线性规划论文
- 格式:docx
- 大小:14.77 KB
- 文档页数:4
摘要本文研究的是线性规划的可行点算法,一个由线性规划的内点算法衍生而来的算法.线性规划的内点算法是一个在线性规划的可行域内部迭代前进的算法.有各种各样的内点算法,但所有的内点算法都有一个共同点,就是在解的迭代改进过程中,要保持所有迭代点在可行域的内部,不能到达边界.当内点算法中的迭代点到达边界时,现行解至少有一个分量取零值.根据线性规划的灵敏度分析理论,对线性规划问题的现行解的某些分量做轻微的扰动不会改变线性规划问题的最优解.故我们可以用一个很小的正数赋值于现行锯中等于零的分量,继续计算,就可以解出线陛规划问题的最优解.这种对内点算法的迭代点到达边界情况的处理就得到了线性规划的可行点算法.它是一个在可行域的内部迭代前进求得线性规划的最优解的算法.在此算法中,只要迭代点保持为可行点.本文具体以仿射尺度算法和原始一对偶内点算法为研究对象,考虑这两种算法中迭代点到达边界的情况,得到相对应的’仿射尺度可行点算法’和’原始.对偶可行点算法,.在用理论证明线性规划的可行点算法的可行性的同时,我们还用数值实验验正了可行点算法在实际计算中的可行性和计算效果.关键词:线性规划,仿射尺度算法,原始一对偶内点算法,内点,可行点算法,步长可行点.AbstractderivedThisDaperfocusesonafeasiblepointalgorithmforlinearprogramming,analgorithmfromtheinteriorpointalgorithmsforlineza"programming.TheinteriorpointalgorithmsfindtheoptimalsolutionofthelinearprogrammingbysearchingwithinthefeasmleTe譬ionofthelinearprogramming.ThereareaUkindsofinteriorpointalgorithlrmalltheforlinearprogramnfing.Butalltheseinteriorpointalgorithmsshareaspeciality,whichissolution|terativeDointscannotreachtheboundsAccordingtothesensitivitytheory,theoptimalofthelinearprogrammingwillnotbechangedbylittledisturbancesofthepresentsolution·SoWeletthe{xjIzJ=o,J=1,2,-··)n)equalaverysmallpositivenunlber,goonwiththecomputatio“一andthenwegettheoptimalsolutionofthelinearprogramming.Alltheseleadtothedevelopment。
线性规划大学毕业论文线性规划是一种优化方法,可应用于许多领域中的决策问题。
它通过确定一组变量的最佳取值,以满足一组约束条件和最大(或最小化)某个线性目标函数。
线性规划在工程、经济学、运筹学和管理科学等领域中都有广泛的应用。
在大学毕业论文中,线性规划可以用来解决一些实际问题。
例如,在运输领域,我们可能需要确定一条最佳路径来最小化航空公司运输成本;在生产计划中,我们可以通过线性规划来优化生产和资源利用率;在金融领域,我们可以使用线性规划来确定最佳的投资组合,以最大化收益或最小化风险。
为了说明线性规划的工作原理,让我们用一个简单的例子来解释。
假设我们有两种产品,产品A和产品B,每个产品所需的生产时间和材料如下:- 产品A需要2小时的生产时间和1个单位的材料- 产品B需要3小时的生产时间和2个单位的材料公司目标是最大化利润,而利润可以通过销售单个产品的利润和每个产品的销售数量来计算。
假设产品A的利润为5美元,产品B的利润为8美元。
此外,我们还有以下的约束条件:- 我们每天最多有10小时的生产时间可用- 我们只有15个单位的材料可用我们可以使用线性规划来确定该如何分配生产时间和材料,以最大化该公司的利润。
我们可以将每个产品的生产数量表示为变量x和y(x表示产品A的生产数量,y表示产品B的生产数量)。
然后,我们可以设置目标函数为利润的总和,即:最大化 5x + 8y接下来,我们需要考虑约束条件。
首先,由于每天最多有10小时的生产时间可用,我们必须满足以下不等式条件:2x + 3y ≤ 10此外,由于只有15个单位的材料可用,我们还必须满足以下不等式条件:x + 2y ≤ 15最后,由于生产数量不能为负数,我们还需要添加以下约束条件:x ≥ 0y ≥ 0将这些条件形成的数学模型进行求解,我们可以得到最佳的生产数量。
通过使用线性规划方法,我们可以确定出最佳的生产计划,以最大化该公司的利润。
总的来说,线性规划在解决实际问题时非常有用。
例说运用线性规划思想解二元函数最值问题线性规划是高中数学中的新增内容,也是初等与高等数学的衔接内容,是高考的重点热点.线性规划思想在高中数学各个章节中都有应用,尤其在求有关二元函数的最值问题时,以下举几例说明,供参考:一、在解析几何中的应用1.到点的距离问题例1 已知x,y满足y≤x,x+2y≤4,y≥-2,则s=x2+y2+2x-2y+2的最小值是.解析 s=(x+1)2+(y-1)2表示可行域内的点到点(-1,1)的距离的平方,由图可知当点取(0,0)时s的最小值为2.2.到直线的距离问题例2 已知x,y满足不等式组x+y-4≥0,x-y+2≥0,2x-y-5≤0,则ω=|x+2y-4|的最大值为.解析作出可行域,设p(x,y)是区域内任一点,则|x+2y-4|[]5表示点p到直线x+2y-4=0的距离,解x-y+2=0,2x-y-5=0,得q(7,9),由图可知,当取点q(7,9)时,ω的最大值为21.3.两点连线的斜率问题例3 已知x,y满足不等式组y≥0,x-y≥0,2x-y-2≥0,则ω=y-1[]x+1的取值范围是.解析作出可行域,设p(x,y)为可行域内任一点,而ω=y-1[]x+1表示点p和点q(-1,1)连线的斜率,且ωmin=k qm=-1[]2,又由图知ω<1,所以ω-1[]2,1.点评 (1)解线性规划问题要先正确画出满足条件的可行域.(2)要善于联想目标函数所表示的几何意义,如距离、斜率等.二、在函数、方程与不等式中的应用例4 已知函数f(x)=(4a-3)x+b-2a,x∈[0,1],若f(x)≤2恒成立,则a+b的最大值为.解析由题意得f(0)≤2,f(1)≤2,解得b-2a≤2,2a+b≤5,令z=a+b,作图令横轴为a轴,纵轴为b轴,由线性规划知识可得在点3[]4,7[]2处z取得最大值17[]4.三、在概率问题中的应用例5 甲乙二人互相约定6:00~6:30在预定地点会面,先到的人要等候另一人10分钟后,方可离开,求甲乙二人能会面的概率.(假定他们在6:00~6:30内的任意时刻到达预定地点的机会是等可能的.)解析设甲乙二人到达预定地点的时刻分别为x,y.则由题意知0≤x≤30,0≤y≤30,由“二人会面”可得|x-y|<10,在直角坐标系中画出0≤x≤300≤y≤30的对应平面区域为正方形,且面积为302=900;画出|x-y|<10的对应平面区域为区域a,且面积为302-2×1[]2×(30-10)2=500.所以由几何概型可得所求概率为p=500[]900=5[]9.答两人能见面的概率为5[]9.从以上几例看出,在求有关二元函数的最值问题时,注意利用线性规划思想,联想目标函数的几何意义,合理恰当转化将使问题解决简洁明了.。
线性规划论文简介线性规划是数学规划领域的一种重要方法,用于优化线性目标函数在一系列线性约束条件下的取值。
由于其广泛的应用性和高效的计算方法,线性规划在工程、经济、物流等领域中被广泛应用。
背景线性规划的出现与发展源于对优化问题的研究。
在过去的几十年中,随着计算机技术的进步和算法的优化,线性规划在实践中得到了广泛的应用。
线性规划的主要优点是能够处理大规模的问题,并且提供了一种可行的方式来解决复杂的决策问题。
定义和模型线性规划问题的一般形式可以表示为:最大化(或最小化)目标函数:Z = c₁x₁+ c₂x₂ + ... + cₙxₙ在约束条件下:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,x₁, x₂, ..., xₙ是决策变量,c₁, c₂, ..., cₙ是目标函数的系数,a₁₁, a₁₂, ..., aₙₙ是约束条件的系数,b₁, b₂, ..., bₙ是约束条件的右侧常数。
算法和求解线性规划问题的求解可以使用多种算法,包括单纯形法、内点法等。
这些算法基于不同的思想和技巧,通过迭代计算来逼近最优解。
其中,单纯形法是最常用的算法之一,它通过不断地改变基变量和非基变量的组合来寻找最优解。
内点法则是近年来发展起来的一种新的算法,通过在可行域内部搜索最优解。
应用领域线性规划在众多领域中都有广泛的应用。
以下是线性规划常见的应用领域:生产计划与调度通过线性规划,可以优化生产计划和调度问题。
通过设置合理的约束条件和目标函数,可以最大程度地提高生产效率,减少生产成本。
运输与物流规划线性规划在运输和物流规划中也得到了广泛应用。
通过优化物流路径和运输计划,可以降低运输成本,提高物流效率。
金融与投资管理在金融领域中,线性规划可以用于优化投资组合和资产配置,以最大化收益或降低风险。
数学建模论文摘要:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题的数学理论和方法。
本文讨论了在企业的各项管理活动如计划、生产、运输、技术等方面各种限制条件的组合选择出最为合理的一般计算方法。
重在通过MATLAB程序设计来实现,建立线性规划模型求得最佳结果。
关键词:MATLAB 线性规划编程线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型。
简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出。
涉及更多个变量的线性规划问题不能用初等方法解决整数规划是从1958年由R.E.戈莫里提出割平面法之后形成独立分支的,30多年来发展出很多方法解决各种问题。
从约束条件的构成又可细分为线性,二次和非线性的整数规划。
MATLAB自身并没有提供整数线性规划的函数,但可以使用荷兰Eindhoven 科技大学Michel Berkelaer等人开发的LP_Solve包中的MATLAB支持的mex 文件。
此程序可求解多达30000个变量,50000个约束条件的整数线性规划问题,经编译后该函数的调用格式为[x,how]=ipslv_mex(A,B,f,intlist,Xm,xm,ctype)其中,B,B表示线性等式和不等式约束。
和最优化工具箱所提供的函数不同,这里不要求用多个矩阵分别表示等式和不等式,而可以使用这两个矩阵表不等式、大于式和小于式。
如我们在对线性规划求解中可以看出,其目标函数可以用其系数向量f=[-2,-1,-4,-3,-1]T 来表示,另外,由于没有等式约束,故可以定义Aep和Bep为空矩阵。
由给出的数学问题还可以看出,x的下界可以定义为xm=[0,0,3.32,0.678,2.57]T,且对上界没有限制,故可以将其写成空矩阵此分析可以给出如下的MATLAB命令来求解线性规划问题,并立即得出结果为x=[19.785,0,3.32,11.385,2.57]T,fopt=-89.5750。
承诺书我们仔细阅读了2010现代管理方法课程论文的撰写规则。
我们知道,抄袭别人的成果是违反学术规范的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守论文撰写规则,以保证课程成绩的公正、公平性。
如有违反撰写规则的行为,我们将受到严肃处理。
我们参赛选择的题号是:A我们的论文报名号为:200851150104所属专业班级:人力资源管理专业人力资源管理班参赛队员:1.2.3.日期:2010年6月15日编号专用页各专业评阅编号(由各专业评阅前进行编号):线性规划问题中最优生产计划和影子价格的研究摘要:企业生产中存在追求利润最大化、寻求最优生产计划方案和研究影子价格对边际产出的利润增加的问题。
对于这类问题,需要通过构造线性规划的数学模型,并通过Excel中的规划求解和敏感性分析报告进行判断,特别是对于模型敏感性报告中约束条件的分析,有利于决策人做出科学决策,对于企业的发展和市场的开发具有重要的意义。
关键词:规划求解敏感性分析最优方案线性规划是数学规划与运筹学的一个分支,是运筹学中最常用的一种方法。
线性规划所处理的问题是怎样以最佳的方式在各项经济活动中分配有限的资源。
以便最充分地发挥资源的效能去获取最佳经济效益。
线性规划就是拟定活动计划以便达到一个最优结果,即在所有可行的备选方案中如何选取最佳方案以达到规定目标。
在人们的生活、生产、管理等各项经济活动中都会遇到一类问题,即什么是最好的决策或最佳的方案。
怎样安排生产要素的投入使总产量最大,获得最大经济效益1.企业最优生产计划的分析1.1企业案例某厂家生产甲、乙、丙三种产品,已知三种产品都需要A、B两种原料,生产一件甲分别需要6个、3个单位,生产一件乙分别需要3个、4个单位,一件丙5个、5个单位,且甲乙丙的单件利润分别为4元,1元,5元,则该厂商获得最大利润的生产计划是什么?若厂家保持乙丙的单件利润不变,则甲的利润在什么范围内变化时,上述最优生产计划的利润不变?如果有一种新产品丁,原料消耗定额:A为3个单位,B为2个单位,单位利润为2单位,问该产品是否值得生产,并讨论新的最优生产方案。
线性规划模型论文线性规划模型论文会议筹备的线性规划模型摘要市场经济条件下,成本与收益的关系得到人们的高度重视,为了提高资源的利用率,节约成本,结合中国“文山会海”现象,对会议的组织工作进行深入研究。
针对会议筹备过程中会场及车辆的安排两个方面的相关问题,利用线性规划方面的相关理论知识,制定一套切实可行、经济实惠、另代表满意的方案。
关键词会议筹备;多目标线性规划;优化模型1问题的提出随着时代的前进步伐,在市场经济条件下,我们与外界的交流越来越密切,各类研讨会就为我们提供了这样一个人与人交流的平台,随之出现了“文山会海”现象,而随着研讨会的规模越来越大,会议安排统筹的难度也越来越大,越来越复杂,做好会议统筹具有重要意义。
作为会议组织方,经费问题一直是个难题,那么如何在安排会议的过程中能更好的节约经费就成为摆在我们面前的亟待解决的问题。
本文从整个会议安排过程中的会议室选择和车辆安排两个要素出发进行分析与研究,利用线性规划方面的相关理论知识将问题抽象成一个明确完整的数学模型,为筹备组制定一个另各方都比较满意的合理方案。
2问题的分析在实际调查中发现,一个大型研讨会会分成几个不同的小课题分开讨论,会议人数的增加需要我们把与会代表安排在不同的宾馆中,一般的大型宾馆都附带有会议室,因此一般都会租用宾馆的会议室来进行研讨,而不再去另找会议场所,但与会代表参加哪个议题讨论是我们事先不知道的,因为可能代表会临时改变主意,这就需要我们为跨宾馆开会的代表准备车辆接送,那么如何在某些情况不确定的情况下,既能满足会议组织的要求,又能使得所花费用最少,是本文所关注并提出解决办法的的问题。
3模型假设与说明模型假设与说明主要包括3个方面:①假设每一位与会代表去每一个分会场参加会议的概率相同。
②由于不知道每位代表可能会去其他哪个宾馆参加会议,我们在每个宾馆门口都安排车辆,公车每到一个会场,各与会代表只能下车而不能上车车辆按照循环路线来行使。
数学建模线性规划论文1线性规划(Linear Programming, LP)是一种用于寻求最优解的数学模型,其可以广泛应用于决策支持系统、资源配置、生产计划、货运调度、供应链管理等领域。
本文通过研究一家食品加工企业的原料采购问题,探讨了如何利用线性规划模型优化资源配置,提高企业利润的方法。
在本研究中,通过构建数学模型,确定相关变量以及约束条件,最终得出最优决策方案。
第一章:绪论此章节给出研究的背景和意义,介绍线性规划思想以及研究思路和方法。
第二章:相关理论知识此章节主要介绍最优化理论和线性规划的数学方法,阐述如何基于线性规划模型进行决策分析。
第三章:研究问题的分析此章节详细分析了一家食品加工企业的原料采购问题,包括业务背景、必要假设、变量定义和约束条件,为后续模型构建和求解提供了理论基础。
第四章:模型的构建和求解此章节针对第三章中得出的问题模型,进行数学建模,确定决策变量和目标函数,建立优化线性规划模型。
同时,结合Gauss-Jordan消元法和单纯形法对模型进行求解,计算出模型最优解。
第五章:模型的检验和应用此章节通过对模型的检验、灵敏度分析和场景模拟,检验和验证模型的有效性,并通过实际案例进行应用。
第六章:结论与展望此章节总结本文的研究成果,得出结论和展望未来的研究方向。
总结:本文针对食品加工企业原料采购问题,以线性规划为理论基础,建立了相应的模型,利用线性规划的求解方法,求得了最优的采购方案。
同时,对模型进行灵敏度分析和场景模拟,检验和验证了模型的有效性。
该研究在实际生产中具有重要的应用价值,为企业优化资源配置提供了有力支持。
未来的研究可以进一步拓展线性规划模型的应用范围,并优化模型算法和求解方法,提高模型的精度和效率。
淮北师范大学2011届学士学位论文线性规划灵敏度分析学院、专业数学科学学院数学与应用数学研究方向运筹学学生姓名陈红学号20071101008指导教师姓名张发明指导教师职称副教授2011年4月10日线性规划的灵敏度分析陈 红(淮北师范大学数学科学学院,淮北,235000)摘 要本文主要从价值系数j c 的变化,技术系数ij a 的变化,右端常数i b 的变化以及增加新的约束条件和增加一个新变量的灵敏度这几个方面来进行研究;资源条件是线性规划灵敏度分析中的主要应用内容,而对于资源条件b 的一个重要应用是:“影子价格问题”的实际应用,最后简述了线性规划在经济及管理问题上的典型应用和从求解例题的图解法揭示了最优解的一些重要特征。
关键词 单纯形法,灵敏度分析,最优解,资源条件,价值系数Sensitivity Analysis of Linear ProgrammingChen Hong(School of Mathematical Science,Huaibei Normal University ,Huaibei,235000)AbstractThis thesis is mainly from the variety of the cost coefficient ‘j c ’, the variety of technology coefficient ‘ij a ’, the var iety of the resources condition‘i b ’and increase the new restraint and new variable to analytical linear programming of sensitivity analysis 。
This thesis is mainly based on the simplex method and dual simplex method of linear programming to system analytical the influence of the variety upon the optical solution of the coefficient of the simplex table 。
线性规划在现实生活中的应用论文关键词线性规划运筹学数学方法论文摘要线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中的问题,帮助决策人员选择最优方针和决策。
本文主要研究如何把线性规划的知识运用到企业中,使企业能够提高效率,通过建立模型并利用相关软件,对经济管理中有限资源进行合理分配,从而获得最佳经济效益。
一、线性规划在企业中运用的必要性随着经济全球化的不断发展,企业面临更加激烈的市场竞争。
企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。
过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。
在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产、销售各个环节进行优化从而降低生产成本,提高企业的效率。
在各类经济活动中,经常遇到这样的问题:在生产条件不变的情况下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,组织生产过程,使总的经济效益最好。
这样的问题常常可以化成或近似地化成所谓的“线性规划”(Linear Programming,简记为LP)问题。
线性规划是应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。
利用线性规划我们可以解决很多问题。
如:在不违反一定资源限制下,组织安排生产,获得最好的经济效益(产量最多、利润最大、效用最高)。
也可以在满足一定需求条件下,进行合理配置,使成本最小。
同时还可以在任务或目标确定后,统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成任务。
下面我们用线性规划方法对企业在生产中的具体问题进行探讨。
毕业论文(设计)课题名称线性规划模型的求解及应用业数学与应用数学(S)2010级数学2班指导教师________________________________ 学生姓名______________________________隹木期大学数务处word文档可自由复制編辑线性规划模型的求解及应用佳木斯大学理学院数学系2014年6月线性规划是运筹学的一个重要分支,它辅助人们进行科学管理,是国际应用数学、经济、计算机科学界所关注的垂要研究领域.线性规划主要研究有限资源最佳分配问题,即如何对有限的资源进行最佳地调配和最有利地使用,以便最充分发挥资源的效能来获取最佳的经济效益.线性规划运用数学语言描述某些经济活动的过程,形成数学模型,以一定的算法对模型进行计算,为制定最优计划方案提供依据•其解决问题的关键是建立符合实际情况的数学模型,即线性规划模型.在各种经济活动中,常采用线性规划模型进行科学、定量分析, 安排生产组织与计划,实现人力物力资源的最优配置,获得最佳的经济效益.目前,线性规划模型被广泛应用与经济管理、交通运输、工农业生产等领域.本文主要介绍线性规划的两种基本解法即图解法和单纯形法,并讨论了这两种方法的优缺点和在一些实际问题屮的应用.关键词:线性规划:图解法:单纯形法:数学模型:应用AbstractLinear progianmiing is an iinpoilant branch of operations research, which assist people to scientific management is an important area of research iiitemationally applied mathematics, economics, computer science conmiunity^s concerns. The main study of linear programming optimal allocation of limited resomces, namely liow to limited resoiuces optimally deploy and most advantageously used in order to most hilly effective resources to get the best value for money.Linear progianmiing using mathematical language to describe the process of certain economic activities, the fonnation of mathematical models to a certain algorithm to calculate the model toword文档可自由复制編辑provide a basis for the fonnulation of the optimal plan for. The key to solve the problem is to create a mathematical model in line with the actual situation, namely linear progranmiing model. In various economic activities, often using linear progianuning model for scientific, quantitative analysis, organization and planning for production to achieve the optimal allocation of hiunan and material resources, to get the best value for money. At present, the linear progianmiing model is widely used in economic management, tiansportation, industrial and agricultural production and other fields.This paper describes two basic solution that giaphical method for linear programming and the simplex method, and discuss the advantages and disadvantages of both methods and applications in a number of practical problems・Key words:Linear Programming: Graphic method; simplex method; mathematical model;Application摘要........................................................................... Abstract .................................................................................................................................第1章绪论 ....................................................................1.1线性规划的基本概念......................................................1.1.1线性规划简介........................................................1.1.2线性规划由來的时间简史..............................................1.2线性规划的研究目的及意义................................................第2章线性规划问题的数学模型..................................................2.1线性规划模型的建立......................................................2.2线性规划模型的求解方法..................................................2.2.1图解法..............................................................2.2.2单纯形法............................................................ 第3章线性规划在实际问题中的应用..............................................3.1线性规划在企业管理中的应用 ..............................................3.1.1线性规划在企业管理中的应用范围......................................3.1.2如何实现线性规划在企业管理中的应用..................................3.2线性规划在企业生产计划中的应用 ..........................................33线性规划在运输问题中的应用............................................... 结论........................................................................... 參考文献.......................................................................第[章绪论1.1.1线性规划简介线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支, 它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备利新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题•满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变量、约束条件、目标函数是线性规划的三要素.1.1.2线性规划由来的时间简史法国数学家J. - B. - J.傅里叶和C.瓦莱一普森分别于1832和1911年独立地提出线性规划的想法,但未引起注意.1939年苏联数学家fl.B.康托罗维奇在《生产组织与计划中的数学方法》一书中提出线性规划问题,也未引起重视.1947年美国数学家G. B. Dantzing提出求解线性规划的单纯型法,为这门学科奠定了基础.1947年美国数学家J. von诺伊曼提出对偶理论,开创了线性规划的许多新的研究领域, 扩大了它的应用范围和解题能力.1951年美国经济学家T. C.库普曼斯把线性规划应用到经济领域,为此与康托罗维奇一起获1975年诺贝尔经济学奖.50年代后对线性规划进行大量的理论研究,并涌现出一大批新的算法.例如,1954年C.莱姆基提出对偶单纯形法,1954年S.加斯和T.萨迪等人解决了线性规划的灵敏度分析利参数规划问题,1956年A.塔克提出互补松弛定理,1960年G.B•丹齐克和P.沃尔夫提出分解算法等.线性规划的研究成果还直接推动了其他数学规划问题包括整数规划、随机规划和非线性规划的算法研究.由于数字电子计算机的发展,出现了许多线性规划软件,如MPSX, OPHEIE, UMPIRE等,可以很方便地求解几「个变量的线性规划问题.1979年苏联数学家L. G. Khachian提出解线性规划问题的椭球算法,并证明它是多项式时间算法.1984年美国贝尔电话实验室的印度数学家N.卡马卡提出解线性规划问题的新的多项式时间算法. 用这种方法求解线性规划问题在变屋个数为5000时只要单纯形法所用时间的1/50.现已形成线性规划多项式算法理论.50年代后线性规划的应用范用不断扩人.建立线性规划模型的方法第2章线性规划问题的数学模型2.1线性规划模型的建立线性规划是合理利用、调配资源的一种应用数学的方法•它的基本思路是在满足一定的约束条件下,使预定的目标达到最优•它的研究内容可归纳为两个方面:一是系统的任务资源数量己定,精细安排,用最少的资源去实现这个任务:二是资源数量己定,如何合理利用、调配,使任务完成的最多.前者是求极小,后者是求极大.线性规划的一般定义如下:对于求取一组变量Xj (j=l,2,-,n),使之既满足线性约束条件,又使具有线性特征的目标函数取得极值的一类最优化问题称为线性规划问题.线性规划模型建立需具备以下条件:一是最优目标.问题所要达到的目标能用线性函数來描述,且能够使用极值(最大或最小)来表示.二是约束条件•达到目标的条件是有一定限制的,这些限制可以用决策变量的线性等式或线性不等式來表示.三是选择条件,有多种方案可以供选择,以便从中找出最优方案.线性规划问题的一般数学模型如下:max(或min) Z = c1x l + c2x2 ------- 1- c n x n(1)r a1I x1 + a.2x2 + -+a.B x n< (=,b t+a22x2 4-- + a2a x c < (=,>) h2s.t. / : :: ⑵a:x l+a m2x2+ - + a mn x n 兰(=,>)b maV x:x2 ........... x n > 0(< 0)Xj (j = 1,2,“n) 称为决策变量word文档町“由复制编辑bj(j = 1,2, ...,n) 称为约束右端系数屯(}= 1,2,= 1,2, ...r n) 称为约束系数 其中式(1)为目标函数,式(2)称为约束条件•由于目标函数和约束条件内容和形式上的差别,线性规划问题有多种表达式,为了便 于讨论和制定统一的算法,规定标准形式如下:(1) 标准形式 iaxz = CiXj+C?%+••• + %£a n x i + + ・• • + a in\ =b 】a 21X l • • • + + ・•・ + ** * • • • a 2n X n =■ + 3^X3+ •••+ a nm\ =X )n 0 (j = 1,…,n)(2) £记号简写式nmax z =工 C J X Jj ・i■n E a u x j =b : (i = l ,2,.・.m)[Xj=O (j =1,2,...41)(3) 矩阵形式max z = CXjAX = b(X>O式中c=(C v ...,c n ), X= (xp.— xj 311 a 12 …a lnL 0A= 321 a 22 …a 2n ,b = b, ■ ,0 = 0• • • • • • ••• • • • • • ••• a ml a m2 …a mn b 3 0■ Cj(j = 1,2,…,n)称为1=1标函数系数max z = CXf Pkbn x>o式中C, X, b, 0的含义与矩阵的表达式相同,而Pj = [a ir a 2?-^a mj]0 = 12 …,n)即 A= (p 1,p 2r»>p n )将非标准形式化为标准形式的情况(3种基本情况)(1) 目标函数为求极小值minZ=CA ;则作 Z=-CX,即 maxZ^-CX(2) 右端项小于0只需要将两端同乘(-1),不等号改变方向,然后再将不等式改为等式(3) 约束条件为不等式 若约束条件为“兰”则在不等式左侧增加一个非负松驰变最,使其转化为若约束条件为“X”,则在不等式左侧减去一个非负剩余变量(也称松驰变暈),使其转化 为 “ =” •2.2线性规划模型的求解方法线性规划可以在一定条件下合理安排人力、物力等资源,使经济效果达到最好.一般 来说,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问 题.满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域.决策变星、 约束条件、目标函数是线性规划的三要素.然而图解法不适合解大规模的线性规划的问 题,局限性比较大.但对于只有两个或考三个变量的线性规划问题,可以用图解法求最优 解,也就是作出约束条件的可行域,利用图解的方法求出最优解,其特点是过程简洁、 图形清晰,简单易懂•下面仅做只有两个变量的线性规划问题.只含两个变量的线性规划问题,可以通过在平而上作图的方法求解,步骤如下:(4)向量形式 2. 2.1 解法(1)以变量X】为横坐标轴,X:为纵坐标轴,适当选取单位坐标长度建立平面坐标直角坐标系.由变量的非负性约束性可知,满足该约束条件的解均在第一象限内.(2)图示约束条件,找出可行域(所有约束条件共同构成的图形).(3)画出目标函数等值线,并确定函数增大(或减小)的方向.(4)可行域中使目标函数达到最优的点即为最优解.卜面举出一个实例来说明:例1•某木器厂生产圆桌和衣柜两种产品,现有两种木料,第一种有72m3,第二种有56假设生产每种产品都需要用两种木料,生产一张圆桌和一个衣柜分别所需木料如下表所示.每生产一张圆桌可获利60元,生产一个衣柜可获利100元.木器厂在现有木料条件下,圆桌和衣柜各生产多少,才使获得利润最多?解:设生产圆束x张,生产衣柜y个,利润总额为n元,则由已知条件得到的线性规划模型为:max z = 60x+ 100y,s.t. 0.18x+ 0.009y <72,0.08x+0.28y < 56,x>0,y>0.图2-1这是二维线性规划,可用图解法解,先在xy坐标平面上作出满足约束条件的平面区域,即可行域S,如上图所示.再作直线l:60x-F100y=0,即l:3x+5y=O,把直线1半移至的位置时,直线经过可行域上点M,且与原点距离最远,此时z=60x+100y取最大值,为了得到M点坐标解方程组(°层+。
线性规划论文摘要本文旨在介绍线性规划及其在实际问题中的应用。
首先,我们将对线性规划问题进行定义和解释。
然后,我们将介绍线性规划的基本形式和求解方法。
最后,我们将探讨线性规划在实际问题中的应用案例,并分析其在这些案例中的优势和局限性。
通过本文的阅读,读者将能够更全面地了解线性规划,并在实际问题中应用线性规划方法。
1. 引言线性规划是数学规划中的一种重要方法,它是指在一系列线性约束条件下,寻求目标函数最大或最小的优化问题。
线性规划问题可以在各个领域中找到应用,如生产计划、供应链管理、资源分配等。
由于其简单直观的特点,线性规划已成为解决大规模复杂问题的常用工具。
2. 线性规划的定义线性规划问题的基本形式如下:最大化(或最小化)z = z^zz约束条件:zz≤ zz≥ 0其中,z是决策变量向量,z是目标函数的系数向量,z是约束条件的系数矩阵,z是约束条件的右侧常数向量。
3. 线性规划的求解方法线性规划问题可以通过多种方法进行求解,常见的求解方法包括单纯形法和内点法。
3.1 单纯形法单纯形法是一种基于顶点法的求解线性规划问题的方法。
它通过在可行域内移动到更优解的顶点,逐步靠近最优解。
单纯形法的核心思想是通过选择合适的进入变量和离开变量,使目标函数逐步增加(或减小)。
3.2 内点法内点法是一种通过不断接近最优解的内部点来求解线性规划问题的方法。
相对于单纯形法,内点法并不依赖于顶点的遍历,而是通过在可行域内寻找合适的内部点,直接逼近最优解。
4. 线性规划在实际问题中的应用线性规划在实际问题中有着广泛的应用。
以下是一些典型的应用案例:4.1 生产计划在生产计划中,线性规划可以帮助企业优化资源分配,使得生产成本最小化。
例如,某家工厂需要确定原材料的采购计划和产品的生产计划,以满足市场需求并最小化成本。
4.2 供应链管理供应链管理中存在着很多资源的分配问题,线性规划可以帮助优化供应链中货物运输、仓储和订单分配的问题。
工厂生产计划分析姓名单位摘要运用线性规划解决经济生活中的实际问题,用单纯型表法解决线性规划问题,在灵敏度分析中,用对偶单纯型法,使问题的处理简单化。
关键词线性规划,单纯型表法,对偶单纯型法,灵敏度分析。
一、问题提出在生产管理和经营活动中经常提出一类问题,即如何合理利用有限的人力物力财力等资源,以便得到最好的经济效果。
某工厂在计划期内要安排生产甲、乙两种产品,已知生产单位产品所需的A、B两种原材料的消耗量,见下表,试回答下面问题:(1)应如何安排生产计划使该工厂获得的利润最大?(2)原料A、B的影子价格各是多少?那一种更珍贵?(3)假定市场上有原料A出售,企业是否应该购入以扩大生产?在保持原方案不变的前提下,最多应购入多少?可增加多少利润?(4)如果乙产品价格达到20元/每件,方案会发生什么变化?(5)现有新产品丙可投入开发,一直对两种原材料的消耗量分别为3和4,问该产品的价格至少应为多少才值得生产?二、问题分析1. 问题一:应如何安排生产计划使该工厂获得的利润最大?该问题为合理利用有限的人力、物力、财力等资源,以便得到最好的经济效果的问题,应该运用线性规划原理,建立数学模型,再运用单纯型法或图解法求解。
2. 问题二:原料A、B的影子价格各是多少?那一种更珍贵?影子价格的经济意义是指在其他条件不变的情况下,单位资源变化所引起的目标函数的最优值的变化,代表A、B这两种资源的经济估价,影子价格可运用对偶单纯型法可求得。
3. 问题三:假定市场上有原料A出售,企业是否应该购入以扩大生产?在保持原方案不变的前提下,最多应购入多少?可增加多少利润?假定市场上有原料A出售,表示原料A的数量可以增加,运用资源数量变化的分析,判断原料A的数量在那一范围内变化,经济效益会增加。
4. 问题四:如果乙产品价格达到20元/每件,方案会发生什么变化?乙产品价格变化,表示乙产品的价值系数变化,运用灵敏度分析,判断最终经济效益是否会发生变化。
线性规划论文
在运筹学和数学中,线性规划(Linear Programming,简称LP)是一种用于最大化或最小化线性函数的方法,同时
满足一组线性约束条件的数学优化问题。
线性规划模型广
泛应用于多个领域,包括经济学、管理科学、工程设计等。
线性规划的基本形式可以描述为:
最大化(或最小化)目标函数:
Z = c1x1 + c2x2 + ... + cnxn
在约束条件下:
a11x1 + a12x2 + ... + a1nxn ≤ b1
a21x1 + a22x2 + ... + a2nxn ≤ b2
...
am1x1 + am2x2 + ... + amnxn ≤ bm
其中,Z是目标函数的值,c1、c2、...、cn是目标函数的系数,x1、x2、...、xn是决策变量,a11、a12、...、amn 是约束条件的系数,b1、b2、...、bm是约束条件的右侧常数。
线性规划的求解过程可以使用各种算法,包括单纯形法、内点法、分枝界限法等。
这些算法可以在有限的步骤内找到最优解或确定问题无解。
线性规划论文可以探讨和研究以下方面:
1. 线性规划在不同领域的应用:例如,在物流和供应链管理中,线性规划可以用于优化物流路径和资源分配问题。
在生产调度中,线性规划可以用于优化生产流程和资源利用率。
在投资组合优化中,线性规划可以用于确定最佳的资产配置方案。
2. 线性规划算法的改进和优化:线性规划算法的效率和准确性是论文可以研究的重点。
可以尝试改进现有算法,提出新的求解方法,或设计特定领域的定制算法。
3. 线性规划的扩展:线性规划的基本形式可以通过引入非线性约束、整数约束或混合整数约束来扩展。
这些扩展可以增加问题的复杂性,但也可以更好地适应实际情况。
4. 线性规划与其他优化方法的比较:线性规划与其他优化方法(如非线性规划、动态规划等)的比较可以探讨各种方法的优缺点,并确定在不同情况下的最佳选择。
5. 线性规划的理论和应用研究:除了具体问题的求解,线性规划的理论研究也是论文的重要组成部分。
可以探讨线性规划模型的性质和性质,推导新的理论结果,并将其应用于实际问题。
总之,线性规划论文可以从多个角度来研究和探讨,包括
应用案例、算法改进、问题扩展、方法比较和理论研究等。
这个领域还有很多潜在的研究方向,可以根据自己的兴趣
和背景选择合适的论题进行研究。