第3章-流体力学基本方程组
- 格式:pdf
- 大小:162.63 KB
- 文档页数:6
流体力学的基本假设和方程组流体力学是研究流体运动规律和性质的学科。
在研究过程中,人们提出了一系列的基本假设和方程组,用于描述和解释流体力学现象。
本文将介绍流体力学的基本假设和方程组,并探讨它们在研究中的应用。
一、连续性假设在流体力学中,连续性假设是基本的假设之一。
它假设流体是连续的,即具有无限多的微小体积。
根据连续性假设,流体的各种性质在空间和时间上都是连续变化的。
这个假设使得我们能够用数学方法来描述和求解流体力学问题。
二、流体的运动描述流体的运动可以通过流体的速度场来描述。
速度场是流体中每个位置和时间点上速度矢量的集合。
通常,我们使用速度矢量的三个分量来描述速度场,即速度分量 u、v 和 w。
这些分量代表流体在 x、y 和 z 方向上的速度。
三、流体的运动方程流体的运动可以由一组方程来描述,即流体力学的基本方程。
其中包括质量守恒方程、动量守恒方程和能量守恒方程。
1. 质量守恒方程质量守恒方程描述了流体质量的守恒规律。
它表达了一个简单的原理:质量既不能被创建也不能被销毁,只能通过流体的流动改变位置。
数学形式上,质量守恒方程可以表示为:∂ρ/∂t + ∇·(ρu) = 0其中,ρ表示流体的密度,t表示时间,u表示流体的速度。
方程右侧的项表示质量的输入和输出。
2. 动量守恒方程动量守恒方程描述了流体运动的力学特性。
它可以分解为三个方程,分别描述了流体在 x、y 和 z 方向上的动量守恒。
数学形式上,动量守恒方程可以表示为:∂(ρu)/∂t + ∇·(ρu⊗u) = -∇p + ∇·τ∂(ρv)/∂t + ∇·(ρv⊗v) = -∇p + ∇·τ∂(ρw)/∂t + ∇·(ρw⊗w) = -∇p + ∇·τ其中,p表示压力,τ表示应力张量。
3. 能量守恒方程能量守恒方程描述了流体运动中能量的转化和传递。
它包括两个主要项:内能和流体的机械能。
Chapter 3 流体运动的基本方程组本章任务:建立控制流动的基本方程组,确定边界条件。
§3.1系统和控制体系统(sys )指给定流体质点组成的流体团,相当于质点或刚体力学中的研究对象——物体;系统在流动过程中可以不断改变自己的位置和形状,但维持其连续性,始终由固定的那些流体质点组成。
系统与外界可以有力的相互作用,可以有动量和能量交换,但是没有物质交换。
控制体(CV )指流动空间内的一个给定空间区域(子空间),其边界面称为控制面(CS )。
控制体一旦选定,其大小、形状和位置都是确定的,有流体不断出入。
物质体元即流体微团。
物质面元可以看成由连续分布的流体质点(看成是没有体积的几何点)构成的面元,物质面元在流动过程中可以变形,但始终由这些流体质点组成。
物质线元可以看成连续分布的流体质点(看成是没有体积的几何点)构成的线元,或者说是连续分布的流体质点的连线线元,物质线元在流动过程中可以变形,但始终由这些流体质点组成。
时间线就是物质线。
(三者如同面团、薄饼和面条) §3.2雷诺输运定理设(),f r t 代表流动的某物理量场(可以是密度场、温度场、动量密度分量场、能量密度场等),t 时刻某流体团(即系统)占据空间τ,取该空间为控制体。
t 时刻该流体团的总f 为()(),I t f r t d ττ=⎰。
(3-1)此I 也是t 时刻控制体内的总f 。
设t t δ+时刻(0t δ→)该系统运动到如图所示位置,占据空间τ',此时系统的总f 为()(),I t t f r t t d τδδτ'+=+⎰。
(3-2)该系统总f 的随体导数()()()0lim t I t t I t DI t Dt tδδδ→+-=。
(3-3)将空间II τ分为与空间I τ重合的部分2τ和其余部分1τ,空间I τ去除2τ后剩余部分记为3τ,于是13ττττ'=+-,(3-4)进而()()()()13I t t I t t I t t I t t τττδδδδ+=+++-+,(3-5)可得()()()()()130lim t I t t I t t I t t I t DI t Dt tττττδδδδδ→+++-+-=()()()()31000lim lim lim t t t I t t I t t I t t I t t t tττττδδδδδδδδδ→→→+++-=+-, (3-6)其中第一项()()()0limt I t t I t I t t t ττδδδ→+-∂=∂。
第三章流体流动的基本概念与方程质量守恒定律、牛顿第二定律、能量守恒定律等是物质运动的普遍原理,流体作为一类物质也应该遵循这些原理。
这些原理刚体运动的方程式在物理学和理论力学中大家已经学习过,适用于流体运动的方程式将在本章讨论。
本章首先介绍描述流体流动的一些基本概念,然后推导出流体流动的基本方程,即连续方程、动量方程、能量方程等。
这些基本概念与方程在流体运动学中的研究中是十分重要的。
3.1 描述流体流动的方法在流体力学的研究中,描述流体的运动一般有两种方法,即拉格朗日法与欧拉法。
3.1.1 拉格朗日法拉格朗日法着眼于单个流体质点是怎样运动的,以及流体质点的特性是如何随时间变化的。
为了区别流体质点,使用某特定质点在某瞬时的坐标(a, b, c)是比较方便的,坐标(a, b, c)描述的只是某一特定的质点。
在任何瞬时质点的位置可表示为(3.1)对于一给点的坐标(a, b, c),上述方程组代表的是一特定流体质点的轨迹。
此时,质点是速度可以通过将质点是位置矢量对时间求导数得到。
在笛卡尔坐标系中,质点的速度可表示为(3.2)加速度为(3.3)3.1.2欧拉法流体是由无数流体质点组成的连续介质,充满流动流体的空间称为流场。
表示流体速度的一种方法就是着眼于空间的某一点,观察流经该点的流体质点随时间的运动。
这种研究流体质点运动的方法称为欧拉法。
在更一般的意义上,欧拉法可以通过以下方面描述整个流场:(1)在空间某一点流动参数,如速度、压强等,随时间的变化;(2)这些参数相对于空间邻近点的变化。
此时,流动参数是空间点的坐标与时间的函数:(3.4)或(3.4a)(3.5)流体质点随时间将从一点运动到另一点,这意味着流体质点的位置也是时间的函数。
利用多元函数的微分连锁律,可将流体质点在x方向的加速度表示为:(3.6a)同样(3.6b)(3.6c)或写成矢量的形式(3.7)式中称为梯度,或∇运算符。
方程(3.6)右端包含两种不同类型的两项:速度关于位置的变化与速度关于时间的变化。