有理数的加法第1课时
- 格式:ppt
- 大小:1.09 MB
- 文档页数:28
4有理数的加法(第一课时)学习目标:1、经历探索有理数加法法则和运算律的过程,理解有理数的加法法则和运算律,培养学生的观察、比较、归纳及运算能力。
2、能熟练进行整数加法运算,并能用运算律简化运算学习重点:依据有理数的加法法则熟练进行有理数的加法运算学习难点:有理数的加法法则的理解,有理数加法运算律的应用复习提问1. 数轴三要素:有理数的绝对值是怎么定义的?2.下列各组数中,哪一个较大?利用数轴说明?-3与-2;|3|与|-3|;|-3|与0; -2与|+1|;-|+4|与|-3|.一、问题引入足球比赛中赢球个数与输球个数是相反意义的量.若我们规定赢球为“正”,输球为“负”,它们的和叫作净胜球数。
比如,赢3球记为+3,输1球记为-1.本赛季,凯旋足球队第一场比赛赢了1个球,第二场比赛输了1个球,该队两场比赛的净胜球数是多少?上边的问题用到了正数与负数的加法。
那么两个有理数相加,如何进行运算,根据下面练习进行总结。
下面是凯旋足球队第一场和第二场的比赛情况,请写出表达式并计算出净胜球数。
例:第一场赢了3个球,第二场赢了1个球,表达式为 (+3)+(+1)=+4.1.第一场输了2个球,第二场输了3个球;表达式:2.第一场输了3个球,第二场赢了2个球, 表达式:3.第一场赢了3个球,第二场输了2个球, 表达式:4.第一场输了4个球,第二场赢了4个球, 表达式:二、探究新知我们也可以利用数轴表示加法运算过程,以原点为起点,规定向东的方向为正方向,向西的方向为负方向,(1)同号两数相加如:向东移动5个单位,再向东移动3个单位,一共移动了8个单位,即(+5)+(+3)=+8 用数轴表示如图可见,正数加正数,其和是_____,和的绝对值等于____________.练习:向西移动5个单位,再向西移动3个单位,一共移动了8个单位,即:用数轴表示可见,负数加负数,其和是_____,和的绝对值等于_____________.总结得:同号两数相加,取____的符号,并把绝对值________(2)异号两数相加1.向东移动5个单位,再向西移动5个单位,一共向东移动了____米。
可编辑修改精选全文完整版
有理数的加法(第一课时)教案
教学目标
1.知识与技能
经历探索有理数的加法法则,理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.
2.过程与方法
①有理数加法法则的导出及运用过程中,训练学生独立分析问题的能力及口头表达能力.
②渗透数形结合的思想,培养学生运用数形结合的方法解决问题的能力.
3.情感、态度与价值观
①通过观察、归纳、推断得到数学猜想,体验数学充满探索性和创造性.
②运用知识解决问题的成功体验.
教学重点难点
重点:有理数的加法法则的理解和运用.
难点:异号两数相加.
教与学互动设计
(一)创设情境,导入新课
课件展示下午放学时,小新的车子坏了,他去修车,不能按时回家,怕妈妈担心,打电话告诉妈妈,可妈妈坚持要去接他,问他在什么地方修车,他说在我们学校门前的东西方向的路上,你先走20米,再走30米,就能看到我了.于是妈妈来到校园门口.
(二)合作交流,解读探究
讨论妈妈能找到他吗?
讨论交流若规定向东为正,向西为负.
(1)若两次都向东,很显然,一共向东走了50米.
算式是:20+30=50
即这位同学位于学校门口东方50米.这一运算可用数轴表示为。
1.3.1 有理数的加法(第1课时有理数的加法法则)(教案)一、教学目标1.了解有理数加法的定义和性质。
2.掌握有理数加法法则,能够熟练进行有理数加法运算。
3.能够运用有理数加法解决实际问题。
二、教学内容1.有理数加法的定义和性质。
2.有理数加法法则。
3.实际问题的解决。
三、教学重点1.有理数的加法法则的掌握。
2.运用有理数加法解决实际问题。
四、教学难点1.运用有理数加法解决实际问题的能力提升。
五、教学准备1.教材《数学(上册)》人教版。
2.教学PPT。
3.小黑板和粉笔。
4.学生课本和练习册。
六、教学过程Step 1 引入新知1.简要复习上节课所学的有理数的基本概念和正数、负数的概念。
2.引导学生思考,如果有两个有理数相加,应该怎样计算呢?Step 2 定义和性质1.讲解有理数加法的定义:有理数的加法是指将两个有理数进行相加,得到一个新的有理数的运算。
2.介绍有理数加法的性质:–交换律:对于任意两个有理数a和b,a + b = b + a。
–结合律:对于任意三个有理数a、b和c,(a + b) + c = a + (b + c)。
–存在零元素:对于任意有理数a,a + 0 = a。
–存在相反元素:对于任意有理数a,存在一个有理数-b,使得a + (-b) = 0。
Step 3 加法法则1.揭示有理数加法法则,并通过例题进行讲解和演示。
2.分组练习:让学生分成小组,进行有理数加法的练习。
教师巡回指导和辅导。
Step 4 实际问题1.引导学生思考,如果有理数加法运算与实际问题相关,我们该如何解决呢?2.通过实际问题的例子,让学生运用有理数加法解决实际问题。
教师指导学生分析问题、列方程、解答问题。
Step 5 拓展练习1.教师出示一些拓展练习题,让学生在课堂上进行解答。
2.学生独立完成练习册上的相关题目,巩固和加深对有理数加法的理解和掌握。
七、课堂总结1.对本节课所学内容进行总结,强调有理数加法法则的重要性。
第1课时有理数的加法法则2.4有理数的加法第1课时有理数的加法法则【学习目标】1.知识技能(1)明白得有理数加法的意义,初步把握有理数加法法则,并能准确地进行有理数的加法运算.(2)通过有理数的加法运算,培养运算能力.2.解决问题能运用有理数加法法则解决实际问题.3.数学摸索通过观看,比较,归纳等得出有理数加法法则.4.情感态度采取自主探究、合作交流的学习方式,在亲身经历这些活动中发觉问题、探究规律,促进对知识的明白得和把握.【学习重难点】1.重点:了解有理数加法的意义,会依照有理数加法法则进行有理数的加法运算.2.难点:有理数加法中异号两数加法法则的运用.【情境导入】(1)有理数是由哪几部分构成的呢?有理数按性质分能够分为哪几类呢?(2)创设情境:①南通2010年2月15日6点气温为5℃,当天最高气温比6点的气温高出2℃,当天最高气温多少度?如何运算?②南通2010年2月16日2点气温为-3℃,当天最高气温比2点的气温高出8℃,当天最高气温多少度?如何运算?【探究新知】1.两个有理数相加,有多少种不同的情形?2.有理数的加法遵循什么样的法则呢?下面我们将请大伙儿熟悉喜爱的白雪公主和小矮人带领大伙儿一起探究其中的规律.白雪公主现在地上画了条数轴,我们规定小矮人向右走为正,那么向左走就为负,(1)现在小矮人从原点开始先向右走3步,在向右走2步,请同学列式表示小矮人在什么位置?(2)现在小矮人从原点开始先向左走3步,在向左走2步,请同学列式表示小矮人在什么位置?(3)现在小矮人从原点开始先向右走3步,在向左走2步,请同学列式表示小矮人在什么位置?(4)现在小矮人从原点开始先向左走3步,在向右走2步,请同学列式表示小矮人在什么位置?(5)现在小矮人从原点开始先向右走3步,在向左走3步,请同学列式表示小矮人在什么位置?(6)现在小矮人从原点开始先向左走0步,在向左走3步,请同学列式表示小矮人在什么位置?(7)现在我们大伙儿认真观看比较这几个算式,看看能不能从这些算式得到启发,3+2=5 (-3)+(-2)= -5 3+(-2)=1(-3)+2= -1 (-3)+3=0 0+(-3)= -3分组讨论,按以上分类观看摸索下列问题:(1)两个加数的绝对值与和的绝对值有什么关系?(2)和的符号由什么决定?(3)你能用自己的话归纳有理数加法法则吗?讨论归纳出进行有理数加法的法则?【巩固新知】例1 运算下列算式的结果:(1)(+4)+(+3); (2)(-4)+(-3); (3)(-4)+(-3);(4)(+3)+(-4); (5)(+4)+(-4); (6)(-3)+0;(7) 0+(+2); (8)0+0.练习1 判定下列各式的和的符号:(1)180+(-10); (2)(-10) +(-1); (3)5+(-5);(4)0+(-2); (5)(-5)+(-9); (6)(-7)+(+1). 练习2 运算:(1)(-4)+(-7)=_____;(2)(+4)+(-7)=_____;(3) 7+(-4)=_____;(4) 4+(-4)=_____; (5) 9+(-2)=_____; (6)(-9)+2 =_____;(7)(-9)+0 =_____; (8) 0+(-3)=_____.例2 运算:(1)21673+⎪⎭⎫ ⎝⎛-;(2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-43354;(3)056.3+-. 【课堂测试】1.运算: (1)(-180)+(+10);(2)(-15)+(-3);(3)5+(-5);(4)0+(-2).2.运算:(1)32541+⎪⎭⎫ ⎝⎛-;(2)()()75.25.0-+-;(3)0972+-. 3.运算:(1)412316+⎪⎭⎫ ⎝⎛-;(2)()25.265-+⎪⎭⎫ ⎝⎛-;(3)15.6012.5++-. 【课堂小结】 1.本节课所学的有理数的加法法则是什么?2.有理数的加法的步骤是什么?【课后提升】1.12的相反数与-7的绝对值的和是__________.2.若023=++-y x ,则y x += .3.设a是最小的自然数,b是最大的负整数,c是绝对值最小的有理数,则a、b、c三数的和为()A.1 B.0C.1D.不存在4.绝对值大于2且小于5的所有整数的和是()A.7B.-7C.0D.5 5.两个有理数的和的绝对值与它们的绝对值得和相等,则()A.这两个有理数差不多上正数B.这两个有理数差不多上负数C.这两个有理数同号D.这两个有理数同号或至少有一个为06.小明在家向东走了7千米,休息一会儿,又向东走了3千米,然后向西走了11.5千米,这时小明在家的什么方向?距离家多少千米?7.探究活动:(1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;(4)在解决那个问题的过程中,你能总结出一些什么数学规律?。