管理运筹学-02-3线性规划的单纯形表
- 格式:ppt
- 大小:3.23 MB
- 文档页数:22
管理运筹学_北京理工大学中国大学mooc课后章节答案期末考试题库2023年1.需求为随机的单一周期的报童问题是要解决()的问题。
答案:期望损失最小2.在经济订购批量存储模型的灵敏度分析中,当订货费或存储率预测值有误差时,该选择何种存储策略()。
答案:选择原最优存储策略3.下例错误的结论是()答案:检验数就是目标函数的系数4.在报童所订购报纸的模型中,下列哪些不等式不符合最优数量 Q*求解的是()。
答案:__5.【图片】的可行域是():答案:6.根据最大最大原则为以下问题选出最优行动方案?【图片】答案:S27.A工厂生产同一规格的设备,每季度的单位成本依次是1万元、1.2万元、1.3万元、1.5万元。
设备当季度卖出不产生任何存储、维护费用,若积压一季度需存储、维护费用0.05万元,则设备的单位费用(单位:万元)为:答案:8.存储论要解决的问题是:答案:何时补充物资。
_当需要补充物资时,补充的数量是多少。
9.根据动态规划的时间参量是连续的还是离散的、决策过程的演变过程是确定性的还是随机性的,可以将动态规划的决策过程分为哪些决策过程:答案:离散随机性_连续随机性_离散确定性_连续确定性10.下列成本中属于存储成本的是:答案:购买物资所用资金的利息。
_仓库管理人员的劳务费。
_储存仓库的费用。
11.对偶价格小于0时,约束条件的常数项增加一个单位,则对于求min目标函数的线性规划,其最优值的数值会增大。
答案:正确12.关于线性规划的最优解判定,说法不正确的是()答案:求目标函数最大值时,如果所有检验数都小于等于零,则有唯一最优解13.求目标函数值最小的线性规划单纯形表的大M法,在约束条件中加入人工变量是()答案:为了构造约束系数矩阵中的单位矩阵14.求解目标函数值最大的线性规划问题中,在确定出基变量的时,根据minbi/ aij选取入基变量的原因是()答案:确保下一步迭代新得到的bj值都≥015.关于线性规划的原问题和对偶问题的关系,两个问题的最优解的值一致。
管理运筹学判断题背诵讲义第一章 线性规划与单纯形表a)图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的; b) 线性规划模型中增加一个约束条件,可行域的范围般将缩小,减少一个约束条件,可行域的范围一般将扩大;c) 线性规划问题的每一个基解对应可行域的一个顶点; d)如线性规划问题存在可行域,则可行域定包含坐标的原点;e)对取值无约束的变量j x ,通常令'''j j j x x x =-其中'j x ≥0,''j x ≥0,在用单纯形法求得的最优解中有可能同时出现'j x >0,''j x >0;f)用单纯形法求解标准型的线性规划问题时,与j σ>0对应的变量都可以被选作换人变量;g)单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负;h) 单纯形法计算中,选取最大正检验数k σ对应的变量k x 作为换入变量,将使目标函数值得到最快的增长;i)一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可以从 单纯形表中删除,而不影响计算结果;j)线性规划问题的任-可行解都可以用全部基可行解的线性组合表示;k)若X 1,X 2分别是某一线性规划问题的最优解则X=1λX 1 +2λX 2也是该线性规划问题的最优解,其中1λ,2λ可以为任意正的实数;1)线性规划用两阶段法求解时,第一阶段的目标函数通常写为 minz=ai ix ∑(ai x 为人工变量),但也可写为minz=i ai ik x ,只要所有k i ,均为大于零的常数; m)对一个有n 个变量、m 个约束的标准型的线性规划问题,其可行域的顶点恰好为m n c 个;n) 单纯形法的迭代计算过 程是从一个可行解转换到目标函数值更大的另一个可行解;o)线性规划问题的可行解如为最优解,则该可行解定是基可行解;p)若线性规划问题具有可行解,且其可行域有界,则该线性规划问题最多具有有限个数的最优解;q)线性规划可行域的某一顶点若其目标函数值优于相邻的所有顶点的目标函数值,则该顶点处的目标函数值达到最优;r) 将线性规划约束条件的“≤”号及“≥”号变换成“一”号,将使问题的最优目标函数值得到改善;s)线性规划目标函数中系数最大的变量在最优解中总是取正的值:t)一个企业利用3种资源生产4种产品建立线性规划模型求解得到的最优解中最多只含有3种产品的组合;u)若线性规划问题的可行域可以伸展到无限,则该问题一定具有无界解; v)一个线性规划问题求解时的选代工作量主要取决于变量数的多少,与约束条件的数量关系相对较小。
运筹学单纯形表法详细步骤概述运筹学是一门研究最优决策问题的学科,它通过数学建模和优化方法,寻找最佳解决方案。
运筹学的单纯形表法是一种常用的线性规划求解方法,通过构造单纯形表,逐步迭代求解最优解。
本文将详细介绍运筹学单纯形表法的步骤和算法原理。
单纯形表法步骤单纯形表法的基本思想是通过构造单纯形表,逐步迭代优化目标函数的值,直到找到最优解。
第一步:标准化线性规划问题将线性规划问题转化为标准型,使得约束条件为等式形式,目标函数为最小化形式。
标准型的形式如下:Minimize C1x1+C2x2+⋯+C n x nSubject to A11x1+A12x2+⋯+A1n x n=b1A21x1+A22x2+⋯+A2n x n=b2…A m1x1+A m2x2+⋯+A mn x n=b mx1,x2,…,x n≥0第二步:构造初始单纯形表根据线性规划问题的标准型,构造初始单纯形表。
初始单纯形表由约束系数矩阵、目标系数向量、约束条件向量和松弛变量构成。
约束系数矩阵的形式为:A=[A11A12...A1n100 0A21A22...A2n010 0⋮⋮⋱⋮⋮⋮⋮⋱⋮A m1A m2...A mn000 (1)]目标系数向量的形式为:C=[C1C2…C n000…0]约束条件向量的形式为:B=[b1b2…b m]第三步:确定初始解和基变量根据初始单纯形表,确定初始解和基变量。
基变量是与单位矩阵的列向量对应的变量,它们的取值为约束条件向量的值。
第四步:计算单纯形表中的各项值根据初始解和基变量,计算单纯形表中的各项值。
包括各变量的价值系数、约束条件的值,以及各松弛变量的值。
第五步:检查最优解检查单纯形表中目标系数行是否存在负数。
如果存在负数,则继续迭代;如果都为非负数,则找到最优解。
第六步:确定入基变量在目标系数行中选择最小的负数,确定进入基变量。
第七步:计算离基变量根据进入基变量,计算离开基变量。
离开基变量是通过计算变量的约束条件值除以进入基变量的列中对应的非零元素,找到最小的非负数所在行,确定离开基变量。
2.2 将下列线性规划模型化为标准形式并列出初始单纯形表。
(1)123123123123123min 243221943414..524260,0,z x x x x x x x x x s t x x x x x x =++-++≤⎧⎪-++≥⎪⎨--=-⎪⎪≤≥⎩无约束 解:(1)令11333','",'x x x x x z z =-=-=-,则得到标准型为(其中M 为一个任意大的正数)12334567123341233561233712334567max '2'24'4''003'22'2''194'34'4''14..5'24'4''26',,','',,,,0z x x x x x x Mx Mx x x x x x x x x x x x s t x x x x x x x x x x x x x =-++-++--++-+=⎧⎪++--+=⎪⎨++-+=⎪⎪≥⎩初始单纯形表如表2-1所示:表2-1c j-22 4-4 0 0 -M -M θC B X B b 1'xx 2 3'x3''xx 4 x 5 x 6 x 7 0 x 4 19 3 2 2 -2 1 0 0 0 19/3 -M x 6 14 [ 4 ] 3 4 -4 0 -1 1 0 14/4 -Mx 7 265 2 4-40 0 0 1 26/5 -z-2+9M2+5M4+8M -4-8M-M2.3 用单纯形法求解下列线性规划问题。
(1)123123123123123max 2360210..220,,0z x x x x x x x x x s t x x x x x x =-+++≤⎧⎪-+≤⎪⎨+-≤⎪⎪≥⎩ (2) 1234123412341234min 52322347..2223,,,0z x x x x x x x x s t x x x x x x x x =-+++++≤⎧⎪+++≤⎨⎪≥⎩解:(1)最优解为**(15,5,0),25T x z ==。
可编辑修改精选全文完整版第二章2.5 表2-3为用单纯形法计算时某一步的表格。
已知该线性规划的目标函数为12max 53z x x =+,约束形式为≤,34,x x 为松弛变量,表中解代入目标函数后得10z =。
(1)求a ~g 的值;(2)表中给出的解是否为最优解。
解:a=2,b=0,c=0,d=1,e=4/5,f=0,g=5;表中给出的解为最优解。
2.6 表2-4中给出某求最大化线性规划问题的初始单纯形表及迭代后的表,45,x x 为松弛变量,求表中a ~l 的值及各变量下标m ~t 的值。
解:a=-3,b=2,c=4,d=-2,e=2,f=3,g=1,h=0,i=5,j=-5,k=3/2,l=0;变量的下标为m—4,n—5,s—1,t—62.10 下述线性规划问题:要求根据以上信息确定三种资源各自的影子价格。
2.11 某单位加工制作100套工架,每套工架需用长为2.9m 、2.1m 和1.5m 的圆钢各一根。
已知原材料长7.4m 。
问如何下料使得所用的原材料最省?解:简单分析可知,在每一根原材料上各截取一根2.9m,2.lm 和1.5m 的圆钢做成一套工架,每根原材料剩下料头0.9m ,要完成100套工架,就需要用100根原材料,共剩余90m 料头。
若采用套截方案,则可以节省原材料,下面给出了几种可能的套截方案,如表2-5所示。
实际中,为了保证完成这100套工架,使所用原材料最省,可以混合使用各种下料方案。
设按方案A,B,C,D,E 下料的原材料数分别为x 1,x 2,x 3,x 4,x 5,根据表2-5可以得到下面的线性规划模型123451243451235min 00.10.20.30.8210022100..3231000,1,2,3,4,5i z x x x x x x x x x x x s t x x x x x i =++++++=⎧⎪++=⎪⎨+++=⎪⎪≥=⎩用大M 法求解此模型的过程如表2-6所示,最优解为:x *=(0,40,30,20,0)T ,最优值为z*=16。
线性规划的单纯形表课件线性规划是优化理论中的一个重要组成部分,其求解方法主要包括两大类:直接法(如高斯消元法、追赶法等)和迭代法(如单纯形法)。
在这里,我将重点介绍单纯形法,并以单纯形表的课件形式呈现。
一、单纯形法概述单纯形法是一种求解线性规划问题的迭代方法,其基本思想是在可行域中寻找一个具有最优解的点。
具体而言,单纯形法通过在可行域中不断移动一个超平面,使得目标函数的值在每次迭代中都得到优化。
最终,当无法再优化目标函数时,得到的解即为最优解。
二、单纯形表的结构单纯形表是单纯形法的一种表格形式,用于记录每一步迭代的信息。
其主要内容包括:迭代次数、当前目标函数值、当前可行域的边界信息以及用于下一步迭代的超平面信息等。
三、单纯形表的解读解读单纯形表需要注意以下几点:1.迭代次数:表示进行了多少次迭代,从表中可以看出,每次迭代都会优化目标函数值。
2.目标函数值:表示每次迭代后的目标函数值,从表中可以看出,随着迭代的进行,目标函数值逐渐减小。
3.边界信息:表示当前可行域的边界条件,即满足所有约束条件的解的集合。
4.入基和出基变量:表示在每次迭代中,哪些变量被选中进入或离开可行域。
入基变量是那些被选中进入可行域的变量,出基变量则是那些被选中离开可行域的变量。
5.最优解目标函数值和最优解x1, x2, , xn:表示最终得到的最优解及其对应的目标函数值。
从表中可以看出,随着迭代的进行,目标函数值逐渐减小,最终得到最优解及其对应的目标函数值。
四、单纯形表的制作步骤制作单纯形表需要遵循以下步骤:1.确定初始可行解和初始单纯形表。
2.进行迭代,每次迭代都包括入基和出基两个步骤。
入基步骤中选中进入可行域的变量,出基步骤中选中离开可行域的变量。
3.根据选中的入基和出基变量更新单纯形表。
4.检查是否达到停止条件,如迭代次数达到预设值或目标函数值已经达到最优解。
若未达到停止条件,则返回第二步;若达到停止条件,则得到最终单纯形表及最优解。