基于ABAQUS的热应力分析
- 格式:doc
- 大小:384.00 KB
- 文档页数:9
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
基于ABAQUS对手机USB的热应力仿真分析发布时间:2023-03-01T07:06:53.735Z 来源:《科技新时代》2022年第19期作者:叶玮[导读] 手机产品中USB插座贴片时发生中间焊脚上翘假焊现象,通过ABAQUS对USB进行热叶玮维沃移动通信有限公司广东东莞 523000[摘要]手机产品中USB插座贴片时发生中间焊脚上翘假焊现象,通过ABAQUS对USB进行热应力仿真建模分析,确认假焊产生原因为USB内部的密封硅胶热膨胀系数过大造成USB翘曲变形,从而造成假焊。
针对USB热应力产生的假焊现象进一步进行方案仿真分析提出了改善建议。
[关键词]手机产品;USB;热应力;ABAQUS;仿真分析;前言:USB 是一个外部串行总线的技术标准,是一种广泛应用于手机和其他移动电话设备及其周边的总线接口技术[1]。
手机USB接口端子作为数据传输和充电功能是手机一个常规的元器件,在贴片时需要进行从常温到高温的过炉工艺,常发生焊脚假焊翘曲现象,导致手机电源线或数据线插入USB接口端子接触不良。
为了研究手机USB的假焊现象,采用ABAQUS对USB进行热应力仿真,找出失效原因,并对比不同的方案,为改善假焊现象提供理论依据。
1、简述ABAQUSABAQUS是一款强大的有限元分析软件,不仅能进行有静态和准静态的分析、瞬态分析、流体、声学、疲劳分析而且可以进行热应力分析以及热固藕合分析[2]。
ABAQUS在机械、电子产品设计中得到了广泛地应用,在热应力分析中具有多种分析类型:非耦合传热分析、顺序耦合热应力分析、完全耦合热应力分析、绝热分析、热电耦合分析、空腔辐射等。
本文运用ABAQUS对手机的USB接口端子进行热应力仿真,尝试运用ABAQUS解决USB接口端子贴片时发生的焊脚上翘假焊现象。
2、基于ABAQUS手机USB热应力的仿真分析2.1仿真模型设置采用ABAQUS耦合温度位移稳态分析(Coupledtemp-displacemen t)对手机USB进行热应力仿真分析。
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(2)多种零件排样选择part1、part2、part3,其中,part1的长宽不变为100×70,part2的长宽为200×100,part3的长宽为150×90,板材大小仍然为设800×500,X 间距、Y 间距和零件与板材的边距都设为8,排样对话框设置和在AutoCAD 中的排样结果如图4、图5。
5结论通过排样程序可以看出,ObjectARX 编程环境提供的与MFC 相关的用户界面类AdUi 和AcUi 使开发的应用程序能与AutoCAD 风格界面很好地融合在一起,能在同一个界面对AutoCAD 和MFC 对话框进行操作,同时应用Visual.C ++设计较为复杂的对话框。
虽然用ObjectARX 开发应用程序功能强大,但掌握ObjectARX编程方法并不容易,尤其是运行到AutoCAD 界面出现的错误,因为没有具体的错误提示,很难从程序中找到错误,需要经过不停的调试才能找到原因,这给程序设计带来很大困难。
[参考文献][1]秦洪现,崔惠岚,孙剑,等.Autodesk 系列产品开发培训教程[M ].北京:化学工业出版社,2008.[2]江思敏,曹默,胡春江.AutoCAD2000开发工具———ObjectARX开发工具与应用实例[M ].北京:人民邮电出版社,1999.[3]刘蓉梅,姜秀萍,华徐勇,等.ObjectARX 二次开发及应用实例[J ].机械设计与制造,2002(3):27-29.(编辑昊天)作者简介:谢友宝(1968-),男,教授,硕士研究生导师,主要研究方向为机电一体化设备研制、数控技术、CAD/CAM 技术、计算机软硬件系统开发等。
收稿日期:2009-06-18图3排样结果图2设置对话框图5排样结果图4对话框设置基于ABAQUS 的自由辊温度场及热应力场分析杨桂芳1,罗会信1,林刚2,代宗岭2(1.武汉科技大学机械自动化学院,武汉430081;2.中冶京诚工程技术有限公司,北京100081)自由辊是连铸机中重要的零件,在结晶器、支撑导向段、扇形段中都有使用。
1.1基于ABAQUS的热应力分析1.1.1 温度场数据处理(1)打开INP_Generator.exe,出现如下软件界面:图1.数据处理软件(2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图所示:图2.路径选择(3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的ABAQUS输入文件ABAQUSinputfile.inp。
图3.生成包含连续温度场INP文件1.1.2 复材工装模板热应力分析(1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”,如下图所示。
检查是否有名为“PID6”的set,若没有则创建一个名为“PID*”的set,set为模板整体。
(“*”为任意数字或字母)图4.创建SET(2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。
在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用ABAQUS/CAE自身功能完成剩余分析工作。
(a)(b)(c)图5.定义材料及铺层(3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。
选择“Tools”菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。
依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。
图6.定义模板局部坐标系(4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。
Step设为“Initial”,Category选择为“Mechanical”,Types for Selected Step 选择为“Displacement/Rotation”,点击“Continue”,如下图所示:图7.选择约束类型(5)将“Select regions for the boundary condition”选为“by angle”,选中模板下表现所有结点(按住Shift键可多选),点击鼠标中键,弹出如下边界条件编辑对话框,给模板施加U3和UR3约束,CSYS选择为模板局部坐标系。
Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
基于ABAQUS的刹车盘热应力分析随着机动车数量的不断增加,刹车系统的安全性和使用寿命成为一个重要的研究方向。
刹车盘作为刹车系统的关键部件之一,其材料选择对于提高机动车的安全性能至关重要。
在刹车过程中,由于制动器片和刹车盘之间的不断摩擦,会产生大量的热量并引起刹车盘的热应力,影响刹车盘的性能与使用寿命。
为深入研究刹车盘的热应力,本文采用ABAQUS软件对刹车盘进行热应力分析。
首先,我们需要进行前期工作。
根据实际情况,选取合适的刹车盘模型和材料模型,并设置刹车盘的几何尺寸和初始温度以及制动器片的作用力。
在模型的加工过程中,需要注意刹车盘各部位的加工精度,以保证模型的准确性。
然后,我们对刹车盘进行热传递分析。
刹车盘在刹车过程中会受到大量的制动器片摩擦产生的热量的影响,因此需要对其热传递进行分析。
在计算过程中,我们需要根据实际数据设置以下参数:热扩散系数、材料密度和比热、传热系数等。
这些参数可以在材料手册中获得。
接下来,我们进行热弹性分析。
在高温和大应力的环境下,刹车盘内部会产生热应力,导致刹车盘的力学性能发生变化。
利用ABAQUS软件对于刹车盘的热应力进行分析,可以了解到刹车盘在制动过程中是否发生变形、开裂等破坏现象,预测刹车盘寿命并进行优化设计。
最后,我们将分析结果进行打印和分析,根据热应力分析结果,对刹车盘的合理性进行评估。
如果出现问题,可以尝试通过改变制动片的材料、设置通风方式等方式来解决问题,提高刹车盘的寿命和安全性能。
总的来说,ABAQUS软件提供了一个重要的工具,用于对于刹车盘的热应力进行分析、寿命预测和性能优化。
通过对于刹车盘的热应力分析,我们可以有效提高机动车的安全性和使用寿命,保障行车安全。
刹车盘的热应力分析需要大量的相关数据,从材料的热物理参数到刹车盘的几何尺寸等方面都需要考虑。
下面列举了一些相关数据,并进行分析。
1. 刹车盘材料的热物理参数:例如,材料的热扩散系数、比热和密度等,这些参数会影响刹车盘在制动过程中的热传递和热应力。
基于ABAQUS的热应力分析热应力分析是一种用于研究物体在温度变化下产生的应力变化的方法。
在工程设计中,热应力分析可以用于评估零件或结构在温度变化下的稳定性和可靠性。
ABAQUS是一种常用的有限元分析软件,可以用于进行热应力分析。
在ABAQUS中进行热应力分析的基本步骤如下:1.定义几何模型:首先需要根据实际情况创建一个几何模型。
可以通过ABAQUS中的几何建模工具创建几何体,也可以导入已有的CAD模型。
2.定义材料特性:接下来需要定义材料的热物性参数。
ABAQUS提供了多种材料模型,可以根据实际情况选择合适的模型。
在热应力分析中,需要定义材料的热导率和热膨胀系数等参数。
3.定义温度加载:在热应力分析中,温度加载是一个非常重要的因素。
可以通过定义恒定温度、温度梯度或温度函数等方式对模型进行加热或冷却。
ABAQUS提供了丰富的温度加载选项,可以根据具体需求进行配置。
4.定义边界条件:根据实际情况,在模型中定义边界条件。
这些边界条件可以包括约束条件、固定支撑点和力加载等。
在热应力分析中,边界条件可以用于约束模型的自由度,以及模拟外部力的作用。
5.网格划分:在进行有限元分析之前,需要对几何模型进行网格划分。
网格划分的精度和质量将直接影响到分析结果的准确性。
ABAQUS提供了多种网格划分工具,可以根据具体需求选择合适的方法。
6.定义分析步:根据实际情况,定义热应力分析的时间步长和总时长。
ABAQUS提供了多种分析步选项,可以根据具体需求进行配置。
在热应力分析中,需要考虑热传导和热膨胀的时间尺度。
7.运行分析:完成模型设置后,可以运行热应力分析。
ABAQUS将根据设定的边界条件、材料特性和加载条件对模型进行求解,得到温度分布和应力分布等结果。
8.结果分析:分析完成后,可以使用ABAQUS提供的后处理工具对结果进行可视化和分析。
可以绘制温度云图、应力云图、应变云图等等,以便更好地理解模型的行为。
总结:通过上述步骤,可以使用ABAQUS进行热应力分析。
ABAQUS热应力分析实例详解热应力分析是指在材料受到热载荷的作用下,由于温度和热应力的非均匀分布而产生的应力状态。
ABAQUS是一种常用的有限元分析软件,可以用于进行热应力分析。
下面将以一个实例来详细介绍ABAQUS热应力分析的流程和步骤。
假设我们有一个具有热源的方形材料板,需要分析其热应力分布情况。
首先,我们需要确定仿真模型的几何尺寸和材料属性。
假设板材的尺寸为10cm x 10cm,材料为铝,具有线膨胀系数α=23.1×10^-6/°C和热导率λ=237W/m·K。
1. 创建模型:打开ABAQUS软件,创建一个新模型,并在模型中创建一个二维平面应变比例等效热应力分析。
选择“3D”模型,然后在“Parts”面板中点击右键,选择“Create”->“Part”,设置尺寸为10cm x 10cm。
2. 材料属性定义:在“Model”面板中选择“Materials”->“Create”->“Isotropic”来定义材料的力学性能。
输入铝的杨氏模量E=71 GPa和泊松比ν=0.333. 模型网格划分:在“Model”面板中选择“Mesh”->“Create”->“Part”,选择要进行网格划分的实体和面,然后定义网格大小。
可以根据需要设置不同大小的网格。
4. 网格单元类型选择:在“Mesh”面板中选择网格划分的网格单元类型。
可以选择线性三角形元、线性四边形元或其他类型的单元。
5. 温度加载:在“Model”面板中选择“Loads”->“Create”->“Temperature”来定义温度加载。
选择加载的表面或体实体,并设置温度大小和类型(恒定温度或温度曲线)。
6. 边界条件定义:在“Model”面板中选择“Bounadry Conditions”->“Create”->“Encastre”来定义边界条件。
选择边界条件所在的边或节点,并设置边界条件类型(固支、自由度约束等)。
1.1基于ABAQUS的热应力分析
1.1.1 温度场数据处理
(1)打开INP_Generator.exe,出现如下软件界面:
图1.数据处理软件
(2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图
所示:
图2.路径选择
(3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的
ABAQUS输入文件ABAQUSinputfile.inp。
图3.生成包含连续温度场INP文件
1.1.2 复材工装模板热应力分析
(1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”,
如下图所示。
检查是否有名为“PID6”的set,若没有则创建一个名为
“PID*”的set,set为模板整体。
(“*”为任意数字或字母)
图4.创建SET
(2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。
在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺
层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用
ABAQUS/CAE自身功能完成剩余分析工作。
(a)
(b)
(c)
图5.定义材料及铺层
(3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。
选择“Tools”
菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。
依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。
图6.定义模板局部坐标系
(4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。
Step设为“Initial”,Category选择为“Mechanical”,Types for Selected Step 选择为“Displacement/Rotation”,点击“Continue”,如下图所示:
图7.选择约束类型
(5)将“Select regions for the boundary condition”选为“by angle”,选中模板
下表现所有结点(按住Shift键可多选),点击鼠标中键,弹出如下边界条件编辑对话框,给模板施加U3和UR3约束,CSYS选择为模板局部坐标系。
图8.定义约束
(6)打开Predefined Field Manager,检查温度场Field-1,若为模板整体温度
场则删除它,否则保留。
创建一个初始温度场:Step设为“Initial”,Category 选择为“Other”,Type for Selected Step选择为“Temperature”,点击“Continue”按钮,选中模板整体,输入常温293K。
并将其在Initial以后各步聚中设为“Reset to initial”。
图9.检查温度场
(7)进入Job模块,创建作业,提交计算,完成后打开工作目录下对应的odb
文件查看分析结果。
创建并提交作业
(8)打开Plug-ins菜单下“CAC Project – Post Process”,弹出后处理对话框,
各选项作用如下图(b)所示:
(a)
整体变形
变形后云图
变形前后云图
应力云图
应变云图
位移云图
(b)
图10.后处理
(9)打开Plug-ins菜单下“CAC Project –Strength Check”,弹出强度校核对话
框。
图11.强度校核
(10)点击“Select…”选择分析后的结果文件(Odb文件),输入insurance name,
默认为PART-1-1(应与Odb文件中insurance name保持一致)。
最后点击
“OK”,将对模板进行最大应力强度准则校核,并在ABAQUS下面的信
息栏给出校核结果:(Strength Qualified or Strength Unqualified)。
1.1.3 制件精度分析
a)对FLUENT导出的INP文件作处理,去除其中温度点,如下图。
图12.去除温度点
b)使用File-Import-Model功能将去除温度点的INP导入ABAQUS。
按5.3.2的方法,设置型面以模板材料从常温升致固化温度。
温度场设置如下:点击
Load模块定义升温过程温度场,“Step”选为“Initial”;“Category”选为“Other”;“Type for Selected Step”选为“Temperature”,点击“Continue”,如下图所示:
图13.建立温度场
初始步(Initial)温度设为常温25度,如下图所示:
图14.常温设置
打开“Predefined Field Manager”,双击“Step-1”下面的“Propagated”,如下图:
图15.温度场控制器
将“Step-1”中温度场更改为固化温度197度,设置如下图:
图16.改为固化温度
c)上一步分析完成后,重新打开ABAQUS,导入固化温度下的型面。
使用
File-Import-Part功能,如下图所示:
图17.导入高温型面
按5.3.2的方法设置型面以制件材料从固化温度降为常温,分析得到制件的处形。
d)按5.3.2的方法设置型面以制件材料从常温到常温,形状不变的一个过
程,分析得到制件理论外形。
e)制件精度比较:打开Plug-ins菜单下“CAC Project –Dimensional
Accuracy”,弹出制件精度分析对话框,如下图:
图18.制件精度分析
上面选择制件理论外形的结果文件,下面选择制件变形的结果文件,点击OK,将得到包含制件理论外形和变形后所有节点坐标值的文本文件和对应节点最大位移值,并以此判断制件的精度。