通信原理之调制与解调
- 格式:pdf
- 大小:10.99 MB
- 文档页数:28
DPSK调制解调实验一、实验任务利用卷积编码、DPSK调制和前导码等技术构建通信系统,学习其发射机结构和工作原理,学习其接收机结构,实现接收机代码,完成接收信号的滤波、DPSK 解调、定时同步和卷积码译码。
通过该DPSK系统实验,能对通信系统的一般流程与模块功能有更清晰的认识,同时掌握差分编解码方法和基于前导码的定时同步方法。
二、实验基本原理2.1 发射机结构DPSK通信系统发射机如图1所示,具体步骤如下:图 1 发射机结构(1)随机信源比特从指定数据文件中读取。
(2)对二进制序列进行卷积编码,编码器参数是[171,133],编码约束长度是7,编码前在信息比特的末尾添加6个0作为结尾比特。
(3)在编码比特之前插入前导码,前导码由16个固定比特组成,用于接收机的定时同步。
(4)差分编码用于对比特流进行处理,以避免接收端的相位模糊。
(5)差分编码结果映射为BPSK码元,注意: 0映射为+1,1映射为-1。
(6)对BPSK码元上采样,从码元速率Rs上采样到系统采样率Fs。
(7)脉冲成型用平方根升余弦滚降滤波。
(8)最后将信号送往发射电路发射。
2.2 接收机结构DPSK通信系统接收机如图2所示,具体步骤如下:图 2 接收机结构(1)首先对来自接收电路的信号进行匹配滤波。
(2)然后进行DPSK差分相干解调。
(3)通过搜索前导码,确定第一个数据码元的时间位置。
(4)对解调信号进行抽样,得到码元抽样序列。
(5)送入卷积码译码器译码,得到接收比特序列,译码采用matlab函数vitdec, 译码结果要去掉6个尾比特。
2.3 关键信号SendBit:发送的信源比特序列SendBpsk:差分编码后的BPSK码元SendSig: DPSK已调信号RecvSigFiltered:接收信号匹配滤波RecvDpskDemod:DPSK解调信号RecvCorr:前导码相关搜索结果RecvSymbolSampled:码元抽样RecvBit:恢复的数据比特2.4 关键参数系统参数(不可更改):Fs = 200kHz,系统采样率Rs = 10k码元/秒,码元速率SigLen = 200k,发射信号SendSig的采样点数信道参数:Amax = 1,最大信号幅度Pmax = pi,最大相位偏差Fmax = 16,最大频率偏差,单位HzTmax = 0.005,最大时间偏差,单位秒SNR = 0,信噪比三、模块设计与实现3.1 发射机模块1、参数设置,随机信源比特从指定数据文件中读取,获取其长度。
通信原理课程设计报告一. 2DPSK基本原理1.2DPSK信号原理2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。
现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。
图1.1 2DPSK信号在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。
如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。
所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。
定义∆Φ为本码元初相与前一码元初相之差,假设:∆Φ=0→数字信息“0”;∆Φ=π→数字信息“1”。
则数字信息序列与2DPSK信号的码元相位关系可举例表示如下:数字信息: 1 0 1 1 0 1 1 1 0 1DPSK信号相位:0 π π 0 π π 0 π 0 0 π或:π 0 0 π 0 0 π 0 π π 02. 2DPSK信号的调制原理一般来说,2DPSK信号有两种调试方法,即模拟调制法和键控法。
2DPSK 信号的的模拟调制法框图如下图 1.2.1,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。
图1.2.1 模拟调制法2DPSK信号的的键控调制法框图如下图1.2.2,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。
选相开关作用为当输入为数字信息“0”时接相位0,当输入数字信息为“1”时接pi。
图1.2.2 键控法调制原理图3. 2DPSK信号的解调原理2DPSK信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。
(1) 2DPSK信号解调的极性比较法它的原理是2DPSK信号先经过带通滤波器,去除调制信号频带以外的在信道中混入的噪声,再与本地载波相乘,去掉调制信号中的载波成分,再经过低通滤波器去除高频成分,得到包含基带信号的低频信号,将其送入抽样判决器中进行抽样判决的到基带信号的差分码,再经过逆差分器,就得到了基带信号。
实验报告哈尔滨工程大学教务处制DSB信号的调制及相干解调一、整体方案及参数设置1.1 方案设计DSB的调制过程实际上是一个频谱搬移的过程,即是将低频信号的频谱(调制信号)搬移到载频位置(载波)。
解调是调制的逆过程,即是将已调信号还原成原始基带信号的过程,信号的接收端就是通过解调来还原已调信号从而读取发送端发送的信息。
本次实验采用相干解调法解调DSB信号(即将已调信号与相同载波频率相乘),这种方式将广泛应用在载波通信和短波无线电话通信中。
但在信道传输过程中定会引入高斯白噪声,虽然经过带通滤波器后会使其转化成窄带噪声,但它依然会对解调信号造成影响,对信号频谱进行分析时将对比讨论加噪声与不加噪声对其影响。
图一:DSB频谱图图二:DSB调制图三:DSB解调DSB信号与本地相干载波相乘后的输出为:Z(t)= Sdsb(t)cos ωct=m(t)cosωct*cosωct=[m(t)/2]*(1+cos2ωct),经过低通滤波后就能够无失真地恢复原始调制信号为:So(t)= 1/2 m(t),因而可得到无失真的调制信号。
1.2参数设计这儿不知道咋写……你写了给我看下吧1.3实验大纲a.绘制出DSB调制波形时域频域图,用载波将其调制,得到已调波形;b.绘制已调波形时,分为加噪与不加噪两种,分析其频谱上有何差别;c.用与载波频率相同的波对上述两种已调信号进行解调,分别分析两种波形解调结果有何不同。
二.设计实现2.1 实验程序n=2048;fs=n;s=400*pi;i=0:1:n-1;t=i/n;m=sin(10*pi*t);c=cos(300*pi*t);x=m.*c;y=x.*c;x1=awgn(x,30);x2=awgn(x,30);x3=awgn(x,30);x4=awgn(x,30);y1=x1.*c;y2=x2.*c;y3=x3.*c;y4=x4.*c;z1=x1-x;z2=x2-x;z3=x3-x;z4=x4-x;n1=z1.*c;n2=z2.*c;n3=z3.*c;n4=z4.*c;wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn);m1=filter(b,a,y);m1=2*m1;m2=filter(b,a,y1);m2=2*m2;M=fft(m,n);C=fft(c,n);X=fft(x,n);Y=fft(y,n);X1=fft(x1,n);Z1=fft(z1,n);Z2=fft(z2,n);Z3=fft(z3,n);Z4=fft(z4,n);N1=fft(n1,n);N2=fft(n2,n);N3=fft(n3,n);N4=fft(n4,n);[H,w]=freqz(b,a,n,'whole');f=(-n/2:1:n/2-1);figure(1);subplot(221),plot(t,m,'k');axis([0,1,-0.25,1.25]);title('m(t)波形');subplot(222),plot(t,abs(fftshift(M)),'k');%axis([-300,300,0,250]); title('m(t)频谱');subplot(223),plot(t,c,'k');axis([0,0.2,-1.2,1.2]);title('c(t)波形');subplot(224),plot(t,abs(fftshift(C)),'k');%axis([-300,300,0,600]); title('c(t)频谱');figure(2);subplot(221),plot(t,x,'k');axis([0,1,-1.2,1.2]);title('无噪时已调DSB时域波形');subplot(222),plot(t,abs(fftshift(X)),'k');%axis([-300,300,0,600]); title('无噪时已调DSB频谱图');subplot(223),plot(t,x1,'k');axis([0,1,-1.2,1.2]);title('有噪时已调DSB时域波形');subplot(224),plot(t,abs(fftshift(X1)),'k');%axis([-300,300,0,600]); title('有噪时已调DSB频谱图');figure(3);subplot(311),plot(t,abs(fftshift(H)),'k');%axis([-300,300,0,200]); title('滤波器特性');subplot(312),plot(t,m1,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(无噪)');subplot(313),plot(t,m2,'k');axis([0,1,-0.25,1.25]);title('DSB解调后信号波形(有噪)');2.2实验结果三.总结从程序运行结果可以看出DSB调制是对基带信号进行频谱搬移。
AM调制与解调仿真一、实验目的:1.掌握AM 的调制原理和Matlab Simulink 仿真方法2.掌握AM 的解调原理和Matlab Simulink 仿真方法二、实验原理:1. AM 调制原理基带信号m(t)先与直流分量A叠加,然后与载波相乘,形成调幅信号。
2.AM 解调原理调幅信号再乘以一个与载波信号同频同相的相干载波,然后经过低通滤波器,得到解调信号。
三、实验内容:1. AM 调制方式 Matlab Simulink 仿真1.1 仿真框图图1 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。
1.2 仿真参数设置图图2 低通滤波器截止角频率参数设置图3 发送端、接收端的载波信号Sine Wave1、Sine Wave2 角频率参数设置图4 调制信号角频率参数设置1.3仿真结果图5 调制信号波形图6 AM信号波形图7 基带信号频谱2. AM 解调方式 Matlab Simulink 仿真2.1 仿真框图\图7 仿真图图中的Sine Wave1和Sine Wave2模块分别产生发送端和接收端的载波信号的角频率ωc都设为40rad/s,调幅系数为1;调制信号m(t)由Sine Wave模块产生,其为正弦信号,角频率为5rad/s,幅度为1V;直流分量A0由Constant模块产生,为2V;低通滤波器模块的截止角频率设为5rad/s。
2.2仿真结果图8 解调信号波形从示波器 Scope 可以看到 AM 信号及解调信号的波形,如图5所示。
从图中可以看出,解调前后在频域上市频谱的搬移,时域上解调后的信号延时输出,经过解调的波形与原调制信号波形基本相同。
调制和解调是现代通信系统中至关重要的过程,它们可以实现信息的传输和接收。
在数字通信中,有三种常见的调制和解调技术,分别是ask、psk和fsk。
本文将详细讨论这三种调制和解调技术的原理和应用。
一、ASK调制与解调原理1. ASK调制ASK(Amplitude Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在ASK调制中,数字信号被用来控制载波的振幅,当输入信号为1时,振幅为A;当输入信号为0时,振幅为0。
ASK 调制一般用于光纤通信和无线电通信系统。
2. ASK解调ASK解调是将接收到的模拟信号转换为数字信号的过程。
它通常是通过比较接收到的信号的振幅与阈值来实现的。
当信号的振幅高于阈值时,输出为1;当信号的振幅低于阈值时,输出为0。
ASK解调在数字通信系统中有着广泛的应用。
二、PSK调制与解调原理1. PSK调制PSK(Phase Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在PSK调制中,不同的数字信号会使载波的相位发生变化。
常见的PSK调制方式有BPSK(Binary Phase Shift Keying)和QPSK(Quadrature Phase Shift Keying)。
PSK调制在数字通信系统中具有较高的频谱效率和抗噪声性能。
2. PSK解调PSK解调是将接收到的模拟信号转换为数字信号的过程。
它通常是通过比较接收到的信号的相位与已知的相位来实现的。
PSK解调需要根据已知的相位来判断传输的是哪个数字信号。
PSK调制技术在数字通信系统中被广泛应用,特别是在高速数据传输中。
三、FSK调制与解调原理1. FSK调制FSK(Frequency Shift Keying)调制是一种将数字信号转换为模拟信号的调制技术。
在FSK调制中,不同的数字信号对应着不同的载波频率。
当输入信号为1时,载波频率为f1;当输入信号为0时,载波频率为f2。
FSK调制常用于调制通联方式线路和调制调制解调器。
通信原理第7版课后答案1. 信号的频谱分析。
答案,信号的频谱分析是指对信号进行频谱分解,将信号分解成不同频率分量的过程。
频谱分析可以帮助我们了解信号的频率成分,对于信号处理和通信系统设计具有重要意义。
2. 调制与解调。
答案,调制是指将低频信号(基带信号)转换成高频信号(载波信号)的过程,解调则是将高频信号还原成低频信号的过程。
调制与解调是通信系统中的重要环节,可以实现信号的传输和接收。
3. 数字通信系统。
答案,数字通信系统是指利用数字信号进行信息传输的通信系统。
数字通信系统具有抗干扰能力强、信息压缩和处理方便等优点,已经成为现代通信系统的主要形式。
4. 传输线路。
答案,传输线路是指用于信号传输的导线或光纤等物理介质。
传输线路的特性对信号的传输质量有重要影响,包括传输损耗、传输带宽等参数。
5. 信道编码与解码。
答案,信道编码是指在信道中对信息进行编码,以提高信号的可靠传输;信道解码则是对接收到的信号进行解码,恢复原始信息。
信道编码与解码是保障通信系统可靠性的重要手段。
6. 调制解调器。
答案,调制解调器是用于调制和解调的设备,可以将数字信号转换成模拟信号,或将模拟信号转换成数字信号。
调制解调器在调制解调过程中起到关键作用。
7. 通信系统性能分析。
答案,通信系统性能分析是对通信系统进行性能评估和分析的过程,包括信噪比、误码率等指标。
通过性能分析可以评估通信系统的质量和可靠性。
8. 多址技术。
答案,多址技术是指多个用户共享同一信道进行通信的技术,包括频分多址、时分多址、码分多址等多种方式。
多址技术可以提高通信系统的容量和效率。
9. 数字调制。
答案,数字调制是指将数字信号转换成模拟信号的过程,包括调幅调制、调频调制、调相调制等多种方式。
数字调制是数字通信系统中的重要环节。
10. 无线通信系统。
答案,无线通信系统是指利用无线电波进行信息传输的通信系统,包括移动通信、卫星通信等多种形式。
无线通信系统具有灵活性强、覆盖范围广等优点,已经成为现代通信的重要形式。