流体力学第3章-流体力学基本方程组(zhou)
- 格式:ppt
- 大小:1.00 MB
- 文档页数:27
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。
流体力学的基本方程流体力学的基本方程是描述流体运动的方程,它包括质量守恒方程、动量守恒方程和能量守恒方程。
这些方程是基于质点系的力学定律和热力学原理推导得到的。
质量守恒方程,也称为连续性方程,描述了流体的质量在空间和时间上的守恒。
简单来说,它表达了流体在任意两点之间的流入流出质量之和等于质量的变化率。
质量守恒方程的数学表达式为∂ρ/∂t + ∇·(ρv) = 0,其中ρ代表流体的密度,t代表时间,v代表流体的速度向量。
动量守恒方程描述了流体的运动和力的作用。
它可以从质点系的动力学定律推导得到,考虑到流体的体积力和表面力。
动量守恒方程的数学表达式为ρ(∂v/∂t + v·∇v) = -∇p + ∇·τ + F,其中p代表流体的压力,τ代表应力张量,F代表体积力。
能量守恒方程描述了流体的能量在空间和时间上的守恒。
它可以从热力学原理和能量转换定律推导得到。
能量守恒方程的数学表达式为∂(ρe)/∂t + ∇·(ρev) = ∇·(κ∇T) + q + Q,其中e代表单位质量流体的内能,κ代表热传导系数,T代表温度,q代表单位质量流体的热源,Q代表单位质量流体的体积热源。
这些基本方程可以用来描述不可压缩流体和可压缩流体的运动。
对于不可压缩流体,质量守恒方程可以简化为∇·v = 0,其中v代表速度向量。
对于可压缩流体,需要结合状态方程来求解,常见的状态方程有理想气体状态方程和液体状态方程。
基于基本方程,我们可以通过数值方法或解析方法求解流体的运动。
其中,有限差分法、有限元法和谱方法等是常用的数值方法。
解析方法则是通过求解偏微分方程来得到流体的解析解。
这些方法在工程和科学研究中具有广泛的应用,如飞行器设计、气候模拟和地下水流动等领域。
流体力学的基本方程是描述流体运动的重要工具。
质量守恒方程、动量守恒方程和能量守恒方程是基于质点系的力学定律和热力学原理推导得到的。
这里首先介绍流体力学的基础方程组:1质量守恒方程在这里我采用拉格朗日法(L 法)下对有限体积和体积元应用质量守恒定律(1) L 法有限体积分析取体积为τ,质量为m 的一定的流体质点团,则有00m t t t t tD D DD D m d d d d d D D D D D ττττττττττρρρρρ=⇒==⇒=+=⎰⎰⎰⎰⎰ 因为速度散度的物理意义是相对体积膨胀率及密度的随体导数,即1D div d d Dtυττ= d y u v w v dt t x y z tρρρρρρ∂∂∂∂∂=+++=+⋅∇∂∂∂∂∂ (())(())0D D d d v divv d div v d Dt Dt tt ττττρρρτρτρρτρτ∂∂+=+⋅∇+=+=∂∂⎰⎰⎰⎰ 由奥高定理()s u v w d udydz vdzdx wdxdy x y zττ∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (cos cos cos )su v w ds αβγ=++⎰⎰ n s sv nds v ds =⋅=⎰⎰⎰⎰ 得 (())0s div v d d vds t t ττρρρττρ∂∂+=+=∂∂⎰⎰⎰假定被基函数连续,而且体积τ是任意选取的,由此可知被基函数必须等于0,即00i iv D D divv Dt Dt x ρρρρ∂+=⇔+=∂ 或()()00i iv div v t t x ρρρρ∂∂∂+=⇔+=∂∂∂ 在直角坐标系中,连续性方程为()()()0u v w t x y zρρρρ∂∂∂∂+++=∂∂∂∂ 或()D u v w Dt x y zρρ∂∂∂=-++∂∂∂2.动量守恒方程任取一个体积为τ的流体,他的边界为S 。
根据动量定理,体积τ中流体动量的变化率等于作用在该体积上的质量力和应力之和。
单位面积上的应力n P n p =⋅,其中P 是二阶对称应力张量,所以n P 不是通常指的P 在n(单位体积面元的法线方向)方向的分量。