同济流体力学第三章流体运动学基础
- 格式:ppt
- 大小:1.04 MB
- 文档页数:53
3 流体运动学基础流体运动学主要讨论流体的运动参数(例如速度和加速度)和运动描述等问题。
运动是物体的存在形式,是物体的本质特征。
流体的运动无时不在,百川归海、风起云涌是自然界流体运动的壮丽景色。
而在工程实际中,很多领域都需要对流体运动规律进行分析和研究。
因此,相对于流体静力学,流体运动学的研究具有更加深刻和广泛的意义。
3.1 描述流体运动的二种方法为研究流体运动,首先需要建立描述流体运动的方法。
从理论上说,有二种可行的方法:拉格朗日(Lagrange)方法和欧拉(Euler)方法。
流体运动的各物理量如位移、速度、加速度等等称为流体的流动参数。
对流体运动的描述就是要建立流动参数的数学模型,这个数学模型能反映流动参数随时间和空间的变化情况。
拉格朗日方法是一种“质点跟踪”方法,即通过描述各质点的流动参数来描述整个流体的流动情况。
欧拉方法则是一种“观察点”方法,通过分布于各处的观察点,记录流体质点通过这些观察点时的流动参数,同样可以描述整个流体的流动情况。
下面分别介绍这二种方法。
3.1.1拉格朗日(Lagrange)方法这是一种基于流体质点的描述方法。
通过描述各质点的流动参数变化规律,来确定整个流体的变化规律。
无数的质点运动组成流体运动,那么如何区分每个质点呢?区分各质点方法是根据它们的初始位置来判别。
这是因为在初始时刻(t =t 0),每个质点所占的初始位置(a,b,c )各不相同,所以可以据此区别。
这就像长跑运动员一样,在比赛前给他们编上号码,在任何时刻就不至于混淆身份了。
当经过△t 时间后,t = t 0+△t ,初始位置为a,b,c )的某质点到达了新的位置(x ,y ,z ),因此,拉格朗日方法需要跟踪质点的运动,以确定该质点的流动参数。
拉格朗日方法在直角坐标系中位移的数学描述是:⎪⎭⎪⎬⎫===),,,(),,,(),,,(t c b a z z t c b a y y t c b a x x (3-1)式中,初始坐标(a,b,c )与时间变量t 无关,(a,b,c,t )称为拉格朗日变数。
54第三章 流体运动学基础一、 学习导引1、 流体的速度流体的速度是一个矢量,记作V 。
x ,y ,z 方向的速度分量分别记作u ,v ,w ,即 k w j v i u V ++=,流场的速度分布与空间坐标x ,y ,z 以及时间t 有关,即 ),,,(t z y x V V =流体质点的加速度等于质点速度对时间的变化率,即 z V w y V v x V u t V dt dz z V dt dy y V dt dx x V t V dt dV a ∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂==投影形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=∂∂+∂∂+∂∂+∂∂=z w w y w v x w u t w a z v w y v v x v u t v a z u w y u v x u u t u a z y x2、 流线微分方程在直角坐标中,流线方程为wdz v dy u dx == 在柱坐标中,流线方程为zr v dz v rd v dr ==θθ 对于平面流动,这两种坐标系的速度分量的关系分别为θθθθθθθθθθθcos sin ,sin cos cos sin ,sin cos v u v v u v v v v v v u r r r +-=+=+=-=3、 连续性方程工程上常用的不可压缩流体的一元总流连续性方程为2211A V A V =微分形式的连续性方程为 0)()()(=∂∂+∂∂+∂∂+∂∂zw y v x u t ρρρρ 对于不可压缩流体,连续性方程为55 0=∂∂+∂∂+∂∂zw y v x u二、习题详解3.1 流体在等截面直圆管内作层流流动,过流断面上的流速分布为2m a x 1r u u R ⎡⎤⎛⎫=-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦式中R 表示圆管的内半径,max u 和u 分别表示断面上的最大流速和断面上的分布速度,0r R ≤≤。
第3章 流体动力学基础教学提示:流体力学是研究流体机械运动的一门学科,与理论力学中分析刚体运动的情况相似。
如研究的范围只限于流体运动的方式和状态,则属于流体运动学的范围。
如研究的范围除了流体运动的方式和状态以外,还联系到流体发生运动的条件,则属于流体动力学的范围。
前者研究流体运动的方式和速度、加速度、位移等随空间与时间的变化,后者研究引起运动的原因和流体作用力、力矩、动量和能量的方法。
如前所述,流体力学的研究方法是基于连续介质体系的,重点研究由流体质点所组成的连续介质体系运动所产生的宏观效果,而不讨论流体分子的运动。
与处于相对平衡状态下的情况不同,处于相对运动状态下的实际流体,粘滞性将发生作用。
由于流体具有易流动性和粘滞性的影响,因此流体力学的研究方法与固体力学有明显的区别。
教学要求:流体运动的形式虽然多种多样的,但从普遍规律来讲,都要服从质量守恒定律、动能定律和动量定律这些基本原理。
在本章中,我们将阐述研究流体流动的一些基本方法,讨论流体运动学方面的一些基本概念,应用质量守恒定律、牛顿第二运动定律、动量定理和动量矩定理等推导出理想流体动力学中的几个重要的基本方程:连续性方程、欧拉方程、伯努利方程、动量方程、动量矩方程等,并举例说明它们的应用。
3.1 流体运动的描述方法要研究流体运动的规律,就要建立描述流体运动的方法。
在流体力学中,表达流体的运动形态和方式有两种不同的基本方法:拉格朗日法和欧拉法。
3.1.1 拉格朗日法拉格朗日法是瑞士科学家欧拉首先提出的,法国科学家J. L.拉格朗日作了独立的、完整的表述和具体运用。
该方法着眼于流体内部各质点的运动情况,描述流体的运动形态。
按照这个方法,在连续的流体运动中,任意流体质点的空间位置,将是质点的起始坐标),,(c b a (即当时间t 等于起始值0t 时的坐标)以及时间t 的单值连续函数。
若以r 代表任意选择的质点在任意时间t 的矢径,则: ),,,(t c b a r r = (3-1) 式中,r 在x 、y 、z 轴上的投影为x 、y 、z ;a 、b 、c 称为拉格朗日变量。