解方程组。
其次要化简集合,或者说使集合的特征明朗化。
M={y|y=x 2+1,x ∈R}={y|y ≥1},N={y|y=x+1,x ∈R}={y|y ∈R}∴ M ∩N=M={y|y ≥1}说明:实际上,从函数角度看,本题中的M ,N 分别是二次函数和一次函数的值域。
一般地,集合{y|y=f(x),x ∈A}应看成是函数y=f(x)的值域,通过求函数值域化简集合。
此集合与集合{(x ,y )|y=x 2+1,x ∈R}是有本质差异的,后者是点集,表示抛物线y=x 2+1上的所有点,属于图形范畴。
集合中元素特征与代表元素的字母无关,例{y|y ≥1}={x|x ≥1}。
例2、已知集合A={x|x 2-3x+2=0},B+{x|x 2-mx+2=0},且A ∩B=B ,求实数m 范围。
解题思路分析:化简条件得A={1,2},A ∩B=B ⇔B ⊆A根据集合中元素个数集合B 分类讨论,B=φ,B={1}或{2},B={1,2} 当B=φ时,△=m 2-8<0 ∴ 22m 22<<-当B={1}或{2}时,⎩⎨⎧=+-=+-=∆02m 2402m 10或,m 无解当B={1,2}时,⎩⎨⎧=⨯=+221m21∴ m=3综上所述,m=3或22m 22<<-说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B={1}或{2}时,不能遗漏△=0。
例3、用反证法证明:已知x 、y ∈R ,x+y ≥2,求 证x 、y 中至少有一个大于1。
解题思路分析:假设x<1且y<1,由不等式同向相加的性质x+y<2与已知x+y ≥2矛盾 ∴ 假设不成立∴ x 、y 中至少有一个大于1说明;反证法的理论依据是:欲证“若p 则q ”为真,先证“若p 则非q ”为假,因在条件p 下,q 与非q 是对立事件(不能同时成立,但必有一个成立),所以当“若p 则非q ”为假时,“若p 则q ”一定为真。
例4、若A 是B 的必要而不充分条件,C 是B 的充要条件,D 是C 的充分而不必要条件,判断D 是A 的什么条件。
解题思路分析:利用“⇒”、“⇔”符号分析各命题之间的关系 D ⇒C ⇔B ⇒A∴ D ⇒A ,D 是A 的充分不必要条件说明:符号“⇒”、“⇔”具有传递性,不过前者是单方向的,后者是双方向的。
例5、求直线 :ax-y+b=0经过两直线 1:2x-2y-3=0和 2:3x-5y+1=0交点的充要条件。
解题思路分析:从必要性着手,分充分性和必要性两方面证明。
由 ⎩⎨⎧=+-=--01y 5x 303y 2x 2得 1, 2交点P (411,417)∵ 过点P ∴ 0b 411417a =+-⨯∴ 17a+4b=11充分性:设a ,b 满足17a+4b=11 ∴ 4a1711b -=代入 方程:04a1711y ax =-+- 整理得:0)417x (a )411y (=---此方程表明,直线 恒过两直线0417x ,0411y =-=-的交点(411,417) 而此点为 1与 2的交点 ∴ 充分性得证 ∴ 综上所述,命题为真说明:关于充要条件的证明,一般有两种方式,一种是利用“⇔”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性。
五、同步练习 (一) 选择题1、设M={x|x 2+x+2=0},a=lg(lg10),则{a}与M 的关系是经济界 jjjjjjjjjjjjjjjA 、{a}=MB 、M ≠⊆{a}C 、{a}≠⊇MD 、M ⊇{a}2、已知全集U=R ,A={x|x-a|<2},B={x|x-1|≥3},且A ∩B=φ,则a 的取值范围是 A 、 [0,2]B 、(-2,2)C 、(0,2]D 、(0,2)3、已知集合M={x|x=a 2-3a+2,a ∈R},N 、{x|x=b 2-b ,b ∈R},则M ,N 的关系是A 、 M ≠⊆NB 、M ≠⊇NC 、M=ND 、不确定4、设集合A={x|x ∈Z 且-10≤x ≤-1},B={x|x ∈Z ,且|x|≤5},则A ∪B 中的元素个数是A 、11B 、10C 、16D 、155、集合M={1,2,3,4,5}的子集是 A 、15B 、16C 、31D 、326、对于命题“正方形的四个内角相等”,下面判断正确的是 A 、所给命题为假 B 、它的逆否命题为真 C 、它的逆命题为真 D 、它的否命题为真7、“α≠β”是cos α≠cos β”的A 、充分不必要条件B 、必要不充分条件C 、充要条件D 、既不充分也不必要条件8、集合A={x|x=3k-2,k ∈Z},B={y|y=3 +1, ∈Z},S={y|y=6m+1,m ∈Z}之间的关系是A 、S ≠⊆B ≠⊆AB 、S=B ≠⊆AC 、S ≠⊆B=AD 、S ≠⊇B=A9、方程mx 2+2x+1=0至少有一个负根的充要条件是A 、0<m ≤1或m<0B 、0<m ≤1C 、m<1D 、m≤110、已知p :方程x 2+ax+b=0有且仅有整数解,q :a ,b 是整数,则p 是q 的 A 、充分不必要条件 B 、必要不充分条件C.充要条件 D 、既不充分又不必要条件 (二) 填空题 11、已知M={Z 24m |m ∈-},N={x|}N 23x ∈+,则M ∩N=__________。
12、在100个学生中,有乒乓球爱好者60人,排球爱好者65人,则两者都爱好的人数最少是________人。
13、关于x 的方程|x|-|x-1|=a 有解的充要条件是________________。
14、命题“若ab=0,则a 、b 中至少有一个为零”的逆否命题为____________。
15、非空集合p 满足下列两个条件:(1)p ≠⊆{1,2,3,4,5},(2)若元素a ∈p ,则6-a ∈p ,则集合p 个数是__________。
(三) 解答题16、设集合A={(x ,y)|y=ax+1},B={(x ,y)|y=|x|},若A ∩B 是单元素集合,求a 取值范围。
17、已知抛物线C :y=-x 2+mx-1,点M (0,3),N (3,0),求抛物线C 与线段MN 有两个不同交点的充要条件。
18、设A={x|x 2+px+q=0}≠φ,M={1,3,5,7,9},N={1,4,7,10},若A ∩M=φ,A ∩N=A ,求p 、q 的值。
19、已知21x a 2+=,b=2-x ,c=x 2-x+1,用反证法证明:a 、b 、c 中至少有一个不小于1。
参考答案(一) 选择题1、C2、A3、C4、C5、D6、B7、B8、C9、D 10、A (二) 填空题11、φ 12、25,60 13、-1≤a ≤1 14、若a 、b 均不为0,则ab ≠0 15、7 (三) 解答题16、a ≥1或a ≤-1,提示:画图uu 17、 3<m ≤310 18、⎩⎨⎧=-=16q 8p ,或⎩⎨⎧=-=10q 20p ,或⎩⎨⎧=-=40q 14p。