八年级数学图形的位似
- 格式:pdf
- 大小:829.31 KB
- 文档页数:8
初中数学什么是位似位似是初中数学中的一个重要概念,它是指由两个图形通过平移、旋转、翻转或者这些变换的组合而得到的相似图形。
在本文中,我们将详细介绍位似的定义、性质以及一些例子来帮助理解这个概念。
首先,让我们来定义位似。
如果有两个图形,它们的形状和大小是相似的,但位置可能不同,那么我们可以说这两个图形是位似的。
换句话说,位似是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。
接下来,我们来讨论位似的性质。
位似具有以下性质:1. 形状相似:位似图形的形状是相似的,即它们的对应角相等,对应边的比例相等。
2. 大小相似:位似图形的大小是相似的,即它们的对应边的比例是相等的。
3. 位置可能不同:位似图形的位置可能不同,它们可以通过平移、旋转、翻转或者这些变换的组合来得到。
4. 变换保持相似性:位似图形之间的变换(如平移、旋转、翻转)保持它们的相似性,即变换前后仍然是位似图形。
让我们来看一些例子来帮助理解位似。
例子1:考虑两个三角形ABC和DEF,其中∠A = ∠D,∠B = ∠E,∠C = ∠F。
如果我们通过将三角形ABC沿顺时针方向旋转90度,并将它平移到DEF的位置,那么我们可以说三角形ABC和DEF是位似的。
它们具有相似的形状和大小,但位置可能不同。
例子2:考虑一个正方形和一个矩形,它们的边长比例是相等的,但是它们的形状和位置不同。
通过将正方形进行翻转或者旋转,我们可以得到一个与原正方形位似但位置不同的矩形。
例子3:考虑一个正三角形和一个等腰梯形,它们的形状和位置都不同,但是它们的对应边的比例相等。
通过将正三角形进行翻转或者旋转,我们可以得到一个与原正三角形位似但位置不同的等腰梯形。
通过这些例子,我们可以看到位似的性质和应用。
位似可以帮助我们在研究图形的形状和大小时,通过变换来得到相似的图形,从而简化问题的求解。
此外,位似也可以帮助我们理解和应用其他几何概念,如相似三角形、比例关系等。
第五节 位似图形要点精讲(1)位似图形的定义:如果两个多边形相似,而且对应顶点的连线相交于一点,那么这两个多边形叫做位似图形,这个点叫做位似中心。
(2)位似图形的性质:如果两图形F 与是位似图形,它们的位似中心是点O ,相似比为k ,那么:①设A 与是一双对应点,则直线过位似中心O 点,并且.②设A 与,B 与是任意两双对应点,则;若直线AB 、不通过位似中心O ,则.(3)位似图形是相似图形的一种特殊情况,利用位似,可以将一个图形放大或缩小。
(4)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或。
典型例题【例1】如图,指出下列各图中的两个图形是否是位似图形,如果是位似图形,请指出其位似中心.【答案】解:图(1)、(2)和(4)三个图形中的两个图形都是位似图形,位似中心分别是图(1)中的点A ,图(2)中的点P 和图(4)中的点O .(图(3)中的点O 不是对应点连线的交点,故图(3)不是位似图形,图(5)也不是位似图形)【解析】未似图形是特殊位置上的相似图形,因此判断两个图形是否为位似图形,首先要看这两个图形是否相似,再看对应点的连线是否都经过同一点,这两个方面缺一不可.【例1】 把下图中的四边形ABCD 缩小到原来的21.【答案】(1)在四边形ABCD 外任取一点O ;(2)过点O 分别作射线OA ,OB ,OC ,OD ;(3)分别在射线OA ,OB ,OC ,OD 上取点A ′、B ′、C ′、D ′, 使得21OD D O OC C O OB B O OA A O ='='='='; (4)顺次连接A ′B ′、B ′C ′、C ′D ′、D ′A ′,得到所要画的四边形A ′B ′C ′D ′,如下图。
【解析】:把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .。
§10.6图形的位似,求上述正方形DEFG的边长。
初二数学第10章课时作业10 班级姓名1.若两个图形位似,则下列叙述不正确的有几个()①每对对应点所在的直线相交于同一点②两个图形上的对应线段之比等于相似比③两个图形上对应线段必平行④两个图形的面积比等于相似比的平方A. 0B. 1 C 2 D 32.某学习小组在讨论“变化的鱼”时,知道大鱼和小鱼是位似图形(如图所示),则小鱼上的点(a,b)对应大鱼上的点.()A.(-2a,-2b)B.(-a,-2b)C.(-2b,-2a)D.(-2a,-b)3.如图,在直角坐标系中△ABC的A、B、C三点坐标为A(7,1)、B(8,2)、C(9,0).请在图中画出△ABC的一个以点P (12,0)为位似中心,相似比为3的位似图形(要求与△ABC同在P 点一侧, 放大3倍);4.如图所示,一段街道的两边缘所在直线分别为AB、PQ,并且AB∥PQ,建筑物的一端DE所在的直线MN⊥AB于点M,交PQ于点N,小亮从胜利街的A处,•沿着AB方向前进,小明一直站在点P的位置等候小亮.(1)请你在图中画出小亮恰好能看见小明时的视线,以及此时小亮所在的位置(•用点C标出);(2)已知:MN=20m,MD=8m,PN=24m.求(1)中的点C到胜利街口的距离CM.5.已知锐角三角形ABC.⑴作一个正方形DEFG,使D、E落在BC上,F、G分别落在AC、AB边上;⑵求作一个正三角形DEF,使D、E、F分别落在三角形的三边上.6.在AB=30m,AD=20m的矩形ABCD的花坛四周修筑小路.(1)如果四周的小路的宽均相等,如图(1),那么小路四周所围成的矩形A′B•′C′D′和矩形ABCD相似吗?请说明理由.(2)如果相对着的两条小路的宽均相等,如图(2),试问小路的宽x与y的比值为多少时,能使小路四周所围成的矩形A′B′C′D′和矩形ABCD位似?请说明理由.。
图形的位似
图形的位似是一种数学概念,用于描述两个图形之间的相似程度。
在几何图形中,位似是指两个图形的形状和大小相似,只是其中一个图形经过了缩放、旋转或平移等变换。
要判断两个图形是否位似,主要需要比较它们的比例关系和形状。
比例关系表示两个图形的对应部分的边长或面积的比值是相等的;形状表示两个图形的边长和角度之间的关系是相等的。
图形的位似可以用于解决很多实际问题。
例如,当我们要放大或缩小一个图形时,可以利用位似的概念来确定新图形的尺寸;当我们需要判断两个地图或建筑物是否相似时,也可以采用位似的方法来比较它们的形状和比例关系。
在实际应用中,通常可以通过计算两个图形的相似比来确定它们的位似程度。
相似比是两个图形的对应边长的比值。
如果两个图形的相似比相等,则它们是位似的。
例如,假设有两个三角形ABC和DEF,它们的对应边长比为a:b:c和d:e:f,如果a/b=c/d=e/f,则可以判断三角形ABC和DEF是位似的。
当然,在实际中判断图形的位似还有其他方法和指标。
例如,可以通过计算两个图形的面积比或计算它们的角度之间的差值来判断它们的位似程度。
不同的方法可以根据具体的问题进行选择和应用。
总之,图形的位似是一种数学概念,用于描述和比较两个图形之间的相似程度。
通过比较两个图形的比例关系和形状
等特征,可以判断它们的位似程度。
在解决实际问题时,可以利用位似的概念来确定图形的尺寸和形状,并进行比较和分析。
什么是位似图形
数学术语之一,把幻灯片上的图形放大到屏幕上,形成的新图形和原图形就是典型的位似图形。
两个多边形不仅相似,而且对应顶点的连线相交于一点,并且对应边互相平行或位于同一直线上,像这样的两个图形叫做位似图形,这个交点叫做位似中心,这时的相似比又称为位似比。
有必要声明,位似图形的标准定义应是:如果两个图形不仅是相似图形,且对应点连线相交于一点,对应线段相互平行,那么这样的两个图形叫做位似图形,位似图形对应点连线的交点是位似中心。
和此为错例对应线段未相互平行。
错例:对应线段未相互平行。
初中数学如何判断两个图形是否位似要判断两个图形是否位似,我们可以通过比较它们的形状和大小来进行判断。
在初中数学中,有几种方法可以判断两个图形是否位似。
在本文中,我们将介绍三种常用的方法:比较对应角、比较对应边的比例和使用位似判定定理。
方法一:比较对应角如果两个图形的对应角相等,那么它们很可能是位似的。
对应角是指两个图形中对应的角度相等。
例如,对于两个三角形,如果它们的对应角相等,那么它们很可能是位似的。
可以通过测量角度来比较对应角。
方法二:比较对应边的比例如果两个图形的对应边的比例相等,那么它们很可能是位似的。
对应边的比例是指两个图形中对应的边的长度之比相等。
例如,对于两个三角形,如果它们的对应边的比例相等,那么它们很可能是位似的。
可以通过测量边长来比较对应边的比例。
方法三:使用位似判定定理位似判定定理是判断两个图形是否位似的重要定理。
根据位似判定定理,如果两个三角形的一个角相等,而另外两个对应边的比例也相等,那么它们是位似的。
也就是说,如果∠A = ∠D,AB/DE = BC/EF = AC/DF,那么三角形ABC和DEF是位似的。
通过上述方法,我们可以判断两个图形是否位似。
下面举一个例子来说明。
例子:判断以下两个三角形是否位似。
三角形ABC,∠A = 60°,∠B = 70°,∠C = 50°,AB = 4 cm,BC = 5 cm,AC = 6 cm。
三角形DEF,∠D = 60°,∠E = 70°,∠F = 50°,DE = 8 cm,EF = 10 cm,DF = 12 cm。
方法一:比较对应角由于两个三角形的对应角度相等,∠A = ∠D,∠B = ∠E,∠C = ∠F,它们很可能是位似的。
方法二:比较对应边的比例计算两个三角形的对应边的比例:AB/DE = 4/8 = 1/2BC/EF = 5/10 = 1/2AC/DF = 6/12 = 1/2由于两个三角形的对应边的比例相等,它们很可能是位似的。
初中数学位似图形的高线和边的比例关系位似图形的高线和边的比例关系是固定的。
位似图形是指通过平移、旋转、翻转或者这些变换的组合,将一个图形变换为另一个图形。
在这个过程中,位似图形的形状保持不变,但是各个部分的大小可能会发生变化。
高线是指从一个顶点到它所在边的垂线段。
对于任意两个位似图形,它们之间的高线和边的比例关系是相等的。
这是由于位似图形的形状保持不变,所以它们的高线和边的比例关系也保持不变。
举个例子,考虑两个位似的等腰三角形,其中一个等腰三角形的底边长是另一个等腰三角形的2倍。
这两个等腰三角形的高线和边的比例关系是相等的。
底边长为1的等腰三角形的高线和底边的比例为根号3/2,而底边长为2的等腰三角形的高线和底边的比例为根号3/4,即是1/2。
尽管这两个图形是位似的,它们的高线和边的比例关系是相等的。
在几何形状的研究和问题求解中,我们通常会利用位似图形的性质来推导和判断。
在高线和边的比例关系方面,我们可以简单地认为位似图形的高线和边的比例关系是相等的。
证明位似图形的高线和边的比例关系是相等的需要使用一些几何推理和比例关系的性质。
我们可以从以下几个方面来进行证明:1. 通过变换得到位似图形:首先,我们可以通过平移、旋转、翻转等变换将一个图形变换为另一个图形。
这样,我们可以得到两个位似图形。
2. 边长比例的相等性:由于位似图形的形状保持不变,所以它们的对应边的比例是相等的。
这是因为对于任意一条边,我们可以通过位似变换得到对应边,它们的长度比例是相等的。
3. 高线的存在性:对于每个顶点,我们可以从它所在的边上作垂线,这样我们就得到了该顶点的高线。
4. 高线和边的比例关系的相等性:由于位似图形的形状保持不变,所以它们的高线和边的比例关系是相等的。
这是因为对于每一条边,我们可以通过位似变换得到对应边,然后连接它们对应的高线,它们的长度比例是相等的。
通过以上证明,我们可以得出结论:位似图形的高线和边的比例关系是相等的。