那么称为矩阵的最高阶非零子式
- 格式:ppt
- 大小:1.61 MB
- 文档页数:22
秩的一些相关公式在线性代数这门学科里,秩是非常关键也是常用的一个工具,要深刻理解和掌握秩这个武器,必须还要熟记与秩有关的一些公式,这样才能在考试中得心应手,下面对秩的公式进行了总结,也方便同学们掌握这部分内容。
1.()()()T r r r k ==A A A ,0k ≠;前一篇笔者讲到了,矩阵的秩等于其行秩也等于其列秩,所以将矩阵转置了之后秩是没有改变的,数乘也是不改变秩的。
2.()min{,}m n r m n ⨯≤A ;矩阵形式:结合矩阵秩的概念,非零子式的最高阶数即为矩阵的秩,矩阵最高阶子式为min{,}m n ,故其非零子式最高阶应小于等于min{,}m n ;向量形式:若将矩阵m n ⨯A 写成向量组的形式,即1[,...,]m n n αα⨯=A ,矩阵的秩等于向量组的秩,则有的向量组的秩1(,...,)min{,}n r m n αα≤。
3.若向量组1,...,n αα可由向量组1,...,m ββ表出,则11(,...,)(,...,)n m r r ααββ<。
这个推导过程上一篇文章笔者已经介绍了,就不在这介绍过多了,若将向量组组成矩阵的形式,有()m i n {(),()}r r r ≤A B A B ,这个矩阵形式的公式是最常用的,关于这个公式还有如下几点推论: 推论1:若n n ⨯P 可逆,则()()r r =AP A , ()()r r =PB B ;这条推论的用法就是乘以可逆矩阵不改变矩阵的秩,那么可逆矩阵的本质就是若干个初等矩阵相乘,乘以可逆矩阵相当于做了若干次初等变换,初等变换是不改变秩的。
推论2:若m n m n ⨯⨯≅A B ,等价于()()m n m n r r ⨯⨯=A B ;两个同型矩阵等价的充要条件是其秩相同。
推论3:若向量组1,...,n αα与向量组1,...,m ββ等价,则11(,...,)(,...,)n m r r ααββ=,这条推论两个向量组等价的必要条件是这两个向量组的秩相同,这只是一个必要条件,而非充要条件,要和推论2区别开。
第3章矩阵的初等变换与线性方程组[视频讲解]3.1本章要点详解本章要点■初等变换的概念与性质■矩阵之间的等价关系■初等变换与矩阵乘法的关系■初等变换的应用■矩阵的秩■线性方程组的解重难点导学一、矩阵的初等变换1.初等变换下面三种变换称为矩阵的初等行变换:(1)对调两行(对调i,j两行,记作r i↔r j);(2)以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);(3)把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.2.矩阵等价(1)定义①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(2)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(3)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A 等价的矩阵组成一个集合,标准形F 是这个集合中形状最简单的矩阵.3.初等变换与矩阵乘法的关系(1)定理设A 与B 为m ×n 矩阵,则:①的充分必要条件是存在m 阶可逆矩阵P ,使PA =B ;②的充分必要条件是存在n 阶可逆矩阵Q ,使AQ =B ;③A ~B 的充分必要条件是存在m 阶可逆矩阵P 及n 阶可逆矩阵Q ,使PAQ =B .(2)初等矩阵由单位矩阵E 经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A 是一个m ×n 矩阵,对A 施行一次初等行变换,等价于在A 的左边乘以相应的m 阶初等矩阵;对A 施行一次初等列变换,等价于在A 的右边乘以相应的n 阶初等矩阵.②方阵A 可逆的充分必要条件是存在有限个初等矩阵P 1,P 2,…P l ,使A =P 1P 2…P l .③方阵A 可逆的充分必要条件是.4.初等变换的应用当||0A ≠时,由12l A PP P = ,有11111l l P P P A E ----= 及111111l l P P P E A -----= 所以()()()1111111111111111|||l l l l l l P P P A E P P P A P P P E E A -------------== 即对n ×2n 矩阵()|A E 施行初等行变换,当把A 变成E 时,原来的E 就变成A -1.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A中当所有r+1阶子式全等于0时,所有高于r+1阶的子式也全等于0,因此把r阶非零子式称为最高阶非零子式,而A的秩R(A)就是A的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A~B,则R(A)=R(B).②若可逆矩阵P,Q使PAQ=B,则R(A)=R(B).2.秩的性质(1)0≤R(A m×n)≤min{m,n}(2)R(A T)=R(A);(3)若A~B,则R(A)=R(B);(4)若P、Q可逆,则R(PAQ)=R(A);(5)max{R(A),R(B)}≤R(A,B)≤R(A)+R(B)特别地,当B=b为非零列向量时,有R(A)≤R(A,b)≤R(A)+1;(6)R(A+B)≤R(A)+R(B);(7)R(AB)≤min{R(A),R(B)};(8)若A m×n B n×l=0,则R(A)+R(B)≤n.3.满秩矩阵矩阵A的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A为n阶矩阵,则R(A+E)+R(A-E)≥n.(2)若A m×n B n×l=C,且R(A)=n,则R(B)=R(C).。
第3章矩阵的初等变换与线性方程组3.1 复习笔记一、矩阵的初等变换1.初等变换(1)定义下面三种变换称为矩阵的初等行变换:①对调两行(对调i,j两行,记作r i↔r j);②以数k≠0乘某一行中的所有元(第i行乘k,记为r i×k);③把某一行所有元素的k倍加到另一行对应的元上去(第j行的k倍加到第i行上,记作r i+kr j).把定义中的“行”换成“列”,即得矩阵的初等列变换的定义,矩阵的初等行变换与初等列变换,统称为初等变换.(2)矩阵等价①若矩阵A经有限次初等行变换变成矩阵B,就称矩阵A与B行等价,记作;②若矩阵A经有限次初等列变换变成矩阵B,就称矩阵A与B列等价,记作;③若矩阵A经有限次初等变换变成矩阵B,则称矩阵A与B等价,记作A~B.(3)矩阵之间的等价关系的性质①反身性A~A;②对称性若A~B,则B~A;③传递性若A~B,B~C,则A~C.(4)矩阵的类型①两个矩阵,矩阵B4和B5都称为行阶梯形矩阵.行阶梯形矩阵B5又称为行最简形矩阵,其特点是:非零行的第一个非零元为1,且非零元所在的列的其他元素都为0.结论:对于任何非零矩阵A m×n总可经过有限次初等行变换把它变为行阶梯形矩阵和行最简形矩阵.②标准形矩阵F称为矩阵B的标准形,其特点是:F的左上角是一个单位矩阵,其余元素全为0.对于m×n矩阵A,总可经过初等变换(行变换和列变换)把它化为标准形此标准形由m,n,r三个数完全确定,其中r就是行阶梯形矩阵中非零行的行数.所有与A等价的矩阵组成一个集合,标准形F是这个集合中形状最简单的矩阵.2.初等变换的性质(1)定理设A与B为m×n矩阵,则:①的充分必要条件是存在m阶可逆矩阵P,使PA=B;②的充分必要条件是存在n阶可逆矩阵Q,使AQ=B;③A~B的充分必要条件是存在m阶可逆矩阵P及n阶可逆矩阵Q,使PAQ=B.(2)初等矩阵由单位矩阵E经过一次初等变换得到的矩阵称为初等矩阵.(3)性质①设A是一个m×n矩阵,对A施行一次初等行变换,等价于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,等价于在A的右边乘以相应的n阶初等矩阵.②方阵A可逆的充分必要条件是存在有限个初等矩阵P1,P2,…P l,使A=P1P2…P l.③方阵A可逆的充分必要条件是.二、矩阵的秩1.秩的定义(1)k阶子式在m×n矩阵A中,任取k行与k列(k≤m,k≤n),位于这些行列交叉处的k2个元素,不改变它们在A中所处的位置次序而得的k阶行列式,称为矩阵A的k阶子式.注:m×n矩阵A的k阶子式共有个.(2)矩阵的秩设在矩阵A中有一个不等于0的r阶子式D,且所有r+1阶子式(如果存在的话)全等于0,则D称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A).注:零矩阵的秩等于0.(3)最高阶非零子式由行列式的性质可知,在A 中当所有r +1阶子式全等于0时,所有高于r +1阶的子式也全等于0,因此把r 阶非零子式称为最高阶非零子式,而A 的秩R (A )就是A 的非零子式的最高阶数.(4)满秩矩阵与降秩矩阵可逆矩阵的秩等于矩阵的阶数,不可逆矩阵的秩小于矩阵的阶数.因此,可逆矩阵又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵.(5)等价矩阵的秩①若A ~B ,则()()R A R B =.②若可逆矩阵P ,Q 使PAQ =B ,则R (A )=R (B ). 2.秩的性质(1)0R ≤(){}min ,;m n A m n ⨯≤ (2)()()T R A R A =;(3)若A ~B,则()()R A R B =;(4)若P 、Q 可逆,则()()R PAQ R A =;(5)()(){}()()()max ,,,R A R B R A B R A R B ≤≤+特别地,当B =b 为非零列向量时,有()()(),1R A R A b R A ≤≤+;(6)()()()R A B R A R B +≤+; (7)()()(){}min ,R AB R A R B ≤; (8)若m n n l A B ⨯⨯=0,则()()R A R B n +≤. 3.满秩矩阵矩阵A 的秩等于它的列数,称这样的矩阵为列满秩矩阵.当A 为方阵时,列满秩矩阵就成为满秩矩阵.4.结论(1)设A 为n 阶矩阵,则()()R A E R A E n ++-≥. (2)若,m n n l A B C ⨯⨯=且()R A n =,则()()R B R C =. (3)设AB =0,若A 为列满秩矩阵,则B =0.三、线性方程组的解 1.解的定义设有n 个未知数m 个方程的线性方程组(3-1-1)该式可以写成以向量x 为未知元的向量方程:Ax =b ,其中,A 为系数矩阵,B =(A ,b )称为增广矩阵,线性方程组(3-1-1)如果有解,就称它是相容的,如果无解,就称它不相容.2.解的判断(1)n 元线性方程组Ax =b①无解的充分必要条件是()(),R A R A b <; ②有唯一解的充分必要条件是()(),R A R A b n ==; ③有无限多解的充分必要条件是()(),R A R A b n =<.(2)n 元齐次线性方程组Ax =0有非零解的充分必要条件是()R A n <. (3)线性方程组Ax =b 有解的充分必要条件是()(),R A R A b =.(4)矩阵方程Ax =B 有解的充分必要条件是()(),R A R A B =. (5)设AB =C,则()()(){}min ,R C R A R B ≤.3.2 课后习题详解1.用初等行变换把下列矩阵化为行最简形矩阵:解:(1)(2)(3)。
§2 向量组的秩回顾:矩阵的秩定义:在m×n 矩阵A中,任取k 行k 列(k≤m,k≤n),位于这些行列交叉处的k2 个元素,不改变它们在A中所处的位置次序而得的k 阶行列式,称为矩阵A的k 阶子式。
规定:零矩阵的秩等于零。
定义:设矩阵A 中有一个不等于零的r 阶子式D,且所有r+1 阶子式(如果存在的话)全等于零,那么D 称为矩阵A的最高阶非零子式,数r称为矩阵A的秩,记作R(A)。
结论:矩阵的秩= 矩阵中最高阶非零子式的阶数= 矩阵对应的行阶梯形矩阵的非零行的行数向量组的秩的概念定义1设向量组A中的一个部分组a, a2, …, a r ,满足1, a2, …, a r 线性无关;⑴a1⑵向量组A中任意r + 1个向量(如果有)都线性无关。
则称a, a2, …, a r 是向量组A的一个最大线性无关向量组(简称1最大无关组);最大无关组所含向量个数r 称为向量组A的秩,记作R(A)。
例:求矩阵的秩,并求A 的一个最高阶非零子式.21112112144622436979A --⎛⎫ ⎪-⎪= ⎪--⎪-⎝⎭第二步求A 的最高阶非零子式.选取行阶梯形矩阵中非零行的第一个非零元所在的列,与之对应的是选取矩阵A 的第一、二、四列.解:第一步先用初等行变换把矩阵化成行阶梯形矩阵.行阶梯形矩阵有3 个非零行,故R (A ) = 3.21112112141121401110~46224000133697900000r A ---⎛⎫⎛⎫⎪ ⎪--⎪ ⎪= ⎪ ⎪---⎪ ⎪-⎝⎭⎝⎭0124211111(,,)~462367r A a a a -⎛⎫ ⎪ ⎪== ⎪-- ⎪⎝⎭0111011001000B ⎛⎫⎪ ⎪= ⎪⎪⎝⎭01240111011(,,)~462001367000r A a a a B ⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪=== ⎪ ⎪-- ⎪⎪⎝⎭⎝⎭R (A 0) = 3,计算A 0的前3 行构成的子式21111180462-=-≠--因此这就是A 的一个最高阶非零子式。
线性代数判断题线性代数课程组判断题(正确的请在括号里打“√” ,错误请打“×” )1、以数k 乘行列式D ,等于用数k 乘行列式的某一行(或某一列). ( )2、行列式01111≠--a a 的充要条件是a≠2且a≠0. ( )3、3阶行列式843576321的值等于行列式853472361的值. ( ) 4、交换行列式的两列,行列式的值变号. ( )5、行列式321332211321321321321333c c c a b a b a b a a a c c c b b b a a a D +++==成立. ( )6、行列式2211221122221111d b d b c a c a d c b a d c b a D +=++++=成立. ( )7、行列式25434232124108684642⨯==D 成立. ( )8、n 阶行列式中元素ij a 的余子式ij M 与代数余子式ij A 的关系是ij ij M A -=. ( )9、主对角线右上方的元素全为0的n 阶行列式称为上三角形行列式. ( )10、行列式25479623875156422547962356428751==D 成立. ( ) 11、设D 是行列式,k 是不为零的实数,则kD 等于用k 去乘以行列式的某一行得到的行列式. ( )12、如果行列式D 有两行元素对应相等,则0=D . ( )13、设D 是n 阶行列式,ij A 是D 中元素ij a 的代数余子式.如果将D 按照第n 列展开,则nn nn n n n n A a A a A a D +++= 2211. ( )14、行列式4444543225169454321111=D 是范德蒙行列式. ( )15、克拉默法则可用于解任意的线性方程组. ( )16、齐次线性方程组一定有零解,可能没有非零解. ( )17、由n 个方程构成的n 元齐次线性方程组,当其系数行列式等于0时,该齐次线性方程组有非零解. ( )18、行列式1694432111中第三行第二列元素的代数余子式的值为-2. ( )19、设行列式3333231232221131211==a a a a a a a a a D ,则62525253332313123222121131211111=+++=a a a a a a a a a a a a D . ( ) 20、设行列式12211=b a b a ,22211=c a c a ,则3222111=++c b a c b a . ( )21、如果行列式D 有两列元素对应成比例,则0=D . ( )22、设D 是n 阶行列式,则D 的第2行元素与第三行元素对应的代数余子式之积的和为0,即03232223121=+++n n A a A a A a . ( ) 23、任何阶数的行列式都可以用对角线法则计算其值. ( ) 24、任意一个矩阵都有主次对角线. ( ) 25、两个零矩阵必相等. ( ) 26、两个单位矩阵必相等. ( )27、3阶数量矩阵⎪⎪⎪⎭⎫ ⎝⎛⋅=⎪⎪⎪⎭⎫ ⎝⎛100010001000000a a a a . ( )28、若矩阵A≠0,且满足AB=AC ,则必有B=C. ( ) 29、若矩阵A 满足T A A =,则称A 为对称矩阵. ( )30、若矩阵A ,B 满足AB=BA ,则对任意的正整数n ,一定有(AB )n=A n B n . ( ) 31、因为矩阵的乘法不满足交换律,所以对于两个同阶方阵A 与B ,AB 的行列式||AB 与BA 的行列式||BA 也不相等. ( ) 32、设A 为n 阶方阵:|A|=2,则|-A|=(-1)n 2. ( ) 33、设A,B 都是三阶方阵,则B A B A +=+. ( )34、同阶可逆矩阵A 与B 的乘积AB 也可逆,且111)(---=B A AB . ( ) 35、若A ,B 都可逆,则A+B 也可逆. ( )36、若AB 不可逆,则A ,B 都不可逆. ( ) 37、若A 满足A 2+3A+E=0,则A 可逆. ( )38、方阵A 可逆的充分必要条件是A 为非奇异矩阵. ( ) 39、只有可逆矩阵,才存在伴随矩阵. ( )40、设A ,B ,C ,E 均为n 阶矩阵,若ABC=E ,可得BCA=E. ( )41、如果A 2-6A=E ,则1-A = A-6E. ( )42、设A=⎪⎪⎭⎫ ⎝⎛2531,则A *=⎪⎪⎭⎫ ⎝⎛--1532. ( )43、设A 是n 阶方阵,且1=A ,则115)5(---=n T A . ( )44、分块矩阵的转置方式与普通矩阵的转置方式是一样的. ( )45、由单位矩阵E 经过任意次的初等变换得到的矩阵称为初等矩阵. ( ) 46、矩阵的等价就是指两个矩阵相等. ( )47、设A 是3阶矩阵,交换矩阵A 的1,2两行相当于在矩阵A 的左侧乘以一个3阶的初等矩阵⎪⎪⎪⎭⎫ ⎝⎛=10000101012E . ( )48、对n 阶矩阵A 施以初等行变换与施以相同次数的初等列变换得到的矩阵是相等的. ( )49、设A 是4×5矩阵,)(A r =3,则A 中的所有3阶子式都不为0. ( ) 50、对矩阵A 施以一次初等行变换得到矩阵B ,则有)()(B r A r =. ( ) 51、若6阶矩阵A 中所有的4阶子式都为0,则4)(0<≤A r . ( ) 52、满秩矩阵一定是可逆矩阵. ( )53、矩阵的初等变换不改变矩阵的秩. ( ) 54、等价的矩阵有相同的秩. ( ) 55、n 阶矩阵就是n 阶行列式. ( )56、用矩阵A 左乘以矩阵B 等于用矩阵A 与矩阵B 中对应位置的元素相乘. ( )57、设A 为三阶方阵且2-=A ,则=A A T 3108. ( )58、方阵A 可逆的充分必要条件是A 可以表示为若干个初等矩阵的乘积. ( ) 59、方阵A 可逆的充分必要条件是A 与同阶的单位矩阵等价. ( ) 60、方阵A 可逆的充分必要条件是A 为满秩矩阵. ( ) 61、若|A|≠0,则|A*|≠0. ( )62、矩阵的秩是指矩阵的最高阶非零子式的阶数. ( )63、设A ,B 都是n 阶可逆矩阵,O 为n 阶零矩阵,C 为2n 阶分块对角矩阵即⎪⎪⎭⎫⎝⎛=B O O A C ,则C 的逆矩阵为⎪⎪⎭⎫⎝⎛=--O BA O C 11. ( ) 64、向量组中的任意一个向量都可由这个向量组本身线性表出. ( )65、零向量可由任意向量组线性表出. ( )66、若4321αααα,,,线性无关,则)4(21>n n ααα ,,线性相关.( )67、两个n 维向量线性相关的充要条件是两个n 维向量的各个分量对应成比例. ( ) 68、若02211=++n n k k k ααα ,则n ααα,,, 21线性相关. ( )69、若对任意一组不全为的数n k k k ,,, 21,都有02211≠+++n n k k k ααα ,则n ααα,,, 21线性无关. ( )70、若向量组A :m ααα,,,21 线性相关,且可由向量组B :s βββ,,,21 线性表出,则s m ≤. ( )71、等价的向量组所含向量个数相同. ( ) 72、任意一个向量组都存在极大无关组. ( )73、设向量组im i i ααα,,,21 是向量组n ααα,,,21 的一个子组。
Ch3 矩阵的秩与线性方程组第一节矩阵的秩一、矩阵秩的概念二、矩阵秩的计算21 ,,m n A k k k m k n k A k A k ×≤≤定义在矩阵中任取行列(),位于这些行列交叉处的个元素不改变它们在中所处的位置次序而得的阶行列式,称为矩阵的阶子式一、矩阵秩的概念2010()()A r D r D A r A rank r A A +定义设在矩阵中(1)不等于的阶子式,(2)阶子式(如果存在)全等于, 则被称为矩阵的最高阶非零子式, 数称为矩阵的,记有一个所或有秩作。
().m n A r A A ×矩阵的秩是中非零子式的最高阶数()0.A O r A =⇔=规定,对于T A )1().()(A r A r T=显然有注意:).,min()()2(n m A r n m ≤×.)()3(k A r k A ≥阶子式不为零,则有一个若.)(1)4(k A r k A ≤+阶子式均为零,则的所有若50()(0()(A r A n A r A n ≠⇒==⇒<()若满秩阵)若降秩阵)例1.174532321的秩求矩阵⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−=A 解中,二阶子式在A ,阶子式只有一个的又A A 3∵.03221≠,且0=A .2)(=∴A r二、矩阵秩的计算3定义矩阵为称满足以下两个条件的n m ×行阶梯形矩阵:(1)每行的非零元(如果有的话)前的零元个数比其上一行这种零元个数多;(2)00如果某行全为,则下面所有行也全为110若行阶梯形矩阵的非零行的首非零元均为,且这些所在的列的其它元素都是.行最简形矩阵0注:行阶梯形矩阵的秩即为它的非行的行数例2.00000340005213023012的秩求矩阵⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−−−−=B 解行,”,其非零行有是一个“行阶梯形矩阵3B ∵.4阶子式全为零的所有B ∴,0400230312≠−−而.3)(=∴B r 取自非零行首非零元所在列说明.非零行的行数行阶梯形矩阵的秩即其1 ,m n A ×对于任何矩阵总可经过有限次初等行变换化为行定理阶梯形矩阵2、经过初等变换后,矩阵的秩是否改变?()()~, 2 A B r A r B =若则定理问题:1、任一个矩阵是否可化成行阶梯形矩阵初等变换求矩阵秩的方法:把矩阵用初等行变换变成为行阶梯形矩阵,行阶梯形矩阵中非零行的行数就是矩阵的秩.阶满秩矩阵,则必有阶、分别是矩阵,而是任一设n m Q P n m A ,×2定理的推论:1推论)()()(PAQ r AQ r PA r ==2m n A ×若已知任一矩阵的标准推论形分解为r I O A PNQ P Q O O ⎡⎤==⎢⎥⎣⎦.)(的阶数)(即单位矩阵则必有r I r A r =20314335427,()15201A r A ⎡⎤⎢⎥=−⎢⎥⎢⎥⎣⎦例、若求解:203143542715201A ⎡⎤⎢⎥=−⎢⎥⎢⎥⎣⎦13r 152013542720314⎡⎤⎢⎥−⎢⎥⎢⎥⎣⎦1213(3)(2)r r −−15201020224010112⎡⎤⎢⎥−−⎢⎥⎢⎥−−⎣⎦2231()2(1)r r −1520101011200000⎡⎤⎢⎥−−⎢⎥⎢⎥⎣⎦1122224,3336k A k k k −−⎡⎤⎢⎥=−−⎢⎥⎢⎥−−⎣⎦例、已知矩阵取何值时,问:k (1)()1;(2)()2;(3)() 3.r A r A r A ===解:~63334222211⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−=k k k k A ~)1(6)1(3)1(30)1(4)1(2)1(202112⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−−−−−k k k k k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−−−−−0)1)(2(00)1(2)1()1(0211k k k k k k;时,即得,当1)(1==A r k ;时,当2)(2=−=A r k .3)(12=≠−≠A r k k 时,且当⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−−−−−0)1)(2(00)1(2)1()1(0211~k k k k k k A 由Ch3 矩阵的秩与线性方程组第二节齐次线性方程组一、线性方程组有解的判定二、线性方程组的解法一、齐次线性方程组有解的判定条件的解.组的秩,讨论线性方程如何利用系数矩阵0=Ax A 问题:引例求解齐次线性方程组⎪⎩⎪⎨⎧=−−−=−−+=+++0340222022432143214321x x x x x x x x x x x x解⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−=341122121221A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−463046301221施行的初等行变换:同时记录对系数矩阵A )1()2(1312−−r r ⎪⎩⎪⎨⎧=−−−=−−+=+++0340222022432143214321x x x x x x x x x x x x ①②③②-①2×,③-①,得⎪⎩⎪⎨⎧=−−−=−−−=+++046304630224324324321x x x x x x x x x x ①④⑤消元法来解此方程组,利用Gauss⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−463046301221⎪⎩⎪⎨⎧=−−−=−−−=+++046304630224324324321x x x x x x x x x x ①④⑤⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛0000342101221)31()1(223−−r r ⑤-④,④得)31(−×⎪⎩⎪⎨⎧=++=+++034210224324321x x x x x x x ①⑥说明第3个方程是多余的!说明什么问题?⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛0000342101221)2(21−r ⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−−00003421035201⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=−−03420352432431x x x x x x ①⑥得,2×−行最简形矩阵⎪⎩⎪⎨⎧=++=+++034210224324321x x x x x x x ①⑥即得与原方程组同解的方程组⎪⎩⎪⎨⎧=++=−−,0342,0352432431x x x x x x 移项即得⎪⎩⎪⎨⎧−−=+=,342,352432431x x x x x x ).,(43x x 称自由未知量⎪⎪⎪⎩⎪⎪⎪⎨⎧−−=+=,342,352212211c c x c c x 形式,把它写成通常的参数令2413,c x c x ==.1034350122214321⎟⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎜⎝⎛−+⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛−=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛c c x x x x 即原方程组的解为),(21可取任意实数参数c c ,01213c c x +=,10214c c x +=()0.().m n n A x r A n n r A ×=⇔<−元齐次线性方程组有非零解系数矩阵的秩且通解中含有 个参数定理1结论:求齐次线性方程组的解,只需将系数矩阵化成行最简形矩阵,便可写出其通解00()Ax r A n=⇔=仅有解逆否命题:二、线性方程组的解法例1求解齐次方程组的通解⎪⎩⎪⎨⎧=+−−=−+−=+−−032030432143214321x x x x x x x x x x x x 解对系数矩阵A 进行初等变换⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−−=321131111111A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−210042001111~.000021001011~⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−(),32<=A r 由于故方程组有非零解,且有⎩⎨⎧=+=434212x x x x x ⎪⎪⎩⎪⎪⎨⎧+=+=+=+=⇔42442342242110200111x x x x x x x x x x x x ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−210042001111为什么选为非自由未知量?31,x x 选行最简形矩阵中非零行首非零元1所在列!.12010011424321⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛+⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛=⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝⎛x x x x x x ),(42R x x ∈得方程组的通解为⎪⎪⎩⎪⎪⎨⎧+=+=+=+=42442342242110200111x x x x x x x x x x x x 由例2 设有齐次线性方程组1231231232203760480x x x x x x x x x λ+−=⎧⎪+−=⎨⎪++=⎩?,有非零解取何值时问λ解12237648A λ−⎛⎞⎜⎟=−⎜⎟⎜⎟⎝⎠122~010008λ−⎛⎞⎜⎟⎜⎟⎜⎟+⎝⎠8,0λ∴=-有非解123123123402202030B x x x x x x x x x λ+−=⎧⎪−+=⎨⎪+−=⎩例、已知三阶非矩阵的每一列都是方程组的解.120B λ =()求的值()证明10解:()有非解:12221311λ−∴−−12-2~0-54055λ+−12-2~0-55054λ−+12-2~0-551λ−10λ∴=当时有非解121(2)[,,]B βββ=B 0Ax =∵的每一列都是的解1230A A A βββ∴===121[,,]0A βββ∴=0AB =即0TTB A ∴=0T TA B x =即的每一列都是的解00TB x ∴=有非解B ∴=对齐次线性方程组0=Ax ()n A r =⇔;0只有零解=Ax ()n A r <⇔.0有非零解=Ax 三、小结Ch3 矩阵的秩与线性方程组第三节非齐次线性方程组一、非齐次线性方程组有解的判定二、非齐次线性方程组的解法一、非齐次线性方程组有解的判定条件()()m n A x b r A r A ×=⇔=有解定理1推论有解的充分必要条件是矩阵方程B AX =),()(B A r A r =定理1‘,元非齐次线性方程组对b x A n n m =×方程组有唯一解;⇔==n A r A r )()()1(方程组有无穷多解;⇔<=n A r A r )()()2(.)()()3(方程组无解⇔≠A r A r例1 求解非齐次线性方程组⎪⎩⎪⎨⎧=−++=−+−=−+−.3222,2353,132432143214321x x x x x x x x x x x x 解对增广矩阵进行初等变换,A ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−104501045011321)1(23−r 200)2()3(1312−−r r ⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−−−−=322122351311321A结论:为求解非齐次线性方程组,只需将增广矩阵化成行阶梯形矩阵,便可判断其是否有解.若有解,再将行阶梯形矩阵化成行最简形矩阵,便可写出其通解。