热应力分析实例
- 格式:pdf
- 大小:961.34 KB
- 文档页数:34
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
ANSYS热应力分析例题实例1——圆简内部热应力分折:有一无限长圆筒,其核截面结构如图13—1所示,简内壁温度为200℃,外壁温度为20℃,圆筒材料参数如表13.1所示,求圆筒内的温度场、应力场分布。
该问题属于轴对称问题。
由于圆筒无限长,忽略圆筒端部的热损失。
沿圆筒纵截面取宽度为10M的如图1 3—2所示的矩形截面作为几何模型。
在求解过程中采用间接求解法和直接求解法两种方法进行求解。
间接法是先选择热分析单元,对圆筒进行热分析,然后将热分析单元转化为相应的结构单元,对圆筒进行结构分析;直接法是采用热应力藕合单元,对圆筒进行热力藕合分析。
/filname,exercise1-jianjie/title,thermal stresses in a long/prep7 $Et,1,plane55Keyopt,1,3,1 $Mp,kxx,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1 $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp $Finish/prep7 $Etchg,ttsKeyopt,1,3,1 $Keyopt,1,6,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allAllsel $Finish/solu $Antype,staticD,all,uy,0 $Ldread,temp,,,,,,rthAllsel $Solve $Finish/post1/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish/filname,exercise1-zhijie/title,thermal stresses in a long/prep7 $Et,1,plane13Keyopt,1,1,4 $Keyopt,1,3,1Mp,ex,1,220e9 $Mp,alpx,,1,3e-6 $Mp,prxy,1,0.28MP,KXX,1,70Rectng,0.1,0.15,0,0.01 $Lsel,s,,,1,3,2Lesize, all,,,20 $Lsel,s,,,2,4,2Lesize,all,,,5 $Amesh,1Lsel,s,,,4 $Nsll,s,1 $Cp,8,ux,allLsel,s,,,2 $Nsll,s,1 $Cp,9,ux,allALLSEL $Finish/solu $Antype,staticLsel,s,,,4 $Nsll,s,1 $d,all,temp,200lsel,s,,,2 $nsll,s,1 $d,all,temp,20allsel $outpr,basic,allsolve $finish/post1 $Set,last/plopts,info,onPlnsol,temp/title,radial stress contoursPlnsol,s,x/title,axial stress contoursPlnsol,s,y/title,circular stress contoursPlnsol,s,z/title,equvialent stress contoursPlnsol,s,eqv $finish318页实例2——冷却栅管的热应力分析图中为一冷却栅管的轴对称结构示意图,其中管内为热流体,温度为200℃,压力为10Mp,对流系数为11 0W/(m2•℃);管外为空气,温度为25℃,对流系数为30w/(mz.℃)。
ABAQUS热应力分析解析实例详解ABAQUS是一种常用的有限元分析软件,可以进行各种不同类型的分析,包括热应力分析。
热应力分析是通过模拟材料受热后发生的变形来评估材料的热稳定性和耐久性。
在这篇文章中,我们将详细介绍ABAQUS热应力分析的步骤和实例。
首先,我们需要创建一个ABAQUS模型。
模型包括几何形状、材料属性和边界条件。
在热应力分析中,我们通常需要定义一个热源,以及材料的热传导、热膨胀和热辐射等属性。
在这个实例中,我们将模拟一个烤箱的加热过程。
模型是一个简单的长方体,材料是钢铁,边界条件是恒定的热流。
下一步是定义材料属性。
我们需要定义钢铁的热传导系数,热膨胀系数和热辐射系数。
这些属性通常可以从材料手册或实验中获得。
我们将使用以下参数:-热传导系数:40W/mK-热膨胀系数:12e-61/°C-热辐射系数:0.8接下来,我们需要定义边界条件。
在这个实例中,我们将模拟一个恒定的热流输入。
我们可以通过选择“控制模拟”菜单中的“载荷”选项来定义边界条件。
在强制边界条件下选择“热流”载荷,然后指定热流的大小和方向。
我们将选择1000W的热流输入。
然后,我们需要定义分析步骤。
在这个实例中,我们将使用一个稳态热分析步骤。
在强制模式下选择“热”分析步骤,然后指定步骤的参数,包括时间步长和总时间。
我们将选择0.1s的时间步长和10s的总时间。
在模拟之前,我们需要定义网格划分。
网格划分是将模型分解为多个小元素的过程,以便于进行数值计算。
ABAQUS中有多种网格划分方法可供选择。
我们可以通过选择“网格”菜单中的“划分”选项来进行网格划分,然后选择适当的网格划分方法和参数。
当所有定义都完成后,我们可以点击“开始模拟”按钮开始进行热应力分析。
ABAQUS将使用已定义的模型、材料属性、边界条件和分析步骤来进行数值计算。
计算结果将显示在ABAQUS的图形界面中。
在热应力分析完成后,我们可以查看结果并进行后处理。
以厚薄不同的T型粱为例,分析热应力产生的原因和过程举例为了说明铸件内热应力的产生过程,现举一个简单的例子。
现以厚度不均匀的T字梁为例(图2-1)来讨论残余热应力的产生过程。
该件是结构最为简单的铸件。
T字梁铸件由杆I和杆II两部分组成,杆I较厚,杆II较薄。
A 假设:为了讨论简化起见,现作如下假设:1).杆I和杆II从同一温度tH开始冷却,最后冷却到同一温度T0。
2). 合金有一个临界温度Tk,在此温度以上,合金处于塑性状态,以下处于弹性状态;3)合金在冷却过程中没有固态相变,铸件收缩不受铸型的阻碍;4)杆I 和杆II冷却速度相互没有影响,即各自相互冷却。
5)材料的膨胀(收缩)系数a和弹性模量E不随温度而变,其值为一常数。
6)在整个过程中,杆件不产生弯曲变形。
B 图的解释:图12-4)是杆I和杆II的冷却曲线(t一T曲线)。
两个图纵横坐标,时间, 温度,应变。
开始冷却时两杆温度相同,为Th。
冷到最后时,两杆温度也相同,为T0。
由于杆I较厚而杆II较薄,所以冷却前期杆II的冷却速度比杆I快。
但两杆温度最后相同,所以冷却后期必然是杆I的冷却速度比杆II快。
假如收缩(膨胀)系数,不随温度而变,其值为一常数,则铸件在各个温度时的自由收缩量ε与温度成正比,亦即ε一t 曲线在外形上与T一t 二曲线完全一致,因而可得图12-4b)线收缩曲线。
虚线C0C1C2C3为两杆联在一起时的线收缩曲线。
C)分析:热应力产生过程,可根据图11-1分为三个阶段说明之:第一阶段:时间从t0到t1,杆I温度从TH 到TI' ,杆II温度从TH到Tk(TII'),T(TI,TII )>Tk,杆I及杆II均处于塑性状态。
如两杆均能自由收缩,则杆I的长度为l+d1a1:,杆II的长度应为l0+d b11。
但事实上两杆联在一起,收缩彼此受到限制,故两杆应具有长度l0+d1c1。
此时若不产生弯曲变形,杆I被塑性地压缩,杆II塑性拉伸。
例1:有一截面为圆环形的输暖管道,如图7—17内外管道半径分别为200mm、800mm,管道内水的半径为80℃,管外表层温度为10℃,求管道内的热应力分布(假设管道内充满水)。
材料参数:弹性模量Z—120GPa泊松比v=0.3线膨胀系数α=1.3×10^-6m/m℃导热系数k=l.2w/m℃分析:该问题属于轴对称问题。
在进行有限元计算时,沿管道横截面取宽度50mm的矩形截面(如图7—18为计算模型,首先采用间接法进行对其进行热应力分析,然后再采用直接法进行分析,最后对二者求解结果进行比较分析。
间接法求解:Finish/clear/filname,thermal stresses in a long cylinder-indirect solution/prep7Et,1,plane55,,,1 !定义轴对称单元Mp,kxx,1,1.2Rectng,0.2,0.8,0,0.05Type,1Lsel,s,line,,1,3,2Lesize,all,,,10Lsel,s,line,,2,4,2Lesize,all,,,2Amesh,1Finish/solu !热传导求解Antype,staticLsel,s,line,,4Nsll,s,1D,all,temp,80Lsel,s,line,,2Nsll,s,1D,all,temp,10AllselOutpr,basic,allSolvefinish/post1Plnsol,tempFinish/prep7 !重新进入前处理,进行热应力耦合分析Etchg,tts !转化单元类型热单元55为结构单元42Keyopt,1,3,1 !定义单元关键字选项3为1(轴对称)Keyopt,1,6,1 !定义单元关键字选项6为1(无表面输出)Mp,ex,1,120e9 !输入材料结构性能参数Mp,alpx,,1.3e-6Mp,nuxy,1,0.3Lsel,s,line,,3Nsll,a,1Cp,7,uy,allallselCp,8,ux,1,14,24Cp,9,ux,2,12,13Finish/solu !热应力求解Antype,staticD,1,uy,,,11 !施加位移约束Ldread,temp,,,,,,rthSolveFinish/post1Plnsol,s,xPlnsol,s,yPlnsol,s,zFinish直接法求解:Finish/clear/filname,thermal stresses in a long cylinder-direct solution/prep7Et,1,plane13,,,1 !定义热应力耦合单元Keyopt,1,1,4 !定义单元关键字选项1=4(ux,uy,temp,az自由度)Keyopt,1,3,1 !定义单元关键字选项3=1(轴对称)Mp,ex,1,120e9 !输入材料性能参数Mp,nuxy,1,0.3Mp,alpx,,1.3e-6Mp,kxx,1,1.2Rectng,0.2,0.8,0,0.05 !创建几何模型Type,1 !进行网格划分Lsel,s,line,,1,3,2Lesize,all,,,10Lsel,s,line,,2,4,2Lesize,all,,,2Amesh,1Lsel,s,line,,3Nsll,s,1Cp,7,uy,all !耦合节点AllselCp,8,ux,1,14,24Cp,9,ux,2,12,13Finish/soluAntype,static !热应力耦合求解Lsel,s,line,,4Nsll,s,1D,all,temp,80 !施加温度载荷Lsel,s,line,,2Nsll,s,1D,all,temp,10 !施加温度载荷AllselD,1,uy,,,11 !施加位移约束Outpr,basic,allsolveFinish/post1Plnsol,temp !输出温度场Plnsol,s,x !输出应力场Plnsol,s,yPlnsol,s,zfinish。
Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
A N S Y S热应力分析实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN热流体在代有冷却栅的管道里流动,如图为其轴对称截面图。
管道及冷却栅的材料均为不锈钢,导热系数为1.25Btu/hr-in-oF,弹性模量为28E6lb/in2泊松比为0.3。
管内压力为1000 lb/in2,管内流体温度为450 oF,对流系数为1 Btu/hr-in2-oF,外界流体温度为70 oF,对流系数为0.25 Btu/hr-in2-oF。
求温度及应力分布。
7.3.2菜单操作过程7.3.2.1设置分析标题1、选择“Utility Menu>File>Change Title”,输入Indirect thermal-stress Analysis of a cooling fin。
2、选择“Utility Menu>File>Change Filename”,输入PIPE_FIN。
7.3.2.2进入热分析,定义热单元和热材料属性1、选择“Main Menu>Preprocessor>Element Type>Add/Edit/Delete”,选择PLANE55,设定单元选项为轴对称。
2、设定导热系数:选择“Main Menu>Preprocessor>MaterialPorps>Material Models”,点击Thermal,Conductivity,Isotropic,输入1.25。
7.3.2.3创建模型1、创建八个关键点,选择“MainMenu>Preprocessor>Creat>Keypoints>On Active CS”,关键点的坐标如下:编号 1 2 3 4 5 6 7 8X 5 6 12 12 6 6 5 5Y 0 0 0 0.25 0.25 1 1 0.252、组成三个面:选择“MainMenu>Preprocessor>Creat>Area>Arbitrary>Throuth Kps”,由1,2,5,8组成面1;由2,3,4,5组成面2;由8,5,6,7组成面3。
热膨胀与热应力的工程实例分析引言:热膨胀与热应力是工程领域中经常遇到的问题。
在材料受热膨胀的过程中,会产生应力,当这些应力达到材料的强度极限时,会导致零件的变形、开裂甚至失效。
因此,热膨胀与热应力在工程设计中需要得到充分考虑。
在本文中,将通过两个实际工程案例来讨论热膨胀与热应力的具体影响及其解决方法。
案例一:建筑物的伸缩缝设计在建筑物的设计过程中,热膨胀与热应力是需要特别关注的问题。
由于建筑物的体积较大,所受的温度变化会引起较大的热膨胀,如果没有合理设置伸缩缝,就会导致建筑物的破坏。
一个典型的实例是高速公路桥梁的设计。
随着季节和日夜温差的变化,桥面铺设材料会发生热胀冷缩。
如果没有合适的伸缩缝设计,桥面可能会出现龟裂和变形,给行车安全带来威胁。
因此,在桥梁设计中,需要预留伸缩缝,通过伸缩缝的设置,可为桥面材料提供一定的膨胀缩胀空间,从而减少热应力的产生。
此外,在多层建筑的设计中也需要考虑热膨胀和热应力对结构的影响。
在楼层之间设置伸缩缝,可以为建筑结构提供一定的活动空间,以减少热膨胀产生的应力。
伸缩缝的设计需要考虑多种因素,如建筑材料的热膨胀系数、气候条件等,来预估热应力产生的范围,从而保证建筑物的安全运行。
案例二:热电发电中的热应力控制热电发电是一种通过热膨胀产生的热应力来驱动发电机的技术。
在热电发电装置中,燃烧热能会引起材料的热膨胀,进而产生热应力用于驱动发电。
然而,由于热应力的高温和周期性特性,如果不加以控制,将会导致装置的失效。
因此,在热电发电装置的设计中,需要选用具有一定弹性的材料,以承受热应力的作用,并通过结构设计和工艺控制来减少热应力的产生。
同时,还需要在材料的选择过程中考虑到材料的热膨胀系数。
选择热膨胀系数相近的材料,可以减少热应力的差异,降低装置的失效风险。
结论:热膨胀与热应力在工程设计中是需要重点关注的问题。
在建筑物的设计中,通过合理设置伸缩缝来减少热应力的产生。
在热电发电装置中,通过材料选择和结构设计等手段来控制热应力。