巩固练习
下图是对数函数①y=logax②y=logbx③ y=logcx④y=logdx的图像,则a,b,c,d与1的大 小关系是 ( B ) A. a>b>1>c>d B. b>a>1>d>c C. 1>a>b>c>d D. a>b>1>d>c
y
1 O
① ② ③ ④
x
人们早就发现了放射性物质的衰减现象.在 考古工作中常用14C的含量来确定有机物的年代. 已知放射性物质的衰减服从指数规律: C(t)=C0e-rt, 其中t表示衰减的时间,C0表示放射性物质的原始 质量,C(t)表示经衰减了t年后剩余的质量. 为计算衰减的年代,通常给出该物质质量衰 减一半的时间,称其为该物质的半衰期,14C的半 衰期大约是5730年,由此可确定系数r.人们又知 道,放射性物质的衰减速度是与其质量成正比的.
y y=2x y=x
P(a,b)
函数y=log 2 x的图像 与函数y=2 x 的图像 关于直线y=x对称
函数y=f(x)的图像和 它的反,b)
y=log2x x
(0,1) (1,0)
1.根据下列中的数据(精确到0.01),画出函数 y=log2x,y=log3x和y=log5x的图像.并观察图像,说 明三个函数图像的相同与不同之处.
例题讲解
例4 求下列函数的定义域: (1)y=logax2; (2)y=loga(4-x). 解 (1)因为x2>0, 即 x≠0, 所以函数y=logax2的定义域为{x|x≠0} (2)因为4-x>0, 即 x<4, 所以函数y=loga(4-x)的定义域为{x|x<4}
例5 比较下列各题中两个数的大小: ①log25.3,log24.7; ②log0.27,log0.29; ③log3π;logπ3 ④loga3.1,loga5.2(a>0,a≠1)