线性规划问题的解法
- 格式:docx
- 大小:37.37 KB
- 文档页数:3
第三章线性规划的解法§3.1重点、难点提要一、线性规划问题的图解法及几何意义1.图解法。
线性规划问题采用在平面上作图的方法求解,这种方法称为图解法。
图解法具有简单、直观、容易理解的特点,而且从几何的角度说明了线性规划方法的思路,所以,图解法还有助于了解一般线性规划问题的实质和求解的原理。
(1)图解法适用于求解只有两个或三个变量的线性规划问题,求解的具体步骤为:1)在平面上建立直角坐标系;2)图示约束条件,找出可行域。
具体做法是画出所有约束方程(约束条件取等式)对应的直线,用原点判定直线的哪一边符合约束条件,从而找出所有约束条件都同时满足的公共平面区域,即得可行域。
求出约束直线之间,以及约束直线与坐标轴的所有交点,即可行域的所有顶点;3)图示目标函数直线。
给定目标函数Z一个特定的值k,画出相应的目标函数等值线;4)将目标函数直线沿其法线方向向可行域边界平移,直至与可行域边界第一次相切为止,这个切点就是最优点。
具体地,当k值发生变化时,等值线将平行移动。
对于目标函数最大化问题,找出目标函数值增加的方向(即坐标系纵轴值增大的方向),等值线平行上移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最大值的最优解;对于目标函数最小化问题,找出目标函数值减少的方向(即坐标系纵轴值减少的方向),等值线平行下移到可行域(阴影部分)的临界点,最终交点就是取得目标函数最小值的最优解。
(2)线性规划问题的几种可能结果:1)有唯一最优解;2)有无穷多个最优解;3)无最优解(无解或只有无界解)。
2.重要结论。
(1)线性规划的可行域为一个凸集,每一个可行解对应该凸集中的一个点;(2)每一个基可行解对应可行域的一个顶点。
若可行解集非空,则必有顶点存在,从而,有可行解必有基可行解。
(3)一个基可行解对应约束方程组系数矩阵中一组线性无关的列向量,对于n 个变量m 个约束方程的线性规划问题,基可行解的个数不会超过!!()!m n n m n m C =-。
线性不等式与线性规划的解法线性不等式和线性规划是数学中常见的问题类型,它们在日常生活和各个领域都有广泛的应用。
本文将介绍线性不等式与线性规划的定义、解法和一些应用示例。
一、线性不等式的定义和解法线性不等式是指一个或多个变量的线性函数与一个常数之间的不等关系。
其表达形式为:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b其中,a₁, a₂, ..., aₙ是系数,x₁, x₂, ..., xₙ是变量,b是常数。
要解决线性不等式,我们需要确定变量的取值范围,使得不等式成立。
常用的解法有以下几种:1. 图形法:将线性不等式转化为几何图形,通过观察图形与坐标轴的交点来确定解集。
2. 代入法:将线性不等式转化为等式,找到其中一个变量的解,代入到不等式中求解其他变量。
重复此过程直至得到所有解。
3. 增减法:通过增减变量值来确定解集的上下界,进而找到满足不等式的解集。
二、线性规划的定义和解法线性规划是指在一定约束条件下,通过线性函数的优化求解最大值或最小值的问题。
其表达形式为:Maximize (or Minimize) f(x₁, x₂, ..., xₙ) = c₁x₁ + c₂x₂ + ... +cₙxₙsubject to:a₁x₁ + a₂x₂ + ... + aₙxₙ ≤ b₁d₁x₁ + d₂x₂ + ... + dₙxₙ ≤ b₂e₁x₁ + e₂x₂ + ... + eₙxₙ ≥ b₃...x₁, x₂, ..., xₙ ≥ 0其中,f(x₁, x₂, ..., xₙ)是目标函数,表示需要最大化或最小化的线性函数;约束条件由不等式给出,b₁, b₂, b₃是常数。
线性规划的解法主要有以下两种:1. 几何法:将约束条件转化为几何图形,通过观察图形与目标函数的相对位置关系,找到最优解。
2. 单纯形法:通过转化为标准形式,并利用单纯形表来进行迭代计算,逐步逼近最优解。
三、线性不等式和线性规划的应用示例线性不等式和线性规划广泛应用于经济学、管理学、工程学等领域。
线性规划常见题型及解法一.基础知识:(一)二元一次不等式表示的区域二元一次不等式0>++C By Ax 表示直线0=++C By Ax 某一侧的所有点组成的区域,把直线画成虚线表示不包括边界, 0≥++C By Ax 所表示的区域应包括边界,故边界要画成实线.由于在直线0=++C By Ax 同一侧的所有点(x,y ),把它的坐标(x,y )代入C By Ax ++,所得的符号相同,所以只需在此直线的某一侧取一个特殊点(0,0y x ),从C By Ax ++00的正负即可判断0≥++C By Ax 表示直线哪一侧的平面区域。
通常代特殊点(0,0)。
(二)线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =A x +B y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =A x +B y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(11,y x )和(22,y x )分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(4)用图解法解决简单的线性规划问题的基本步骤:1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解.4.最后求得目标函数的最大值及最小值. (5) 利用线性规划研究实际问题的解题思路:首先,应准确建立数学模型,即根据题意找出约束条件,确定线性目标函数.然后,用图解法求得数学模型的解,即画出可行域,在可行域内求得使目标函数取得最值的解. 最后,还要根据实际意义将数学模型的解转化为实际问题的解,即结合实际情况求得最优解.线性规划是新教材中新增的内容之一,由已知条件写出约束条件,并作出可行域,进而通过平移直线在可行域内求线性目标函数的最优解是最常见的题型,除此之外,还有以下常见题型。
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
线性规划问题的解法与最优解分析线性规划是一种数学建模方法,用于解决最优化问题。
它在工程、经济学、管理学等领域有着广泛的应用。
本文将介绍线性规划问题的解法和最优解分析。
一、线性规划问题的定义线性规划问题是指在一定的约束条件下,求解一个线性目标函数的最大值或最小值的问题。
线性规划问题的数学模型可以表示为:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject toa₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0其中,Z表示目标函数的值,c₁, c₂, ..., cₙ为目标函数中的系数,a₁₁,a₁₂, ..., aₙₙ为约束条件中的系数,b₁, b₂, ..., bₙ为约束条件中的常数,x₁,x₂, ..., xₙ为决策变量。
二、线性规划问题的解法线性规划问题的解法主要有两种:图形法和单纯形法。
1. 图形法图形法适用于二维或三维的线性规划问题。
它通过绘制约束条件的直线或平面以及目标函数的等高线或等高面,来确定最优解。
首先,将约束条件转化为不等式,并将其绘制在坐标系上。
然后,确定目标函数的等高线或等高面,并绘制在坐标系上。
最后,通过观察等高线或等高面与约束条件的交点,找到最优解。
图形法简单直观,但只适用于低维的线性规划问题。
2. 单纯形法单纯形法是一种迭代的求解方法,适用于高维的线性规划问题。
它通过在可行域内不断移动,直到找到最优解。
单纯形法的基本思想是从初始可行解开始,每次通过找到一个更优的可行解来逼近最优解。
它通过选择一个基本变量和非基本变量,来构造一个新的可行解。
然后,通过计算目标函数的值来判断是否找到了最优解。
如果没有找到最优解,则继续迭代,直到找到最优解为止。
单纯形法是一种高效的求解线性规划问题的方法,但对于大规模的问题,计算量会很大。
线性规划问题的解法与应用线性规划是一种数学工具,被广泛应用于各个行业,例如生产、物流、财务等。
其基本思想是在各种限制条件下,求出某些目标的最优解,被称之为线性规划问题。
解决线性规划问题的方法有很多种,包括普通单纯性法、双纯性法、内点法等。
本文将简要介绍一些解决线性规划问题的方法,并探讨其应用。
一、普通单纯性法在解决线性规划问题时,大多数情况下会采用普通单纯性法。
普通单纯性法是通过对线性规划问题进行简化,来寻找一个最优解的算法。
具体而言,普通单纯性法是基于线性规划的一个关键特性实现的:也就是说,一个线性规划的可行解有一个凸的区域,而这个区域的顶点就是这个线性规划问题的最优解。
因此,普通单纯性法通过不断地沿着顶点移动来查找最优解。
普通单纯性法的优点在于算法复杂度较低,适用于许多简单的线性规划问题。
然而,由于它的原理,普通单纯性法可能会在特定情况下变得相当低效,因此我们将考虑其他方法。
二、双纯性法双纯性法是一种更复杂但最终更有效的线性规划解法。
与普通单纯性法不同的是,双纯性法以两个方法的组合方式来寻找最优解。
首先,与普通单纯性法一样,它通过着眼于最优解所在的多维坐标系的顶点来寻找最优解。
然后,它采用对迭代过程进行精细检查来确保它没有跨过最优解。
双纯性法比普通单纯性法更准确,因为它在每一步操作时都会重新确定一个可行解的凸区域,而不是只沿着现有凸区域的边界线来确定最优解。
尽管双纯性法比普通单纯性法更复杂,但在大多数情况下,它可以在更短的时间内发现最优解。
三、内点法相比之下,内点法是一种数学计算质量不错的算法,它不依赖于这个可行域的顶点。
相反,内点法使用了每个可行域内部的点,即“内点”,来寻找目标函数的最优解。
具体地说,它会构建一个搜索方向,然后在可行域的内部沿着这个方向探索最优解。
这个方法非常适用于那些具有较大维度和复杂约束条件的线性规划问题。
除此之外,值得一提的是,在线性规划的解决过程中,其中一个非常重要的问题是约束条件的表示。
线性规划问题经常出现在高考数学试题中.此类问题通常会要求同学们从实际问题中抽象出二元一次不等式,在了解二元一次不等式的几何意义的基础上,画出二元一次不等式组所表示的平面区域,并求出最优解.但问题中的目标函数经常会有所变化,常见的形式有直线型、分式型、平方型,且解法各不相同.下面结合实例,谈一谈三类线性规划问题的解法.一、直线型目标函数直线型的目标函数一般形如z =ax +by (ab ≠0),这类问题通常要求根据二元一次不等式组,求目标函数z =ax +by (ab ≠0)的最值.求解此类线性规划问题,一般需将函数z =ax +by 转化为直线的斜截式方程:y =-a b x +z b,根据二元一次不等式组画出可行域后,在可行域内讨论直线的截距zb的最值.通过求直线的截距zb的最值来间接求出z 的最值.例1.设x ,y 满足ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,则z =2x +y 的最大值为.解:画出ìíîïïx -y ≥0,x +y -2≤0,y ≥-2,表示的可行域,如图1中的阴影部分所示,由{x +y -2≤0,y ≥-2,可得{x =4,y =-2,平移直线y =-2x +z ,可知当直线y =-2x +z 经过点()4,-2时,该直线在纵轴上的截距最大,即在()4,-2点处,z 取大值,可得z max =2×4-2=6.由于直线的截距有正有负,所以取最值的情形有所不同.当b >0时,截距zb取最大值,此时z 也取最大值,当截距zb 取最小值时,z 也取最小值;当b <0时,截距z b 取最大值,此时z 取最小值,当截距z b取最小值时,z 取最大值.图1图2例2.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5kg ,其中动物饲料不能少于谷物饲料的15.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅能保证供应谷物饲料50000kg ,问怎样混合饲料,才使成本最低.解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z 元,由题意可得ìíîïïïïx +y ≥35000,y ≥15x ,0≤x ≤50000,y ≥0,则z =0.28x +0.9y ,作出以上不等式组所表示的平面区域,如图2中阴影部分所示,联立x +y =35000和y =15x ,可得x =875003,y =175003,则A (875003,175003),作一组平行直线y =-2890+10z9(即图2中虚线),当直线经过可行域内的点A (875003,175003)时,直线的纵截距最小,此时z 最小.故当x =875003,y =175003时,即将谷物饲料和动物饲料按5:1的比例混合时,成本最低.本题是一道实际应用问题.解答此类线性规划问题,需首先仔细读题,根据题意设出变量,建立关于变量的不等关系式以及目标函数.而本题中的目标函数为直线型,所以需将其转化为直线的截距式,在可行域内寻找直线的截距取最小值时的点,即可解题.一般地,线性目标函数的最优解一般会在可行域的顶点或边界处取得,我们可以重点研究可行域的顶点或边界上的点.二、分式型目标函数分式型目标函数一般形如z =y -bx -a.求解此类线性规划问题,需根据目标函数的几何意义:已知点(a ,b )与可行域内的点(x ,y )连线的斜率.当斜率取最大值时,z 取最大值;当斜率取最小值时,z 取最小值.而直线的斜率k =tan a 受倾斜角a 影响:(1)当倾斜角a 为魏上茗43当直线经过点(1,6)时,直线的斜率取得最大值,最大值为6;当直线经过点直线的斜率最小,此时yx取得最小值,最小的取值范围是éëùû95,6,所以本题选A.本题的可行域在第一象限,所以只需讨论直线的范围内的变化情况,可将直线y=zx在可行域内找出直线的倾斜角最大或即斜率取最值时的点,即可解题.图4图5例5.设实数x,y满足ìíîïïx+y-6≥0,x+2y-14≤0,2x+y-10≤0,则x2+y的最小值为____.解:x2+y2表示可行域内的点P(x,y)到原点的距离,作出不等式组表示的平面区域,如图5中的阴影部分所示,过点O作OA垂直于直线x+y-6=0,垂足为A在可行域内),所以原点到直线x+y-6=0的距离,就是点P(x,y)到原点距离的最小值,由点到直线的图3。
思路探寻在线性约束条件下求解线性目标函数的最值问题就叫做线性规划问题.对于线性规划问题来说,如何把问题转变成与几何图形有关的最值问题是解题的关键.常见的线性规划问题有三类:截距问题、斜率问题、距离问题.下面我们结合实例来探讨这三类问题的解法.一、截距问题对于z =ax +by 型的目标函数,我们常将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b,通过求可行域内直线的纵截距zb的最值,从而求出z 的最值.一般地,若b >0,则纵截距取最大值时,z 也取最大值;纵截距取最小值时,z 也取最小值.若b <0,则纵截距取最大值时,z 取最小值;纵截距取最小值时,z 取最大值.例1.如果实数x ,y 满足不等式组ìíîïïx +y ≥2,2x -y ≤4x -y ≥0,,那么2x +3y 的最小值为______.解:根据题意画出如图1所示的图形,阴影部分为可行域.设z =2x +3y ,则y =-23x +z ,在可行域内移动该直线,当直线y =-23x +z 过点()2,0时直线的纵截距最小,此时z =2x +3y 取得最小值,即()2x +3y min =4.我们将目标函数变形为截距式,在可行域内找到直线y =-23x +z 的纵截距最小时的点,便可求得目标函数的最小值.图1图2图3二、斜率问题当遇到形如z =ay +bcx +d(ac ≠0)的目标函数时,我们一般要利用直线的斜率的几何意义来求最值,即将目标函数变形为z =a c ·y -(-b a)x -(-d c)的形式,这样就把问题化为求可行域内的点(x ,y )与点(-d c ,-ba)连线的斜率的最值.例2.已知函数f ()x =x 2-6x +5,且实数x ,y 满足不等式组{f ()x -f ()y ≥0,1≤x ≤5,那么y x 的最大值为______.分析:我们可直接将求yx的最大值转化为求点()x ,y 和点()0,0连线的斜率的最大值.根据约束条件画出可行域,找到点()x ,y ,便可解题.解:由f ()x -f ()y ≥0可得x 2-6x +5-(y 2-6y +5)≥0,即||x -3≥||y -3,画出如图2所示的图形,阴影部分即为可行域.可将yx看作直线OA 的斜率,当直线OA 经过点A时,其斜率最大,而点A 的坐标为A ()1,5,那么yx的最大值为5.三、距离问题若目标函数为z =(x -a )2+(y -b )2,可将其视为两点间距离的平方,将问题转化为可行域内的点(x ,y )与点(a ,b )之间的距离的平方来求解即可.根据题意和可行域求得(a ,b )的坐标,便能根据两点间的距离公式快速求得目标函数的最值.例3.已知x ,y 满足条件ìíîïïx ≥1,x -y +1≤0,2x -y -2≤0,那么x 2+y 2的最小值为______.分析:我们需首先根据线性约束条件画出可行域,在可行域内找到一个点P ()x ,y ,使||OP 2最小,求得P 点的坐标,就能求出来x 2+y 2的最小值.解:如图3所示,图中的阴影和边界是符合条件的区域.由图3可知,B 点到原点的距离最小,此时x 2+y 2最小.联立方程{x -y +1=0,x =1,可得B ()1,2,所以||OP 2的最小值等于5,即x 2+y 2的最小值为5.由此可见,解答线性规划问题的思路是将目标函数转化为直线的斜截式方程、直线的斜率、两点间的距离的平方,然后在可行域内寻找使直线的纵截距、斜率、两点间的距离最大或最小的点,求得点的坐标,便可求得目标函数的最值.(作者单位:北京市中央民族大学附属中学)51Copyright©博看网 . All Rights Reserved.。
线性规划的解法线性规划(Linear Programming)是数学优化的一个重要分支,旨在寻求一组最优解,以满足一系列线性约束条件。
在实际问题中,线性规划方法被广泛应用于资源分配、生产调度、运输计划等领域。
本文将介绍线性规划的解法及其应用。
一、线性规划问题的描述与模型建立线性规划问题可以用数学模型来描述,一般表示为:$max\{c^Tx | Ax \leq b, x \geq 0\}$其中,$c$表示目标函数的系数向量,$x$表示决策变量的值向量,$A$和$b$分别表示约束条件的系数矩阵和常数向量。
解决线性规划问题的关键是确定目标函数和约束条件,以及求解最优解的方法。
二、单纯形法(Simplex Method)单纯形法是解决线性规划问题最常用的方法之一,由乔治·丹尼格(George Dantzig)于1947年提出。
该方法基于下面的原理:从一个顶点出发,沿着边界不断移动到相邻的顶点,直到找到目标函数的最大(或最小)值。
具体而言,单纯形法的步骤如下:1. 将线性规划问题转化为标准形式(如果不满足标准形式)。
2. 选择一个初始基本可行解。
3. 判断当前解是否为最优解,若是,则结束;否则,进行下一步。
4. 选择一个进入变量和一个离开变量,即确定下一个顶点。
5. 进行变量的调整,即计算新的基本可行解。
6. 重复3-5步,直到找到最优解。
三、内点法(Interior Point Method)内点法是另一种常用的线性规划求解方法,其优点是能够在多项式时间内找到最优解。
与单纯形法相比,内点法不需要从一个顶点移动到相邻的顶点,而是通过在可行域内搜索,在每次迭代中逐渐接近最优解。
内点法的基本思路是通过寻找原问题的拉格朗日对偶问题的最优解来解决线性规划问题。
它通过引入一个额外的人工变量,将原问题转化为一个等价的凸二次规划问题,并通过迭代的方式逐步逼近最优解。
四、应用举例线性规划方法在各个领域都有广泛的应用。
方法集锦线性规划问题是指在线性约束条件下求线性目标函数的最大值或最小值问题,重点考查同学们的建模、运算、分析能力.本文主要探讨三种不同类型目标函数的线性规划问题及其解法.一、z =ax +by 型若目标函数为z =ax +by 型(直线型),我们一般需先将目标函数变形为:y =-a b x +zb,通过求直线的截距的最值间接求出z 的最值,这样便将求目标函数最值问题转化为求直线的截距的最值.①若b >0,当y =-a b x +z b截距最大时z 最小,当截距最小时z 最大;若b <0,当y =-a b x +zb截距最大时z 最大,当截距最小时z 最小.例1.已知x ,y 满足约束条件ìíîïïïï2x +y ≤40,x +2y ≤50,x ≥0,y ≥0,则z =3x +2y 的最大值为_____.解:将z =3x +2y 变形为y =-32x +z2.作出如图1所示的可行域,由图可知当y =-32x +z 2过点A 时,直线的截距最大,则{2x +y =40,x +2y =50,解得ìíîx =10,y =20,此时z max =70.在画出可行域后,我们通过观察图形便能很快确定当直线经过A 点时y =-32x +z2的截距最大,此时z 最大,解方程组便可求得z 的最值.图1图2图3二、z =y -bx -a型对于目标函数为z =y -bx -a (斜率型)的线性规划问题,我们一般要依据y -bx -a的几何意义来求解.首先,根据线性约束条件画出可行域,将z 看作是可行域内的动点P (x ,y )与定点A (a ,b )连线的斜率,求得斜率的最值便可求出z 的最值.例2.已知x ,y 满足约束条件ìíîïïx -y +1≤0,x >0,x ≤1,求z =yx的最大值.解析:该目标函数为斜率型,可将z 看作是可行域内的动点P (x ,y )与原点连线的斜率,求出斜率的最值即可.解:作出如图2所示的可行域,将z =yx变形为z =y -0x -0,可将z 看作可行域内任意一点P (x ,y )与原点的连线的斜率.由图2可知当直线过交点A 时,PO 的斜率最大,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z max =2.三、z =(x -a )2+(y -b )2型当遇到目标函数为z =(x -a )2+(y -b )2(距离型)的线性规划问题时,我们可以把z 看作可行域内动点P (x ,y )与定点A (a ,b )的距离的平方,结合可行域找到最值点,利用两点间的距离公式便能求出z 的最值.例3.已知x ,y 满足约束条件ìíîïïx -y +1≤0,2x -y -2≤0,x ≥1,则z =x 2+y 2的最小值为_____.解析:该目标函数为距离型,可将z 看作是可行域内任意一点P (x ,y )到原点的距离的平方,求得PO 两点间距离的最小值,便可求得z 的最小值.解:将z =x 2+y 2变形为z =(x -0)2+(y -0)2,作出如图3所示的可行域,由图可知点A 到原点的距离最小,{x -y +1=0,x =1,解得ìíîx =1,y =2,所以z min =5.可见,解答线性规划类问题的基本思路是,(1)根据线性约束条件画出可行域;(2)将目标函数变形为直线型、斜率型、距离型;(3)在可行域内移动直线、点,找出最值点;(4)联立交点处的直线方程,求出最值点的坐标;(5)将点的坐标代入目标函数中求得最值.(作者单位:中国烟台赫尔曼·格迈纳尔中学)44。
线性规划问题的解法
线性规划(Linear Programming,LP)是一种数学优化方法,用于求解线性约束条件下的最大化或最小化目标函数的问题。
线性规划问题在经济学、管理学、工程学等领域都具有广泛的应用,其求解方法也十分成熟。
本文将介绍线性规划问题的常用解法,包括单纯形法和内点法。
一、单纯形法
单纯形法是解决线性规划问题最常用的方法之一。
它通过在可行解空间中不断移动,直到找到目标函数的最优解。
单纯形法的基本步骤如下:
1. 标准化问题:将线性规划问题转化为标准形式,即将目标函数转化为最小化形式,所有约束条件均为等式形式,且变量的取值范围为非负数。
2. 初始可行解:选择一个初始可行解,可以通过人工选取或者其他启发式算法得到。
3. 进行迭代:通过不断移动至更优解来逼近最优解。
首先选择一个非基变量进行入基操作,然后选取一个基变量进行出基操作,使目标函数值更小。
通过迭代进行入基和出基操作,直到无法找到更优解为止。
4. 结束条件:判断迭代是否结束,即目标函数是否达到最小值或最大值,以及约束条件是否满足。
单纯形法的优点是易于理解和实现,而且在实际应用中通常具有较
好的性能。
但是,对于某些问题,单纯形法可能会陷入循环或者运算
效率较低。
二、内点法
内点法是一种相对较新的线性规划求解方法,它通过在可行解空间
的内部搜索来逼近最优解。
与单纯形法相比,内点法具有更好的数值
稳定性和运算效率。
内点法的基本思想是通过将问题转化为求解一系列等价的非线性方
程组来求解最优解。
首先,将线性规划问题转化为等价的非线性优化
问题,然后通过迭代求解非线性方程组。
每次迭代时,内点法通过在
可行解空间的内部搜索来逼近最优解,直到找到满足停止条件的解。
内点法的优点是在计算过程中不需要基变量和非基变量的切换,因
此可以避免单纯形法中可能出现的循环问题。
此外,内点法还可以求
解非线性约束条件下的最优解,具有更广泛的适用性。
三、其他方法
除了单纯形法和内点法,还有一些其他的线性规划求解方法,如对
偶方法、割平面法等。
这些方法在某些问题上可能具有更好的性能,
但在实际应用中相对较少使用。
对偶方法是一种通过求解原始问题的对偶问题来获得最优解的方法。
原始问题和对偶问题是相互关联的,通过求解对偶问题可以得到原始
问题的最优解。
割平面法是一种通过将问题进行分解,并添加额外的约束条件来求
解最优解的方法。
通过添加割平面约束条件,可以逐步逼近最优解。
综上所述,线性规划问题的解法包括单纯形法、内点法和其他方法。
每种方法都有其特点和适用范围,具体选择哪种方法取决于问题的性
质以及求解的要求。
在实际应用中,可以根据问题的规模和复杂程度
选择最适合的解法,以得到高效准确的最优解。