对数函数的图象和性质(二)
- 格式:pptx
- 大小:2.04 MB
- 文档页数:37
第2课时 对数函数及其性质(二)学习目标 1.掌握对数型复合函数单调区间的求法及单调性的判定方法.2.会解简单的对数不等式.3.了解反函数的概念及它们的图象特点.知识点一 不同底的对数函数图象的相对位置一般地,对于底数a >1的对数函数,在(1,+∞)区间内,底数越大越靠近x 轴;对于底数0<a <1的对数函数,在(1,+∞)区间内,底数越小越靠近x 轴. 知识点二 反函数的概念一般地,像y =a x 与y =log a x (a >0,且a ≠1)这样的两个函数互为反函数.(1)y =a x 的定义域R 就是y =log a x 的值域;而y =a x 的值域(0,+∞)就是y =log a x 的定义域. (2)互为反函数的两个函数y =a x (a >0,且a ≠1)与y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称.(3)互为反函数的两个函数的单调性相同.但单调区间不一定相同.1.y =log 2x 2在(0,+∞)上为增函数.( √ )2.212log y x 在(0,+∞)上为增函数.( × )3.ln x <1的解集为(-∞,e).( × )4.y =a x 与x =log a y 的图象相同.( √ )题型一 比较大小例1 (1)若a =log 0.23,b =log 0.22.5,c =log 0.20.3,则( ) A.a >b >c B.c >b >a C.a >c >b D.c >a >b答案 B解析 因为0.3<2.5<3,且y =log 0.2x 在(0,+∞)上是减函数,所以c >b >a . (2)比较下列各组数的大小:①log 534与log 543;②1135log 2log 2与;③log 23与log 54.解 ①方法一 对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.方法二 因为log 534<0,log 543>0,所以log 534<log 543.②由于1321log 21log 3=,1521log 21log 5=,又对数函数y =log 2x 在(0,+∞)上是增函数,且0<15<13<1,所以0>log 213>log 215,所以1log 213<1log 215,所以3151l 2log 2og <.③取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 反思感悟 比较对数值大小时常用的四种方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.跟踪训练1 (1)设a =log 2π,12log πb =,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 a =log 2π>1,12log π0b <=,c =π-2∈(0,1),所以a >c >b .(2)比较下列各组值的大小: ①2233log 0.5,log 0.6;②log 1.51.6,log 1.51.4;③log 0.57,log 0.67;④log 3π,log 20.8.解 ①因为函数23log y x =是减函数,且0.5<0.6,所以2233log 0.5log 0.6>.②因为函数y =log 1.5x 是增函数,且1.6>1.4, 所以log 1.51.6>log 1.51.4.③因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. ④因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 题型二 对数不等式的解法 例2 (1)7171lo lo g (g 4)x x >- ;(2)log a (2x -5)>log a (x -1). 解 (1)由题意可得⎩⎪⎨⎪⎧x >0,4-x >0,x <4-x ,解得0<x <2.所以原不等式的解集为{x |0<x <2}.(2)当a >1时,原不等式等价于⎩⎪⎨⎪⎧ 2x -5>0,x -1>0,2x -5>x -1.解得x >4.当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧2x -5>0,x -1>0,2x -5<x -1,解得52<x <4.综上所述,当a >1时,原不等式的解集为{x |x >4};当0<a <1时,原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪52<x <4. 反思感悟 对数不等式的三种考查类型及解法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况进行讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式(b =log a a b ),再借助y =log a x 的单调性求解.(3)形如log f (x )a >log g (x )a (f (x ),g (x )>0且不等于1,a >0)的不等式,可利用换底公式化为同底的对数进行求解,或利用函数图象求解.跟踪训练2 (1)求满足不等式log 3x <1的x 的取值集合; (2)若log a 25<1(a >0,且a ≠1),求实数a 的取值范围.解 (1)因为log 3x <1=log 33,所以x 满足的条件为⎩⎪⎨⎪⎧x >0,log 3x <log 33,即0<x <3.所以x 的取值集合为{x |0<x <3}. (2)log a 25<1,即log a 25<log a a .当a >1时,函数y =log a x 在定义域内是增函数, 所以log a 25<log a a 总成立;当0<a <1时,函数y =log a x 在定义域内是减函数, 由log a 25<log a a ,得a <25,即0<a <25.所以实数a 的取值范围为⎝⎛⎭⎫0,25∪(1,+∞).题型三 对数型复合函数的单调性命题角度1 求单调区间例3 求函数212log (1)y x =-的单调区间.解 要使212log (1)y x =-有意义,则1-x 2>0,所以x 2<1,所以-1<x <1, 因此函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).当x ∈(-1,0]时,x 增大,t 增大,y =12log t 减小.所以当x ∈(-1,0]时,212log (1)y x =-是减函数;同理可知,当x ∈[0,1)时,212log (1)y x =-是增函数.即函数212log (1)y x =-的单调递减区间是(-1,0],单调递增区间为[0,1).反思感悟 求形如y =log a f (x )的函数的单调区间的步骤 (1)求出函数的定义域.(2)研究函数t =f (x )和函数y =log a t 在定义域上的单调性. (3)判断出函数的增减性求出单调区间.跟踪训练3 求函数f (x )=log 2(1-2x )的单调区间.解 因为1-2x >0,所以x <12.又设u =1-2x ,则y =log 2u 是(0,+∞)上的增函数. 又u =1-2x ,则当x ∈⎝⎛⎭⎫-∞,12时,u (x )是减函数, 所以函数f (x )=log 2(1-2x )的单调递减区间是⎝⎛⎭⎫-∞,12. 命题角度2 已知复合函数单调性求参数范围例4 已知函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,求实数a 的取值范围.考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 令g (x )=x 2-ax +a ,g (x )在⎝⎛⎦⎤-∞,a 2上是减函数,∵0<12<1,∴12log ()y g x =是减函数,而已知复合函数212log ()y x ax a =-+在区间(-∞,2)上是增函数,∴只要g (x )在(-∞,2)上单调递减,且g (x )>0在x ∈(-∞,2)上恒成立, 即⎩⎪⎨⎪⎧2≤a 2,g (2)=(2)2-2a +a ≥0,∴22≤a ≤2(2+1),故所求a 的取值范围是[22,22+2].反思感悟 若a >1,则y =log a f (x )的单调性与y =f (x )的单调性相同,若0<a <1,则y =log a f (x )的单调性与y =f (x )的单调性相反.另外应注意单调区间必须包含于原函数的定义域. 跟踪训练4 若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( ) A.(0,1) B.(1,3) C.(1,3] D.[3,+∞) 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围 答案 B解析 函数由y =log a u ,u =6-ax 复合而成,因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1,因为[0,2]为定义域的子集,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3,所以1<a <3.故选B.1.不等式log 2(x -1)>-1的解集是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x >23 B.{x |x >2}C.{x |x >1}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x >32 答案 D解析 ∵log 2(x -1)>-1=log 212,∴x -1>12,即x >32.2.函数f (x )=-2x +5+lg(2-x -1)的定义域为( )A.(-5,+∞)B.[-5,+∞)C.(-5,0)D.(-2,0) 答案 C解析 由⎩⎪⎨⎪⎧x +5>0,2-x -1>0,∴⎩⎪⎨⎪⎧ x >-5,2-x >20,∴⎩⎪⎨⎪⎧x >-5,x <0,∴-5<x <0,故选C.3.如果2121l log og 0x y <<,那么( )A.y <x <1B.x <y <1C.1<x <yD.1<y <x 考点 对数不等式 题点 解对数不等式 答案 D4.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=________. 考点 函数的反函数 题点 求函数的反函数 答案 log 2x5.函数f (x )=ln x 2的单调减区间为____________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (-∞,0)1.与对数函数有关的复合函数的单调区间、奇偶性、不等式问题都要注意定义域的影响.2.y =a x 与x =log a y 的图象是相同的,只是为了适应习惯用x 表示自变量,y 表示因变量,把x =log a y 换成y =log a x ,y =log a x 才与y =a x 关于直线y =x 对称,因为点(a ,b )与点(b ,a )关于直线y =x 对称.一、选择题1.函数y =log 3(2x -1)的定义域为( ) A.[1,+∞) B.(1,+∞) C.⎝⎛⎭⎫12,+∞ D.⎝⎛⎭⎫12,1考点 对数不等式 题点 解对数不等式 答案 A解析 要使函数有意义,需满足⎩⎪⎨⎪⎧log 3(2x -1)≥0,2x -1>0,∴⎩⎪⎨⎪⎧2x -1≥1,2x -1>0,∴x ≥1, ∴函数y =log 3(2x -1)的定义域为[1,+∞). 2.若log a 2<log b 2<0,则下列结论正确的是( ) A.0<a <b <1 B.0<b <a <1 C.a >b >1 D.b >a >1答案 B解析 因为log a 2<0,log b 2<0, 所以0<a <1,0<b <1, 又log a 2<log b 2, 所以a >b , 故0<b <a <1.3.函数f (x )=12log x 的单调递增区间是( )A.⎝⎛⎦⎤0,12 B.(0,1] C.(0,+∞) D.[1,+∞)答案 D解析 f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).4.函数y =15log (1-3x )的值域为( )A.RB.(-∞,0)C.(0,+∞)D.(1,+∞) 答案 C解析 因为3x >0,所以-3x <0, 所以1-3x <1.又y =15log t (t =1-3x )是关于t 的减函数,所以y =15log t >15log 1=0.5.已知log a 12<2,那么a 的取值范围是( )A.0<a <22B.a >22C.22<a <1 D.0<a <22或a >1 考点 对数不等式 题点 解对数不等式 答案 D解析 当a >1时,由log a 12<log a a 2得a 2>12,故a >1;当0<a <1时,由log a 12<log a a 2得0<a 2<12,故0<a <22. 综上可知,a 的取值范围是0<a <22或a >1. 6.函数y =13log (-3+4x -x 2)的单调递增区间是( )A.(-∞,2)B.(2,+∞)C.(1,2)D.(2,3) 答案 D解析 由-3+4x -x 2>0,得x 2-4x +3<0,得1<x <3. 设t =-3+4x -x 2,其图象的对称轴为x =2. ∵函数y =13log t 为减函数,∴要求函数y =13log (-3+4x -x 2)的单调递增区间,即求函数t =-3+4x -x 2,1<x <3的单调递减区间, ∵函数t =-3+4x -x 2,1<x <3的单调递减区间是(2,3),∴函数y =13log (-3+4x -x 2)的单调递增区间为(2,3),故选D.7.已知函数f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减,则a 的取值范围为( ) A.(-∞,4] B.[4,+∞ ) C.[-4,4] D.(-4,4] 答案 D解析 令g (x )=x 2-ax +3a ,∵f (x )=log 0.5(x 2-ax +3a )在[2,+∞)上单调递减, ∴函数g (x )在区间[2,+∞)上单调递增,且恒大于0, ∴12a ≤2且g (2)>0, ∴a ≤4且4+a >0,∴-4<a ≤4, 故选D.8.已知指数函数y =⎝⎛⎭⎫1a x,当x ∈(0,+∞)时,有y >1,则关于x 的不等式log a (x -1)≤log a (6-x )的解集为( ) A.⎣⎡⎭⎫72,+∞ B.⎝⎛⎦⎤-∞,72 C.⎝⎛⎦⎤1,72 D.⎣⎡⎭⎫72,6答案 D解析 ∵y =⎝⎛⎭⎫1a x 在x ∈(0,+∞)时,有y >1, ∴1a>1,∴0<a <1. 于是由log a (x -1)≤log a (6-x ), 得⎩⎪⎨⎪⎧x -1≥6-x ,x -1>0,6-x >0,解得72≤x <6,∴原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪72≤x <6.故选D. 二、填空题9.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点⎝⎛⎭⎫32,23,则a =________. 考点 函数的反函数 题点 反函数的图象与性质 答案2解析 因为点⎝⎛⎭⎫32,23在y =f (x )的图象上,所以点⎝⎛⎭⎫23,32在y =a x 的图象上,则有32=23a , 即a 2=2,又因为a >0,所以a = 2. 10.函数y =log 2(x 2-1)的增区间为________. 考点 对数函数的单调性 题点 对数型复合函数的单调区间 答案 (1,+∞)解析 由x 2-1>0得函数的定义域为{x |x <-1或x >1},又y =log 2x 在定义域上单调递增,y =x 2-1在(1,+∞)上单调递增,∴函数的增区间为(1,+∞).11.若函数f (x )=log a x (其中a 为常数,且a >0,a ≠1)满足f (2)>f (3),则f (2x -1)<f (2-x )的解集是________. 答案 {x |1<x <2} 解析 ∵f (2)>f (3), ∴f (x )=log a x 是减函数,由f (2x -1)<f (2-x ),得⎩⎪⎨⎪⎧2x -1>0,2-x >0,2x -1>2-x ,∴⎩⎪⎨⎪⎧x >12,x <2,x >1,∴1<x <2. 三、解答题12.已知函数f (x )=log 2(x +1)-2. (1)若f (x )>0,求x 的取值范围; (2)若x ∈(-1,3],求f (x )的值域. 解 (1)函数f (x )=log 2(x +1)-2, ∵f (x )>0,即log 2(x +1)-2>0, ∴log 2(x +1)>2,∴x +1>4,∴x >3. 故x 的取值范围是x >3. (2)∵x ∈(-1,3], ∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2], ∴log 2(x +1)-2∈(-∞,0], 故f (x )的值域为(-∞,0]. 13.已知f (x )=12log (x 2-ax -a ).(1)当a =-1时,求f (x )的单调区间及值域;(2)若f (x )在⎝⎛⎭⎫-∞,-12上为增函数,求实数a 的取值范围. 考点 对数函数的单调性题点 由对数型复合函数的单调性求参数的取值范围解 (1)当a =-1时,f (x )=12log (x 2+x +1),∵x 2+x +1=⎝⎛⎭⎫x +122+34≥34, ∴12log (x 2+x +1)≤123log 4=2-log 23, ∴f (x )的值域为(-∞,2-log 23].∵y =x 2+x +1在⎝⎛⎦⎤-∞,-12上单调递减,在⎝⎛⎭⎫-12,+∞上单调递增,y =12log x 在(0,+∞)上单调递减,∴f (x )的单调增区间为⎝⎛⎦⎤-∞,-12, 单调减区间为⎝⎛⎭⎫-12,+∞. (2)令u (x )=x 2-ax -a =⎝⎛⎭⎫x -a 22-a 24-a , ∵f (x )在⎝⎛⎭⎫-∞,-12上为单调增函数, 又∵y =12log u (x )为单调减函数,∴u (x )在⎝⎛⎭⎫-∞,-12上为单调减函数,且u (x )>0在⎝⎛⎭⎫-∞,-12上恒成立. ⎝⎛⎭⎫提示:⎝⎛⎭⎫-∞,-12⊆⎝⎛⎭⎫-∞,a 2 因此⎩⎨⎧ a 2≥-12,u ⎝⎛⎭⎫-12≥0,即⎩⎪⎨⎪⎧a ≥-1,14+a 2-a ≥0, 解得-1≤a ≤12. 故实数a 的取值范围是⎣⎡⎦⎤-1,12.14.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为________.考点 对数函数的综合问题题点 与单调性有关的对数函数综合问题答案 12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上是增函数, ∴f (x )max =a +log a 2,f (x )min =a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1,a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上是减函数,∴f (x )max =a 0+log a (0+1)=1,f (x )min =a +log a 2,∴a +log a 2+1=a ,∴a =12. 综上所述,a =12. 15.已知函数f (x )=lg(1+x )-lg(1-x ).(1)求函数f (x )的定义域,并证明f (x )是定义域上的奇函数;(2)用定义证明f (x )在定义域上是增函数;(3)求不等式f (2x -5)+f (2-x )<0的解集.(1)解 由对数函数的定义得⎩⎪⎨⎪⎧ 1-x >0,1+x >0,得⎩⎪⎨⎪⎧x <1,x >-1, 即-1<x <1,∴函数f (x )的定义域为(-1,1).∵f (-x )=lg(1-x )-lg(1+x )=-f (x ),∴f (x )是定义域上的奇函数.(2)证明 设-1<x 1<x 2<1,则f (x 1)-f (x 2)=lg(1+x 1)-lg(1-x 1)-lg(1+x 2)+lg(1-x 2)=lg (1+x 1)(1-x 2)(1+x 2)(1-x 1). ∵-1<x 1<x 2<1,∴0<1+x 1<1+x 2,0<1-x 2<1-x 1,于是0<1+x 11+x 2<1,0<1-x 21-x 1<1, 则0<(1+x 1)(1-x 2)(1+x 2)(1-x 1)<1,∴lg (1+x 1)(1-x 2)(1+x 2)(1-x 1)<0, ∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),即函数f (x )是(-1,1)上的增函数.(3)解 ∵f (x )在(-1,1)上是增函数且为奇函数,∴不等式f (2x -5)+f (2-x )<0可转化为f (2x -5)<-f (2-x )=f (x -2),∴⎩⎪⎨⎪⎧ -1<2x -5<1,-1<x -2<1,2x -5<x -2,解得2<x <3.∴不等式的解集为{x |2<x <3}.。
对数函数的图象和性质(二)高中数学函数 1.进一步掌握对数函数的图象和性质.2.利用单调性进一步求函数的定义域和简单值域问题.3.了解反函数的概念和图象特点.一、与对数函数有关的定义域问题例1 求下列函数的定义域:(1)y =;(2)y =;(3)y =.lg (2-x )1log3(3x -2)log4(4-x )x -3解 (1)要使函数式有意义,则lg(2-x )≥0,∴Error!∴x ≤1.故函数的定义域为(-∞,1].(2)要使函数式有意义,则log 3(3x -2)≠0,∴Error!∴x >,且x ≠1.23故函数的定义域为∪(1,+∞).(23,1)(3)要使函数式有意义,则Error!解得x <4,且x ≠3.故函数的定义域为(-∞,3)∪(3,4).反思感悟 (1)对数函数的真数大于0.(2)求定义域的常用方法是解不等式(组),有时在解不等式时,还要考虑函数的单调性.(3)有时求定义域比较特殊,其解法为从外向里一层一层地将对数符号去掉,每去掉一层对数符号都要考虑函数的单调性,最后求出x 的取值范围.跟踪训练1 求下列函数的定义域:(1)y =log (2x +1);(2)y =.3x +22x +x 2lg (2x -1)解 (1)要使函数式有意义,则Error!解得x >-且x ≠0,12∴函数的定义域为∪(0,+∞).(-12,0)(2)要使函数式有意义,则Error!即Error!解得x >,且x ≠1.12∴函数的定义域为∪(1,+∞).(12,1)二、与对数函数有关的综合性问题例2 已知函数f (x )=log 2(x +1)-2.(1)若f (x )>0,求x 的取值范围;(2)若x ∈(-1,3],求f (x )的值域.解 (1)函数f (x )=log 2(x +1)-2,∵f (x )>0,即log 2(x +1)-2>0,∴log 2(x +1)>2,∴x +1>4,∴x >3.∴x 的取值范围是(3,+∞).(2)∵x ∈(-1,3],∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2],∴log 2(x +1)-2∈(-∞,0].∴f (x )的值域为(-∞,0].反思感悟 (1)求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解;(2)判断函数的奇偶性,一定要先求函数的定义域,再研究f (x )与f (-x )的关系.跟踪训练2 函数f (x )=log a (a >0,且a ≠1)的图象( )1+x1-x A .关于原点对称B .关于直线y =x 对称C .关于直线y =-x 对称D .关于y 轴对称答案 A解析 因为函数f (x )的定义域为(-1,1),f (-x )=log a =log a -1=-loga=-f (x ),1-x1+x (1+x 1-x )1+x1-x 所以函数f (x )为奇函数,所以函数图象关于原点对称.三、反函数问题 在同一坐标系下,画出函数y =2x 与y =log 2x 的图象,观察两函数图象的关系.提示 知识梳理反函数:指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.它们的定义域与值域正好互换.注意点:(1)同底的指数函数与对数函数互为反函数;(2)互为反函数的两个函数图象关于y =x 对称.(高中阶段只要求掌握这一类反函数)例3 若函数y =f (x )是函数y =2x 的反函数,则f (f (2))的值为( )A .16 B .0 C .1 D .2答案 B解析 函数y =2x 的反函数是y =log 2x ,即f (x )=log 2x .∴f (f (2))=f (log 22)=f (1)=log 21=0.反思感悟 互为反函数的函数的性质(1)同底数的指数函数与对数函数互为反函数.(2)互为反函数的定义域与值域互换.(3)互为反函数的两个函数的图象关于直线y =x 对称.跟踪训练3 函数y =log 3x 的反函数的定义域为( )(13≤x ≤81)A .(0,+∞) B.(13,81)C .(1,4) D .[-1,4]答案 D解析 由y =log 3x ,可知y ∈[-1,4].(13≤x ≤81)所以反函数的定义域为x ∈[-1,4].1.知识清单:(1)利用对数函数的单调性求函数的定义域.(2)求简单对数的值域、最值、奇偶性问题.2.方法归纳:数形结合.3.常见误区:求对数型函数的定义域时,有时需求几部分的交集.1.函数f (x )=的定义域为( )1log2x -1A .(0,2) B .(0,2]C .(2,+∞) D .[2,+∞)答案 C解析 若函数f (x )有意义,则Error!即Error!解得x >2.∴函数f (x )的定义域为(2,+∞).2.函数y =x +log 2x (x ≥1)的值域为( )A .(1,+∞) B .(-∞,1)C .[1,+∞) D .[-1,+∞)答案 C3.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A. B. C .2 D .41412答案 B解析 由题意得f (x )在[0,1]上单调递增或单调递减,∴f (x )的最大值或最小值在端点处取得,即f (0)+f (1)=a ,即1+a +log a 2=a ,∴log a 2=-1,解得a =.124.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点,则(32,23)a =________.答案 2解析 由题意得f (x )=log a x (a >0,且a ≠1,x >0),因为f (x )的图象过点,所以loga=,所以=,所以a 2=2,所以a =(负值(32,23)322323a 322舍去).课时对点练1.已知函数f (x )=log 2x ,若函数g (x )是f (x )的反函数,则f (g (2))等于( )A .1 B .2 C .3 D .4答案 B解析 ∵g (x )是f (x )的反函数,∴g (x )=2x ,∴g (2)=22=4,则f (g (2))=f (4)=log 24=2.2.若点(a ,b )在函数y =lg x 的图象上,a ≠1,则下列点也在此图象上的是( )A. B .(10a ,1-b )(1a ,b )C. D .(a 2,2b )(10a ,b +1)答案 D解析 因为点(a ,b )在函数y =lg x 的图象上,所以b =lg a .当x =时,有y =lg =-lg 1a 1a a =-b ,所以点不在此函数的图象上,A 不正确;当x =10a 时,有y =lg(10a )=1+lg(1a ,b )a =1+b ,所以点(10a ,1-b )不在此函数的图象上,B 不正确;当x =时,有y =lg 10a =1-lga =1-b ,所以点不在此函数的图象上,C 不正确;当x =a 2时,有10a (10a ,b +1)y =lg a 2=2lg a =2b ,所以点(a 2,2b )在此函数的图象上,D 正确.3.下列三个数:a =ln ,b =-log 3, 大小顺序正确的是( )2332132,3c ⎛⎫⎪⎝⎭=A .c >a >b B .c >b >a C .b >a >c D .a >b >c答案 B解析 ∵0=log 31>b =-log 3=log 3>a =ln ,∴c >b >a .322323132>0,3c ⎛⎫⎪⎝⎭=4.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )的解析式为( )A .-log 2x B .log 2(-x )C .-log 2(-x ) D .log x 2答案 C解析 当x <0时,-x >0,f (-x )=log 2(-x ).又因为f (x )为奇函数,所以f (-x )=-f (x ),所以f (x )=-f (-x ),所以f (x )=-log 2(-x ).5.某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.08≈0.033,lg 2≈0.301,lg 3≈0.477)A .2020年 B .2021年C .2022年 D .2023年答案 C解析 设经过n 年该企业全年投入的研发资金开始超过200万元,则150×(1+8%)n ≥200,则n ≥≈≈3.8,取n =4,则经过4年后是2022年.2lg 2-lg 3lg 1.080.602-0.4770.0336.(多选)任取x 1,x 2∈[a ,b ],且x 1≠x 2,若f>恒成立,则f (x )称为(x 1+x 22)f (x 1)+f (x 2)2[a ,b ]上的凸函数,下列函数中在其定义域上为凸函数的是( )A .y =2x B .y =log 2x C .y =-x 2 D .12y x=答案 BCD7.函数f (x )=的定义域为________.4-x 2ln x 答案 (0,1)∪(1,2]解析 由Error!得0<x ≤2,且x ≠1.∴函数f (x )=的定义域为(0,1)∪(1,2].4-x 2ln x 8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为,则a =________.12答案 4解析 ∵a >1,∴f (x )=log a x 在[a ,2a ]上单调递增,∴log a (2a )-log a a =,即log a 2=,∴a =4.121212=2,a 9.已知函数f (x )=log a (10+x )-log a (10-x )(a >0,且a ≠1).(1)判断f (x )的奇偶性,并说明理由;(2)若f (x )>0,求x 的取值范围.解 (1)函数f (x )是奇函数.理由如下:要使函数有意义,则Error!解得-10<x <10,即函数的定义域为(-10,10).函数的定义域关于原点对称.则f (-x )=log a (10-x )-log a (10+x )=-[log a (10+x )-log a (10-x )]=-f (x ),即函数f (x )是奇函数.(2)若f (x )>0,则f (x )=log a (10+x )-log a (10-x )>0,即log a (10+x )>log a (10-x ),若a >1,则Error!解得0<x <10,若0<a <1,则Error!解得-10<x <0,综上,当a >1时,x 的取值范围为(0,10),当0<a <1时,x 的取值范围为(-10,0).10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上单调递增.证明 (1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为区间(0,+∞)内的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x )-log 2(1+x )=log 2.2121+x 211+x 2由于0<x 1<x 2,则0<x <x ,0<1+x <1+x ,212212所以0<<1,1+x 211+x 2所以log 2<0,1+x 211+x 2所以f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上单调递增.11.已知函数f (x )=x ∈,则f (x )的值域是( )12log ,x [14,22]A. B. C. [0,2] D.[12,2][-12,2][0,12]答案 A解析 因为函数f (x )=在上单调递减,所以函数f (x )的最小值为f =12log x [14,22](22)函数的最大值为f =所以函数的值域为.121log ,2 (14)121log =2,4[12,2]12.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上单调递减B .奇函数,在区间(0,+∞)上单调递增C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减答案 D解析 已知函数的定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数;当x >0时,f (x )=lg x 在区间(0,+∞)上单调递增,又因为f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上单调递减.13.函数f (x )=lg(+x )的奇偶性为( )x 2+1A .奇函数 B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 易知该函数的定义域为R ,又f (x )+f (-x )=lg(+x )+lg(-x )=lg[(x 2+1x 2+1+x )·(-x )]=lg 1=0,∴f (x )=-f (-x ),x 2+1x 2+1∴f (x )为奇函数.14.如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数y 1=3log a x ,y 2=2log a x 和y =log a x (a >1)的图象上,则实数a 的值为________.答案 2解析 设B (x ,2log a x ),∵BC 平行于x 轴,∴C (x ′,2log a x ),即log a x ′=2log a x ,∴x ′=x 2,∴正方形ABCD 的边长=|BC |=x 2-x =2,解得x =2.由已知,得AB 垂直于x 轴,∴A (x ,3log a x ),正方形ABCD 边长=|AB |=3log a x -2log a x =log a x =2,即log a 2=2,∴a =.215.已知f (x )=|log 3x |,若f (a )>f (2),则a 的取值范围为________________.答案 ∪(2,+∞)(0,12)解析 作出函数f (x )的图象,如图所示,由于f (2)=f ,故结合图象可知0<a <或a >2.(12)1216.已知函数f (x )=的图象关于原点对称,其中a 为常数.121log 1axx --(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+恒成立,求实数m 的取值范围.()12log 1x m <-解 (1)∵函数f (x )的图象关于原点对称,∴函数f (x )的定义域关于原点对称,∵>0,1-ax x -1∴(x -1)(1-ax )>0,令(x -1)(1-ax )=0,得x 1=1,x 2=,∴=-1,a =-1,1a 1a 经验证,a =-1满足题意.(2)∵()()()()111122221log 1log log 1log 11xf x x x x x +-+-=+-=+,∴当x >1时,()12log 1+<1,x 又当x ∈(1,+∞)时,f (x )+恒成立,()12log 1<x m -∴m ≥-1.即实数m 的取值范围是[-1,+∞).。
4.4.2 对数函数的图像和性质(人教A 版)本节课在已学对数函数的概念,接着研究对数函数的图像和性质,从而深化学生对对数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究函数增长类型打下基础。
另外,我们日常生活中的很多方面都涉及到了对数函数的知识,例如溶液酸碱度的测量,所以学习这一节具有很大的现实价值。
课程目标1、掌握对数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结对数函数的性质;3、在对数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.数学学科素养1.数学抽象:对数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用对数函数的性质比较两个函数值的大小及解对数不等式;5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.重点:对数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳对数函数的性质.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
一、 情景导入请学生用三点画图法画212log ,log y x y x ==图像,观察两个函数图像猜测对数函数有哪些性质?要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、 预习课本,引入新课阅读课本132-133页,思考并完成以下问题1. 对数函数的图象是什么,通过图象可观察到对数函数具有哪些性质?2. 反函数的概念是什么?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1.对数函数的图象及性质a的范围0<a<1a>1图象a的范围0<a<1a>1性质定义域(0,+∞)值域R定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数[点睛]底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.2.反函数指数函数y=a x和对数函数y=log a x(a>0且a≠1)互为反函数.四、典例分析、举一反三题型一对数函数的图象例1函数y=log2x,y=log5x,y=lg x的图象如图所示.(1)说明哪个函数对应于哪个图象,并说明理由;(2)在如图的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象;(3)从(2)的图中你发现了什么?【答案】见解析【解析】(1)①对应函数y=lg x,②对应函数y=log5x,③对应函数y=log2x.这是因为当底数全大于1时,在x=1的右侧,底数越大的函数图象越靠近x轴.(2)在题图中的平面直角坐标系中分别画出y=lo g12x,y=lo g15x,y=lo g110x的图象如图所示.(3)从(2)的图中可以发现:y=lg x与y=lo g110x,y=log5x与y=lo g15x,y=log2x与y=lo g12x的图象分别关于x轴对称.解题技巧:(对数函数图象的变化规律)1.对于几个底数都大于1的对数函数,底数越大,函数图象向右的方向越接近x轴;对于几个底数都大于0且小于1的对数函数,底数越大,函数图象向右的方向越远离x轴.以上规律可总结成x>1时“底大图低”.实际上,作出直线y=1,它与各图象交点的横坐标即为各函数的底数的大小,如图所示.2.牢记特殊点:对数函数y=log a x(a>0,且a≠1)的图象经过(1,0),(a,1),(1a,-1).跟踪训练一1、作出函数y=|lg(x-1)|的图象,并根据图象写出函数的定义域、值域以及单调区间.【答案】其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).【解析】先画出函数y=lg x的图象(如图①).再将该函数图象向右平移1个单位长度得到函数y=lg(x-1)的图象(如图②).图①图②图③最后把y=lg(x-1)的图象在x轴下方的部分对称翻折到x轴上方(原来在x轴上方的部分不变),即得出函数y=|lg(x-1)|的图象(如图③).由图易知其定义域为(1,+∞),值域为[0,+∞),单调递减区间为(1,2],单调递增区间为(2,+∞).题型二 比较对数值的大小例2 比较下列各组数中两个值的大小:(1)log 23.4,log 28.5;(2)log 0.31.8,log 0.32.7;(3)log a 5.1,log a 5.9(a >0,且a ≠1).【答案】(1) log 23.4<log 28.5 (2) log 0.31.8>log 0.32.7 (3)当a >1时,log a 5.1<log a 5.9;当0<a <1时,log a 5.1>log a 5.9.【解析】(1)考察对数函数y =log 2x ,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是log 23.4<log 28.5.(2)考察对数函数y =log 0.3x ,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是log 0.31.8>log 0.32.7.(3)当a >1时,y =log a x 在(0,+∞)上是增函数,于是log a 5.1<log a 5.9;当0<a <1时,y =log a x 在(0,+∞)上是减函数,于是log a 5.1>log a 5.9.解题技巧:(比较对数值大小时常用的4种方法)(1)同底的利用对数函数的单调性.(2) 同真的利用对数函数的图象或用换底公式转化.(3) 底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论. 跟踪训练二1.比较下列各题中两个值的大小:(1)lg 6,lg 8;(2)log 0.56,log 0.54; (3)log 132与log 152;(4)log 23与log 54.【答案】(1)lg 6<lg 8(2)log 0.56<log 0.54(3)log 132<log 152(4)log 23>log 54.【解析】(1)因为函数y =lg x 在(0,+∞)上是增函数,且6<8,所以lg 6<lg 8.(2)因为函数y =log 0.5x 在(0,+∞)上是减函数,且6>4,所以log 0.56<log 0.54.(3)由于log 132=1log 213,log 152=1log 215. 又∵对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,∴0>log 2 13>log 2 15,∴1log 213<1log 215. ∴log 132<log 152.(4)取中间值1,∵log 23>log 22=1=log 55>log 54,∴log 23>log 54.题型三 比较对数值的大小例3 (1)已知log a 12>1,求a 的取值范围; (2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围.【答案】(1)⎝⎛⎭⎫12,1; (2) (1,+∞).【解析】(1)由log a 12>1得log a 12>log a a . ①当a >1时,有a <12,此时无解. ②当0<a <1时,有12<a ,从而12<a <1. ∴a 的取值范围是⎝⎛⎭⎫12,1.(2)∵函数y =log 0.7x 在(0,+∞)上为减函数,∴由log 0.72x <log 0.7(x -1)得⎩⎪⎨⎪⎧ 2x >0,x -1>0,2x >x -1,解得x >1.∴x 的取值范围是(1,+∞).解题技巧:(常见对数不等式的2种解法)(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,应将b 化为以a 为底数的对数式的形式,再借助y =log a x 的单调性求解. 跟踪训练三1.已知log a (3a -1)恒为正,求a 的取值范围.【答案】⎝⎛⎭⎫13,23∪(1,+∞)【解析】由题意知log a (3a -1)>0=log a 1.当a >1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a >23,∴a >1; 当0<a <1时,y =log a x 是减函数, ∴⎩⎪⎨⎪⎧ 3a -1<1,3a -1>0,解得13<a <23.∴13<a <23. 综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).题型四 有关对数型函数的值域与最值问题例4 求下列函数的值域.(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).【答案】(1) [2,+∞); (2)[-2,+∞).【解析】(1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2,所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4.又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以y =log 12(3+2x -x 2)的值域为[-2,+∞).解题技巧:(对数型函数的值域与最值)(1)求对数型函数的值域,一般需根据对数函数的单调性及真数的取值范围求解.(2)求函数的值域时,一定要注意定义域对它的影响,结合函数的单调性求解,当函数中含有参数时,有时需讨论参数的取值.跟踪训练四1.已知f (x )=2+log 3x ,x ∈[1,9],求函数y =[f (x )]2+f (x 2)的最大值及此时x 的值.【答案】当x =3时,y 取得最大值,为13.【解析】y =[f (x )]2+f (x 2)=(2+log 3x )2+log 3x 2+2=(log 3x )2+6log 3x +6=(log 3x +3)2-3.∵f (x )的定义域为[1,9],∴y =[f (x )]2+f (x 2)中,x 必须满足⎩⎪⎨⎪⎧1≤x ≤9,1≤x 2≤9, ∴1≤x ≤3,∴0≤log 3x ≤1,∴6≤y ≤13.∴当x =3时,y 取得最大值,为13.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本140页习题4.4本节通过运用对数函数的图像及应用解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.。