上海初二数学几何(四边形)
- 格式:doc
- 大小:98.00 KB
- 文档页数:3
初二数学几何知识点归纳有哪些数学的几何题是同学们的一大死穴,想要学好初二数学几何需要找到正确的学习方法。
为了帮助大家更好的学习初二数学几何,下面是店铺分享给大家的初二数学几何知识点,希望大家喜欢!初二数学几何知识点一四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1. 两组对边平行的四边形是平行四边形。
2. 性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3. 判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4. 对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1. 定义:有一个角是直角的平行四边形叫做矩形2. 性质:矩形的四个角都是直角,矩形的对角线相等3. 判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4. 对称性:矩形是轴对称图形也是中心对称图形。
三、菱形的定义、性质及判定1. 定义:有一组邻边相等的平行四边形叫做菱形(1)菱形的四条边都相等(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角(3)菱形被两条对角线分成四个全等的直角三角形(4)菱形的面积等于两条对角线长的积的一半2. s菱=争6(n、6分别为对角线长)3. 判定:(1)有一组邻边相等的平行四边形叫做菱形(2)四条边都相等的四边形是菱形(3)对角线互相垂直的平行四边形是菱形4. 对称性:菱形是轴对称图形也是中心对称图形四、正方形定义、性质及判定1. 定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形2. 性质:(1)正方形四个角都是直角,四条边都相等(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形(4)正方形的对角线与边的夹角是45°(5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形3. 判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等(2)先判定一个四边形是菱形,再判定出有一个角是直角4. 对称性:正方形是轴对称图形也是中心对称图形五、梯形的定义、等腰梯形的性质及判定1. 定义:一组对边平行,另一组对边不平行的四边形是梯形.两腰相等的梯形是等腰梯形.一腰垂直于底的梯形是直角梯形2. 等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等3. 等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形4. 对称性:等腰梯形是轴对称图形六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。
初二数学平行四边形性质详解平行四边形是初中数学中重要的几何概念之一,它具有一系列特殊的性质。
本文将详细解析平行四边形的性质,以帮助同学们更好地理解和应用这一知识点。
一、平行四边形的定义与性质平行四边形是具有两组对边分别平行的四边形。
简单来说,就是四边形的两组对边分别平行。
由此可得出以下性质:1. 对边性质:平行四边形的对边相等。
这是因为对边平行,根据平行线的性质,对边分别是平行线段,所以它们的长度相等。
2. 对角线性质:平行四边形的对角线互相平分。
也就是说,平行四边形的对角线交点将对角线分成两段,每段的长度相等。
这是因为平行四边形的两组对边分别平行,根据平行线的性质,可以得出对角线交点将对角线分成两段,并且这两段的长度相等。
3. 相邻角性质:平行四边形的相邻角互补。
相邻角是指共享一个顶点并且不共享边的两个角。
由于平行四边形的两组对边分别平行,所以相邻角是同位角,根据同位角的性质,它们之和为180度,也就是相邻角互补。
4. 同位角性质:平行四边形的同位角相等。
同位角是指对应角,也就是在两组平行线中对应位置的角。
由于平行四边形的两组对边分别平行,根据同位角的性质,它们的度数相等。
二、平行四边形的推论与应用根据平行四边形的性质,我们可以得出一些重要的推论和应用。
1. 推论一:如果一个四边形的对边相等且相邻角互补,那么这个四边形是平行四边形。
根据推论,如果我们已经知道一个四边形的对边相等且相邻角互补,就可以判断它是一个平行四边形,而无需再检查其他条件。
2. 推论二:平行四边形的对角线互相平分。
利用这一推论,我们可以求解平行四边形对角线的长短,或者利用已知对角线长短的信息来判断是否为平行四边形。
3. 推论三:平行四边形各边上的点连线所构成的线段平分对角线。
这个推论可以帮助我们解决一些相对复杂的几何问题,通过连线将平行四边形分割成多个小三角形或平行四边形,从而简化问题。
4. 应用一:面积计算。
利用平行四边形的性质,我们可以将平行四边形分成两个三角形,从而计算出其面积。
沪教版(上海)八年级上学期图形几何卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列说法正确的是( ) A .一个命题一定有逆命题 B .一个定理一定有逆定理 C .真命题的逆命题一定是真命题D .假命题的逆命题一定是假命题2.如果三角形三条垂直平分线的交点刚好在三角形的一边上,那么这个三角形是( ) A .直角三角形 B .锐角三角形 C .钝角三角形D .等腰三角形3.两个三角形只有以下元素对应相等,不能判定两个三角形全等的( ) A .两角和一边B .两边及夹角C .三个角D .三条边4.如果Rt △的两直角边长分别为n 2-1,2n(n >1),那么它的斜边长是( ) A .2nB .n+1C .n 2-1D .n 2+15.已知三角形的三边长为a 、b 、c ,如果22(5)|12|261690a b c c -+-+-+=,则△ABC是()A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .不是直角三角形6.已知点()A -、(B ,那么ABO ∆是( ) A .等腰三角形 B .直角三角形 C .等边三角形 D .等腰直角三角形二、填空题7.命题“互余的角不相等”的逆命题是_____.8.在Rt ABC ∆中,90C ∠=︒,30A B ∠-∠=︒,那么A ∠=______,B ∠=_____. 9.已知在Rt ABC ∆中,90C ∠=︒,若3a =,4b =,则c =_____. 10.已知()1,4A ,()3,4B -,则线段AB 的长度是______.11.在ABC ∆中,20cm AB AC ==,腰AB 的中垂线交AC 于点D ,BCD ∆周长为30cm ,则BC =_____cm.12.以线段AB 为底边的等腰三角形的顶点的轨迹是____________________________. 13.如图所示,已知AB AC =,44A ∠=︒,AB 的垂直平分线MN 交AC 于点D ,则DBC ∠=_____︒.14.在ABC ∆中,AB AC =,15B ∠=︒,10AB =,则ABC ∆的面积是_____. 15.已知点A 的坐标为()3,5,点B 在x 轴上,且13AB =,那么点B 的坐标为_____.16.在ABC ∆中,60A ∠=︒,16AC =,ABC S ∆=AB =_____.17.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形边长为13,则A 、B 、C 、D 的面积和是_____.18.已知:在ABC ∆中,90C ∠=︒,30A ∠=︒,BD 平分CBA ∠,且交AC 于点D ,1BC =,那么AD =____.三、解答题19.如图,已知BD CD =,B C ∠=∠.求证:AB AC =.20.如图所示,一根长度为50cm 的木棒的两端系着一根长度为70cm 的绳子,现准备在绳子上找一点,然后将绳子拉直,使拉直后的绳子与木棒构成一个直角三角形,这个点将绳子分成的两段各有多长?21.已知,如图所示,四边形ABCD 中,90ABC ∠=︒,11AB =,BC =12CD =,5AD =,求四边形ABCD 的面积.22.已知:如图所示,AD BC ∥,AC BC ⊥,E 、F 分别为AB 、CD 的中点.(1)求证:12AF CD =; (2)若AB CD =,求证:B D ∠=∠.23.已知:如图所示,在Rt ABC ∆中,90ACB ∠=︒,AC BC =,点D 是BC 的中点,CE AD ⊥,垂足为点E ,BF AC 交CE 的延长线于点F ,求证:AB 垂直平分DF .24.已知点()2,3A 、()4,5B ,在x 轴上是否存在点P 使PA PB +的值最小,若存在,请求出PA PB +的最小值;若不存在,请说明理由.25.在Rt ABC ∆中,90C ∠=︒,6AC =,点D 是斜边AB 的中点,作DE AB ⊥,交直线AC 于点E .(1)若30A ∠=︒,求线段CE 的长;(2)当点E 在线段AC 上时,设BC x =,CE y =,求y 关于x 的函数解析式,并写出定义域;(3)若1CE =,求BC 的长.参考答案1.A【分析】命题由题设和结论两部分组成,所以所有的命题都有逆命题,但是所有的定理不一定有逆定理,真命题的逆命题不一定是真命题,假命题的逆命题不一定是假命题.【详解】解:A、每个命题都有逆命题,故本选项正确.B、每个定理不一定都有逆定理,故本选项错误.C、真命题的逆命题不一定是真命题,故本选项错误.D、假命题的逆命题不一定是假命题,故本选项错误.故选A.【点睛】本题考查命题的概念,以及逆命题,逆定理的概念和真假命题的概念等.2.A【分析】根据三种三角形线段垂直平分线上的交点的位置解答即可.【详解】解:∵锐角三角形三边垂直平分线的交点在三角形的内部,钝角三角形三边垂直平分线的交点在三角形的外部,直角三角形三边垂直平分线的交点在三角形的斜边上,∴该三角形是直角三角形.故选:A.【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,熟记三种三角形线段垂直平分线的交点的位置是解题的关键.3.C【解析】判定两三角形全等,就必须有边的参与,因此C选项是错误的.A选项,运用的是全等三角形判定定理中的AAS或ASA,因此结论正确;B选项,运用的是全等三角形判定定理中的SAS,因此结论正确;D 选项,运用的是全等三角形判定定理中的SSS ,因此结论正确;故选C . 4.D 【解析】试题分析:根据勾股定理直接解答即可. 两条直角边与斜边满足勾股定理,则斜边长是:故选D.考点:本题考查的是勾股定理点评:解决本题的关键是正确对(n 2-1)2+(2n )2进行分解因式. 5.C 【分析】根据绝对值和偶数次幂的非负性,即可求出a ,b ,c 的值,进而判断△ABC 的形状. 【详解】∵22(5)|12|261690a b c c -+-+-+=, ∴22(5)|12|(-13)0a b c -+-+=, 又∵22(5)|12|0,0(-1)0,3a b c --≥≥≥,∴22(5)|12|0,0(-1)0,3a b c --===,即a =5,b =12,c =13, ∵222+=a b c ,∴△ABC 是以c 为斜边的直角三角形, 故选C. 【点睛】本题主要考查绝对值和偶数次幂的非负性以及勾股定理的逆定理,根据条件求出三角形各边长,是解题的关键. 6.D 【分析】根据点的坐标,分别计算OA 、OB 、AB 的长度,可得OB=AB ,利用勾股定理的逆定理可判定三角形为直角三角形,于是可判断ABO ∆是等腰直角三角形. 【详解】解:∵()A -,(B ,∴OA ==,2OB ==,2AB ==,∴222OB AB OA +=, ∴ABO ∆是等腰直角三角形, 故选:D. 【点睛】本题考查勾股定理的逆定理的应用,等腰三角形的定义,坐标与图形.判断三角形是否为直角三角形,先求出三角形三边的长,再利用勾股定理的逆定理加以判断即可. 7.不相等的角互余 【分析】先写出原命题的条件和结论,然后按照原命题的条件即为它的逆命题的结论,原命题的结论即为它的逆命题的条件即可写出原命题的逆命题. 【详解】解:“互余的角不相等”的条件是互余的角,结论是不相等,故逆命题是:不相等的角互余. 故答案为:不相等的角互余. 【点睛】此题考查了命题与定理,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题. 8.60︒ 30 【分析】根据直角三角形两锐角互余可得:∠A+∠B=90°,再结合30A B ∠-∠=︒即可求出∠A 和∠B. 【详解】由题意可得∠A+∠B=90°,∠A-∠B=30°,解得∠A=60°,∠B=30°.【点睛】此题主要考查了直角三角形两锐角互余.熟记直角三角形两锐角互余是解决此题关键. 9.5【分析】直接利用勾股定理可求得斜边c的长【详解】解:5c==.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.10.4【分析】由A、B点的坐标可知它们的纵坐标相同,所以线段AB的长度就是这两点横坐标差的绝对值.【详解】解:∵A(1,4),B(-3,4),∴线段AB的长为|1-(-3)|=|1+3|=|4|=4.故答案为:4.【点睛】本题考查了坐标与图形性质,观察出点A、B的纵坐标相同是解题的关键.11.10【分析】∆周长为30cm可求得根据中垂线(即线段垂直平分线)的性质可得AD=BD,结合BCDAC+BC=30cm,由此可求BC的长度.【详解】解:如图所示:∵腰AB的中垂线交AC于点D,∴AD=BD.周长为30cm,∵BCD∴BD+CD+BC=30,即AD+CD+BC=30,∴AC+BC=30.∵AC=20cm,∴BC=10cm.【点睛】本题考查了线段垂直平分线的性质,能根据线段垂直平分线上的点到线段两端距离相等求出AD=BD是解决此题的关键.12.线段AB的垂直平分线,不包括AB的中点.【分析】满足△ABC以线段AB为底边且CA=CB,根据线段的垂直平分线判定得到点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件).【详解】∵△ABC以线段AB为底边,CA=CB,∴点C在线段AB的垂直平分线上,除去与AB的交点(交点不满足三角形的条件),∴以线段AB为底边的等腰三角形的顶点C的轨迹是线段AB的垂直平分线,不包括AB的中点.故答案为:线段AB的垂直平分线,不包括AB的中点.【点睛】本题考查了轨迹:轨迹是动点按一定条件运动所经过的痕迹.也考查了线段的垂直平分线判定与性质、等腰三角形的判定与性质.解题的关键是熟记线段AB的垂直平分线的定义.13.24【分析】先根据三角形的内角和定理和等腰三角形的性质求出∠ABC,再根据线段垂直平分线的点到线段两端距离相等可得AD=BD ,结合等腰三角形等边对等角可求得∠ABD ,由此可求∠DBC 的度数. 【详解】解:∵AB =AC ,∠A =44°, ∴∠ABC =12(180°﹣∠A )=12×(180°﹣44°)=68°, ∵MN 是AB 的垂直平分线, ∴AD =BD ,∴∠ABD =∠A =44°,∴∠DBC =∠ABC ﹣∠ABD =68°﹣44°=24°. 故答案为:24°. 【点睛】本题考查了线段垂直平分线的性质,等腰三角形的性质,三角形的内角和定理.熟记垂直平分线上的点到线段两端距离相等和等腰三角形等边对等角是解决此题的关键. 14.25 【分析】先根据题意画出ABC ∆,作出它的高线CD ,根据三角形的外角性质可求得∠CAD=30°,由直角三角形30°角所对边是斜边的一半可求得CD 的长度,由此可求△ABC 的面积. 【详解】解:如图所示,过点C 作CD AB ⊥交BA 的延长线于点D ,∵AB AC =,∴15B ACB ∠=∠=︒,∴1530CAD B ACB ∠=∠+∠=︒+15︒=︒,∴1110522CD AC ==⨯=, ∴ABC ∆的面积111052522AB CD =⋅=⨯⨯=.【点睛】本题考查含30°角直角三角形,三角形外角性质,等腰三角形的性质.熟记这些性质并能灵活运用是解题的关键,作出图形更形象直观.15.()9,0-或()15,0【分析】设点B 的横坐标为t 13=,从而可以求出t 的值.【详解】解:设点B 的横坐标为t ,13=,即2(3)12t -=.所以3-t=12或3-t=-12.∴t=-9或t=15.故答案为()9,0-或()15,0.【点睛】本题考查了两点间的距离公式:设有两点A (x 1,y 1),B (x 2,y 2),则这两点间的距离为AB16.55【分析】根据题意,过点B 作BD AC ⊥,根据三角形的面积可求得BD 的长度,根据直角三角形30°角所对边是斜边的一半和勾股定理即可求出AB 的长度.【详解】解:过点B 作BD AC ⊥.∵ABC S ∆=16AC =,∴12AC BD ⨯⨯=,∴BD =在Rt ABD ∆中,60A ∠=︒,∴30ABD ∠=︒, ∴12AD AB =. ∵222AD BD AB +=,∴22212AB AB ⎛⎫+= ⎪⎝⎭,解得55AB =.【点睛】本题考查含30°角的直角三角形的性质和利用勾股定理解直角三角形.能根据题意构造图形是解决此题的关键.17.169【分析】能够发现正方形A ,B ,C ,D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A ,B ,C ,D 的面积和即是最大正方形的面积.【详解】解:如图:根据勾股定理得到:C 与D 的面积的和是P 的面积;A 与B 的面积的和是Q 的面积;而P ,Q 的面积的和是M 的面积.即A 、B 、C 、D 的面积之和为M 的面积.∵M 的面积是132=169,∴A 、B 、C 、D 的面积之和为169m 2.故答案为:169m 2.【点睛】本题考查了勾股定理的应用.理解以直角三角形两直角边为边长的正方形面积之和等于以斜边为边长的正方形面积是解决此题的关键.18【分析】依据题意画出图形,根据直角三角形两锐角互余和三角形的角平分线可求得30A ABD CBD ∠=∠=∠=︒,根据直角三角形30°角所对边是斜边的一半和勾股定理求得BD 的长度,然后根据等腰三角形等角对等边即可求出AD.【详解】解:如图所示,∵90C ∠=︒,30A ∠=︒,∴903060ABC ∠=︒-︒=︒.∵BD 平分ABC ∠,∴30ABD CBD ∠=∠=︒.又∵30A ABD ∠=∠=︒,∴BD AD =,60BDC ∠=︒,在Rt BCD ∆中,12CD BD =, ∴222CD BC BD +=,即222112BD BD ⎛⎫+= ⎪⎝⎭,解得3BD =,∴AD =. 【点睛】本题主要考查含30°角的直角三角形,勾股定理,等腰三角形的判定,三角形的角平分线,直角三角形两锐角互余.能根据题意构造图形且熟练掌握相关定理,能根据定理进行分析是解决此题的关键.19.详见解析【分析】先连接BC ,根据等腰三角形的现在,即可解答.【详解】连接BC ,∵BD CD =,∴△DBC 为等腰三角形,∴DBC DCB ∠=∠.∵ABD ACD ∠=∠,∴ABC ACD ∠=∠.∴AB AC =.【点睛】此题考查等腰三角形的判定与性质,解题关键在于需要熟练掌握判定定理.20.这个点将绳子分成的两段分别是30cm 、40cm 或370cm 7、120cm 7. 【分析】设cm AC x =,则()70cm BC x =-,分以AB 为斜边,AC 为斜边,BC 为斜边三种情况讨论,利用勾股定理建立方程,解方程即可求出x 的值.【详解】如图所示:设cm AC x =,则()70cm BC x =-,若AB 为斜边,则()2225070x x =+-,解得:130x =,240x = 若AC 为斜边,则()2225070x x +-=,解得:3707x = 若BC 为斜边,则()2225070x x +=-,解得:1207x = 综上所述,这个点将绳子分成的两段分别是30cm 、40cm 或370cm 7、120cm 7. 【点睛】 此题主要考查了勾股定理的应用,正确的记忆勾股定理确定好斜边与直角边是解决问题的关键.21.30ABCD S =+四边形【分析】连接AC ,然后根据勾股定理求出AC 的长度,再根据勾股定理逆定理计算出∠ADC=90°,然后根据四边形ABCD 的面积=△ABC 的面积+△ACD 的面积,列式进行计算即可得解.【详解】解:连接AC ,∵90ABC ∠=︒,11AB =,BC=∴由勾股定理可得:13AC ==在ADC ∆中,5AD =,12CD =,13AC =根据勾股定理的逆定理可得:90ADC ∠=︒∴111151211302222ABCD S AD DC AB BC =⋅+⋅=⨯⨯+⨯⨯=+四边形【点睛】本题考查勾股定理、勾股定理的逆定理等知识,通过作辅助线将一般的四边形转化为两个直角三角形是解题的关键.22.(1)见解析;(2)见解析.【分析】(1)根据平行线的性质可证90BCA DAC ∠=∠=︒,再利用直角三角形斜边上的中线等于斜边的一半即可证明;(2)根据HL 定理证明Rt ACD Rt CAB ∆∆≌即可证明B D ∠=∠.【详解】(1)证明:∵AD BC ∥,AC BC ⊥∴90BCA DAC ∠=∠=︒∵E 、F 分别为AB 、CD 的中点∴AF 为Rt ACD ∆斜边上的中线 ∴12AF CD = (2)证明:∵AD BC ∥,AC BC ⊥∴90BCA DAC ∠=∠=︒在Rt ACD ∆和Rt CAB ∆中CD AB AC CA =⎧⎨=⎩∴()Rt ACD Rt CAB HL ∆∆≌∴B D ∠=∠【点睛】本题考查直接三角形斜边上的中线,平行线的性质定理,全等三角形的判定和性质.(1)中掌握直角三角形斜边上的中线等于斜边的一半是解题关键;(2)中掌握证明直角三角形全等的HL 定理是解题关键.23.见解析.【分析】先证明ACD CBF ∆∆≌推出CD=BF ,再结合D 是BC 的中点证明△BDF 为等腰三角形,然后证明∠CBA=∠FBA ,根据等腰三角形三线合一即可得出结论.【详解】证明:∵90ACB ∠=︒,CE AD ⊥,∴90BCE ACE ∠+∠=︒,90ACE CAE ∠+∠=︒,∴BCE CAE ∠=∠,∵BF AC ,∴90ACD CBF ∠=∠=︒,∵AC CB =,∴()ASA ACD CBF ∆∆≌,∴CD BF =,∵D 是BC 的中点, ∴12CD BD BC ==∴BF BD =∴BFD ∆为等腰直角三角形∵90ACB ∠=︒,CA CB =∴45ABC ∠=︒∵90FBD ∠=︒∴45ABF ∠=︒∴ABC ABF ∠=∠,即BA 是FBD ∠的平分线∴BA 是FD 边上的高线,BA 又是边FD 的中线∴AB 垂直平分DF【点睛】本题考查了全等三角形的性质和判定,平行线的性质定理,等腰三角形的性质和判定.本题中能证明ACD CBF ∆∆≌,并结合全等三角形的性质证明BFD ∆为等腰直角三角形是解决此题的关键.24.存在,PA PB +=【分析】作出A 点关于x 轴的对称点A′,连接A′B 交x 轴于P 即为所求,利用两点之间距离公式求出A B '即为PA PB +的最小值.【详解】解:存在,如图,作A 关于x 轴对称点()2,3A '-,联结A B '交x 轴于点P ,则有最小值,因为两点之间线段最短∴PA PB A B '+===【点睛】本题考查的是利用轴对称性质求最短路径问题,坐标与图形.熟练掌握轴对称的性质,找出P 点是解题的关键.25.(1)2CE =;(2)()230612x y x =-<≤;(3)满足条件的BC 的长为【分析】(1)连接BE ,点D 是AB 中点且DE ⊥AB ,BE=AE ,利用线段垂直平分线的性质和含30度角的直角三角形即可求出线段CE 的长;(2)连接BE ,则AE=BE=6-y ,由勾股定理得BC 2+CE 2=BE 2,即x 2+y 2=(6-y )2,整理即可得出y 关于x 的函数解析式()230612x y x =-<≤; (3)此题有两种情况:①是当点E 在线段AC 上时,由(2)得21312x =-,解得x 即可;②是当点E 在AC 延长线上时,AE=BE=7,由勾股定理得BC 2+CE 2=BE 2即x 2+12=72.解得x 即可.【详解】(1)如图,连接BE ,∵点D 是AB 中点且DE AB ⊥,∴BE AE =,∵90C ∠=︒,30A ∠=︒,∴∠ABC=90°-∠A=60°,30ABE A ∠=∠=︒∴30CBE ABC ABE ∠=∠-∠=︒, ∴1122CE BE AE ==, ∵6AC =,AC=AE+CE,∴2CE =,(2)连接BE ,则6AE BE y ==-,在Rt BCE ∆中,由勾股定理得222BC CE BE +=,即()2226x y y +=-, 解得()230612x y x =-<≤ (3)①当点E 在线段AC 上时,由(2)得21312x =-,解得x =②当点E 在AC 延长线上时,7AE BE ==,在Rt BCE ∆中,由勾股定理得222BC CE BE +=,即22217x +=. 解得43x (负值已舍)综上所述,满足条件的BC 的长为【点睛】此题主要考查勾股定理、线段垂直平分线的性质和含30度角的直角三角形,二次函数的应用.(1)中熟练掌握线段垂直平分线的性质和含30度角的直角三角形的性质是解题关键;(2)中能利用勾股定理建立x ,y 的等式是解题关键;(3)中能分类讨论是解题关键.。
第19章四边形核心素养整合与提升-2022-2023学年八年级下册初二数学(沪科版)1. 引言四边形是初中数学中重要的几何概念之一,它们在数学和实际生活中都有广泛的应用。
本章将重点介绍四边形的定义、性质、分类和相关定理等内容,并通过练习题和实际问题来加深学生对四边形的理解和应用能力。
2. 四边形的定义和性质四边形是由四条线段组成的图形,它的特点是有四个顶点、四条边和四个内角。
四边形的性质有以下几点:•相邻两边不能共线:如果四边形的相邻两边共线,那么它就不是四边形,而是一条线段或一条直线。
•相邻两边不能相交:如果四边形的相邻两边相交,那么它就不是四边形,而是一个多边形。
•对角线的性质:四边形的对角线有以下性质:–对角线互相垂直–对角线互相平分–对角线的长度关系3. 四边形的分类根据四边形的不同性质和特点,可以将四边形分为以下几种常见的类别:•矩形:四条边都相等且对角线相等的四边形。
•正方形:即特殊的矩形,四条边相等且对角线相等且互相垂直的四边形。
•平行四边形:相对的两边平行的四边形。
•菱形:对角线相等且互相垂直的四边形。
•梯形:两条边平行的四边形。
•矩形:所有边长和角度均相等的四边形。
•一般四边形:没有特殊性质的四边形。
4. 四边形的计算与应用四边形的计算和应用是实际生活中的重要问题之一。
在本章中,我们将重点介绍四边形的周长和面积的计算方法,以及与实际问题的关联。
4.1. 四边形的周长计算四边形的周长是指四边形的四条边的总长度。
计算四边形的周长需要知道每条边的长度,并将它们相加。
对于不规则四边形,可以通过分段计算每一条边的长度再相加。
4.2. 四边形的面积计算四边形的面积是指四边形所覆盖的平面区域的大小。
对于不规则四边形,可以使用面积的近似计算方法,如将其分割成多个简单图形的面积之和,再进行计算。
对于特殊形状的四边形,如矩形和正方形,可以直接使用相应的公式进行计算。
4.3. 实际问题的应用四边形的应用非常广泛,它们可以用于解决各种实际问题。
八年级下期末复习动态几何函数压轴----正方形1.已知:如图,正方形ABCD 的对角线相交于点O ,P 是边BC 上的一个动点,AP 交对角线BD 于点E ,BQ ⊥AP ,交对角线AC 于点F 、边CD 于点Q ,联结EF . (1)求证:OE=OF ;(2)联结PF ,如果PF ⊥BD ,求BP :PC 的值;(3)联结DP ,当DP 经过点F 时,试猜想点P 的位置,并证明你给猜想.2.如图,在正方形ABCD 中,AB =1,E 为边AB 上的一点(点E 不与端点A 、B 重合),F 为BC 延长线上的一点,且AE =CF ,联结EF 交对角线AC 于点G . (1)求证:DE =DF ;(2)联结DG ,求证:DG ⊥EF ; (3)设AE =x ,AG =y ,求y 关于x 的函数解析式及定义域. 证明:FPM DA3.如图,已知正方形ABCD ,AB =4,动点M 、N 分别从D 、B 两点同时出发,且都以1个单位/秒的速度匀速运动,点M 沿DA 向终点A 运动,点N 沿BC 向终点C 运动.过点M 作MP ⊥AD ,交AC 于点P ,连结NP . 设运动时间为x 秒. (1) PM 的长为 (用含x 的代数式表示);(2)试求△NPC 的面积S 与时间x 的函数表达式并写出定义域; (3)当△NPC 为一个等腰三角形时,求出所有满足条件的x 值.4.在正方形ABCD 中,点P 是CB 延长线上一个动点,连接PA 、PD ,点M 、N 分别为BC 、AP 的中点,连接MN 交PD 于点Q . (1)如果正方形边长为2,且MN =2,求BP 的长;(2)试判断在点P 运动的过程中QP 与QM 的数量关系,并加以证明.NMQ PBDA C(第4题图)5.如图,已知正方形ABCD 的边长为3,E 为对角线BD 上一动点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)如图①,如果点E 运动到离B 点的距离为2,此时DF 的长为 ,EG 的长为 ; (2)如图②,E 点在BD 上无论运动到何处,(不与B ,D 重合),猜想:EG 与CG 有什么关系?并证明你的猜想;(3)如图③,将图中△BEF 绕B 点逆时针旋转45度,取DF 中点G ,连接EG ,CG .问(2)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由。
初二数学-“四边形(Ⅰ)”的解题方法与技巧-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初二数学“四边形(Ⅰ)”的解题方法与技巧学习要求1.理解多边形及其有关概念,掌握多边形的内角和定理与多边形的外角和定理;2.理解平行四边形的概念,掌握平行四边形的性质定理和判定定理,会用平行四边形的性质定理与判定定理来解决简单的几何证明和计算问题。
3.理解矩形、菱形、正方形的概念,清楚它们之间的内在关系;掌握矩形、菱形、正方形的特殊性质和判别方法,并能运用这些知识进行有关简单的证明和计算.本章学习的能力训练点是结合特殊四边形性质和判定方法以及相关问题的证明,进一步发展逻辑思维能力和推理论证的表达能力.方法点拨考点1:多边形的内角和定理与多边形的外角和定理1.(n+1)边形的内角和比n边形的内角和大()A.180°; B.360°; C.n·180°; D.n·360°.变式演练:一个多边形除去一个内角之外,其余各内角之和是2570°,则这个内角的度数为()A.90°; B.105°; C.130°; D.120°.2.若多边形的所有内角与它的一个外角的和为600°,求边数和内角和.变式演练:如果各角都相等的多边形的一个内角是它的外角的n倍,则这个多边形的边数是()答案:BA.不存在; B.2n+2; C.2n-1 ; D.以上都不对.3.如下几个图形是五角星和它的变形.(1)图(1)中是一个五角星,求∠A+∠B+∠C+∠D+∠E.(2)图(1)中的点A向下移到BE上时,五个角的和(即∠CAD+∠B+∠C+∠D+∠E)有无变化?如图(2),说明你的结论的正确性.(3)把图(2)中的点C 向上移动到BD 上时,五个角的和(即∠CAD +∠B+∠ACD +∠D +∠E )有无变化?如图(3),说明你的结论的正确性.考点2:平行四边形的性质与判定应用1.顺次联结任意四边形各边中点所得到的四边形一定是( ) A .平行四边形; B .矩形; C .菱形; D .正方形 2.(Ⅰ)已知:如上图,ABCD 的对角线AC BD 、相交于点O ,EF 过点O 与AB CD 、分别相交于点E F 、.求证:BE DF =(Ⅱ)请写出使如下图所示的四边形ABCD 为平行四边形的条件(例如,填:AB CD ∥且AD BC ∥.在不添加辅助线的情况下,写出除上述条件外的另外四组条件,将答案直接写在下面的横线上.)(1): ; (2): ; (3): ; (4): .变式演练:1.如图,已知ABCD 中,E 为AD 的中点,CE 的延长线交BA 的延长线于点F .(1)求证:CD FA =;DACO BDAE CFOB(2)若使F BCF ABCD ∠=∠,的边长之间还需再添加一个什么条件?请你补上这个条件,并进行证明(不要再增添辅助线).2.如图,在ABCD 中,E 为BC 边上一点,且AB AE =.(1)求证:ABC EAD △≌△.(2)若AE 平分DAB ∠,25EAC =∠,求AED ∠的度数.考点3:特殊平行四边形的性质与判定应用1.如图,将矩形纸片ABCD (图1)按如下步骤操作:(1)以过点A 的直线为折痕折叠纸片,使点B 恰好落在AD 边上,折痕与BC 边交于点E (如图2);(2)以过点E 的直线为折痕折叠纸片,使点A 落在BC 边上,折痕EF 交AD 边于点F (如图3);(3)将纸片收展平,那么∠AFE 的度数为( )AB CA .60°;B .67.5°;C .72° ;D .75°2.如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA(1)求证:EO =FO ;(2)当点O 运动到何处时,四边形AECF并证明你的结论.3.如图,在Rt ABC △中,60A =∠,点E F ,分别在AB AC ,上,沿EF 对折,使点A 落在BC 上的点D 处,且FD BC ⊥.(1) 确定点E 在AB 上和点F 在AC 上的位置;(2) 求证:四边形AEDF 是菱形.变式演练:已知:如图,在ABCD 中,E F ,分别为边AB CD ,的中点,BD是对角线,AG DB ∥交CB 的延长线于G . (1)求证:ADE CBF △≌△;(2)若四边形BEDF 是菱形,则四边形是什么特殊四边形?并证明你的结论.FD604.如图1,已知正方形ABCD 的对角线AC 、BD 相交于点O E ,是AC 上一点,连结EB ,过点A 作AM BE ⊥,垂足为M AM ,BD F 于点.(1)求证:OE OF =;(2)如图2,若点E 在AC 的延长线上,AM BE ⊥于点M ,交DB 的延长线于点F ,其它条件不变,则结论“OE OF =”还成立吗?如果成立,请给出证变式演练:如图,正方形ABCD 的边长为1,G 为CD 边上的一个动点(点G 与C ,D 不重合),以CG 为一边向正方形ABCD 外作正方形GCEF ,连结DE 交BG 的延长线于H .DC图E(1)求证:① BCG △≌DCE △;② BH ⊥DE . (2)试问当点G 运动到什么位置时,BH 垂直平分DE 请说明理由.5.如图,过四边形ABCD 的四个顶点分别作对角线AC 、BD 的平行线,所围成的四边形EFGH 显然是平行四边形。
上海初二数学总分
摘要:
一、上海初二数学总分的概述
二、上海初二数学总分的考试内容
三、上海初二数学总分的考试形式与分值
四、上海初二数学总分的备考策略
五、总结
正文:
上海初二数学总分是学生在初二阶段学习数学课程后的一次综合性考试,旨在评估学生对数学知识的掌握程度以及应用能力。
考试内容涵盖了初二数学的所有知识点,包括代数、几何、概率与统计等。
上海初二数学总分的考试内容主要包括以下几个方面:
1.代数部分:代数式、方程与不等式、函数及其应用等。
2.几何部分:点、线、面的性质、三角形、四边形、圆等。
3.概率与统计部分:数据的收集、整理与分析、概率及其应用等。
考试形式为笔试,总分为100 分。
其中,选择题占30%,填空题占30%,解答题占40%。
选择题和填空题主要考察学生对基础知识的掌握,解答题则侧重于考察学生的应用能力和解决问题的能力。
为了取得理想的初二数学总分成绩,学生应该制定合理的备考策略。
首先,要全面掌握教材中的知识点,加深对基本概念的理解。
其次,要加强练习,提高解题速度和准确率。
此外,还要注重分析错题,总结经验教训。
总之,上海初二数学总分是对学生数学学习成果的重要衡量标准。
学生应该认真备考,争取取得好成绩。
在备考过程中,要注重基础知识的学习,加强解题能力的训练,并及时总结经验教训。
初二数学四边形的折叠问题技巧初二数学四边形的折叠问题技巧数学中的几何形状是我们学习的重要内容之一。
四边形作为一种常见的几何形状,其折叠问题技巧也是我们需要掌握的。
本文将介绍初二数学中四边形的折叠问题技巧。
一、矩形的折叠问题技巧矩形是一种特殊的四边形,其两对边相等且平行。
在处理矩形的折叠问题时,我们需要注意以下几个技巧。
1. 折叠对角线:将一个矩形沿对角线方向折叠,可以得到重叠的两个直角三角形。
这个技巧在解决一些矩形面积、周长等问题时很有用。
2. 平行线折叠:我们还可以将矩形沿其中一对平行边折叠,使得另外一对平行边重合。
这样可以得到一个与原来矩形相似且大小相等的矩形。
这个技巧在解决一些矩形相似性质的问题时很有帮助。
二、平行四边形的折叠问题技巧平行四边形是一种具有两对平行边的四边形。
在处理平行四边形的折叠问题时,我们也可以运用一些技巧。
1. 对折:可以将平行四边形沿两对平行边分别对折,使得两对对折线上的点重合。
这样可以证明平行四边形的对角线互相平分。
2. 平移:可以将平行四边形平移,使得相邻两边重合,从而得到一个与原平行四边形相似的形状。
这个技巧在解决一些平行四边形相似或面积问题时很有用。
三、菱形的折叠问题技巧菱形是一种特殊的平行四边形,其四条边相等且对角线垂直。
在折叠菱形时,我们可以运用一些技巧。
1. 中点折叠:可以将菱形沿对角线方向折叠,使得两个对角线的中点重合。
这样可以得到一个与原菱形相似的等腰直角三角形。
2. 对称折叠:可以将菱形沿其中一条对称轴折叠,使得两个顶点重合。
这样可以得到一个与原菱形相似的小菱形。
四、梯形的折叠问题技巧梯形是一种具有一对平行边的四边形。
在折叠梯形时,有如下技巧可用。
1. 平行线折叠:可以将梯形沿长边折叠,使得两个平行边重合。
这样可以得到一个与原梯形相似的矩形。
这个技巧在解决一些梯形相似性质的问题时很有帮助。
2. 对称折叠:可以将梯形沿对称轴折叠,使得两个底边重合。
这样可以得到一个与原梯形相似的小梯形。
初二数学平行四边形的判定知识精讲人教义务几何【学习目标】1.掌握并会证明平行四边形的四个判定定理.2.能灵活运用平行四边形的五种判定方法进行有关的计算和证明.【主体知识归纳】平行四边形的判定:1.两组对边分别平行的四边形叫做平行四边形.2.判定定理1:两组对角分别相等的四边形是平行四边形.3.判定定理2:两组对边分别相等的四边形是平行四边形.4.判定定理3:对角线互相平分的四边形是平行四边形.5.判定定理4:一组对边平行且相等的四边形是平行四边形.【基础知识精讲】1.平行四边形的判定定理,是相应性质定理的逆定理,学习时将它们进行对照,有利于记忆.2.凡是可以用平行四边形知识证明的问题,不要再回到用三角形全等证明,应直接运用平行四边形的性质和判定去解决问题.平行四边形的知识运用包括:(1)直接运用平行四边形的性质去解决某些问题,例如求角的度数,线段的长度,证明角相等或互补,证明线段相等或倍、分等;(2)判定一个四边形是平行四边形,从而判定直线平行等;(3)先判定一个四边形是平行四边形,然后再用平行四边形的性质去解决某些问题.【例题精讲】[例1]在四边形ABCD中,AC和BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法:(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”,那么四边形ABCD一定是平行四边形;(4)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法有()A.3个 B.4个 C.5个 D.6个剖析:本题是一道给出结论和部分条件,让学生探索附加条件的各种可能性的开放性题目,解答这类选择题,一定要严格按照平行四边形的定义及判定定理,认真考查六种说法.说法(1)符合平行四边形的定义;说法(2)符合平行四边形的判定定理4;说法(3)由AB ∥CD和∠DAB=∠DCB,可推断出AB=CD或AD∥BC,也正确;说法(4)可举出反例;说法(5)能证出BO=DO,符合平行四边形的判定定理3;说法(6)不符合平行四边形的判定定理.答案:B[例2]如图4-23,在ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).图4—23(1)连结_____.(2)猜想:_____=_____.(3)证明:剖析:容易猜想连结BF,证明BF=DE.如图4-24,可连结DF、DB,利用“对角线互相平分的四边形是平行四边形”判定四边形BFDE是平行四边形,从而证明猜想的结论.又可猜想连结DF,证明DF=BE,证明方法可同上面猜想结论的证明方法.图4—24解法一:(1)BF(2)BFDE(3)证明:连结DB、DF,设DB、AC交于点O,∵四边形ABCD是平行四边形,∴AO=OC,DO=OB,∵AE=FC,∴AO-AE=OC-F C.∴EO=FO.∴四边形EBFD为平行四边形.∴BF=DE.解法二:(1)DF(2)DFBE(3)证明:(略)说明:(1)本例解法一中又可通过△BCF≌△DAE等证明BF=DE.(2)本例是结论猜想型的题目,此类题型是中考中常见题型.[例3]如图4-25,已知AD为△ABC的中线,E为AC上一点,连结BE交AD于F,且AE=FE.求证:BF=A C.图4—25剖析:延长AD到N,使DN=AD,构造出平行四边形ABN C.证明:延长AD到N,使DN=AD,连结BN、,则四边形ABNC为平行四边形.∴BN=AC,BN∥AC,∴∠1=∠4.∵AE=FE,∴∠1=∠2.∵∠2=∠3,∠1=∠4,∴∠3=∠4.∴BN=BF,∴BF=A C.说明:当题目中有三角形中线时,常利用加倍中线构造平行四边形,然后再应用平行四边形的知识证题,用这种方法比利用加倍中线构造全等三角形要方便、简捷.【同步达纲练习】1.填空题(1)一个四边形的边长依次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_____.(2)用两个全等三角形按不同方法拼成四边形,在这些四边形中,平行四边形的个数是_____.(3)四边形ABCD中,已知AB∥CD,若再增加条件______,可知四边形ABCD为平行四边形.(4)如图4-26,在ABCD中,E、F分别是对角线BD上两点,且BE=DF,要证明四边形AECF是平行四边形,最简捷的方法是根据_____来证明.图4—26(5)如图4-27,在ABCD中,E、F分别是AB、CD边上的点,且BE=DF,要证明四边形AECF是平行四边形,可证明_____ _____.图4—27(6)在四边形ABCD中,给出下列论断:①AB∥DC;②AD=BC;③∠A=∠C.以其中两个作为题设,另外一个作为结论,用“如果……,那么……”的形式,写出一个你认为正确的命题______.2.选择题(1)下列命题是真命题的是()A.一组对边平行,另一组对边相等的四边形是平行四边形B.一组对边平行,一组对角相等的四边形是平行四边形C.两条平行线间的垂线段就是这两条平行线的距离D.平行四边形的一条对角线平分一组对角(2)如图4-28,四边形ABCD是平行四边形,按下列条件得到的四边形BEDF,不一定是平行四边形的是()图4—28A.DE⊥AC于E,BF⊥AC于F(图①)B.BE平分∠ABC,DF平分∠ADC(图②)C.E是AB的中点,F是CD的中点(图③)D.E是AB上一点,EF⊥AB(图④)(3)把两个全等的不等腰三角形拼成平行四边形,可拼成的不同的平行四边形的个数为()A.1 B.2 C.3 D.4(4)如图4-29,在ABCD中,EF∥BC,GH∥AB,GH、EF的交点P在BD上,图中面积相等的平行四边形有()图4—29A.0对 B.1对 C.2对 D.3对3.如图4-30,在ABCD中,AC、BD交于点O,EF过点O分别交AB、CD于E、F,AO、CO的中点分别为G、H.求证:四边形G E H F是平行四边形.图4—304.如图4-31,已知O是ABCD对角线AC的中点,过点O的直线EF分别交AB、CD 于E、F两点.(1)求证:四边形AECF是平行四边形;(2)填空:不增加辅助线的原图中,全等三角形共有_____对.图4—315.如图4-32,在△ABC中,E、G在BC边上,且BE=GC,AB∥EF∥GH.求证:AB=EF+GH.图4—326.已知:平行四边形ABCD,试用两种方法,将平行四边形ABCD分成面积相等的四个部分.(要求用文字简述你所设计的两种方法,并正确画出图形).【思路拓展题】想一想图4—33如图4-33,田村有一呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树,田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写作法)参考答案【同步达纲练习】1.(1)平行四边形(2)3 (3)AB=CD(或AD∥BC,或∠A=∠C等)(4)对角线互相平分的四边形是平行四边形(5)AECF(6)如果AB∥CD,∠A=∠C,那么AD=B C.2.(1)B (2)D (3)C (4)D3.提示:先证△AOE≌△COF,得OE=OF,再证OG=OH.4.(1)提示:证△AOE≌△COF,得OE=OF(2)25.提示:过E作ED∥AC交AB于D,先证△BED≌△GCH,得BD=GH,再证AD=EF.6.略.【思路拓展题】想一想如图所示。
八年级数学第二学期第二十二章四边形综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点E在边长为5的正方形ABCD的边CD上,将ADE绕点A顺时针旋转90︒到ABF的位置,连接EF,过点A作FE的垂线,垂足为点H,与BC交于点.G若2CG=,则CE的长为()A.54B.154C.4D.9 22、下列说法正确的有()①有一组邻边相等的矩形是正方形②对角线互相垂直的矩形是正方形②有一个角是直角的菱形是正方形④对角线相等的菱形是正方形A.1个B.2个C.3个D.4个3、如图,过点O作直线与双曲线y=kx(k≠0)交于A,B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴、y轴上分别取点E,F,使点A,E,F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1,S2的数量关系是()A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S24、如图,正五边形ABCDE点D、E分别在直线m、n上.若m∥n,∠1=20°,则∠2为()A.52°B.60°C.58°D.56°5、ABCD的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm6、下列说法正确的()A.连接两点的线段叫做两点之间的距离B.过七边形的一个顶点有5条对角线C.若AC=BC,则C是线段AB的中点D.用一个平面去截三棱柱,截面可能是四边形7、下列命题是真命题的是()A.有一个角为直角的四边形是矩形B.对角线互相垂直的四边形是菱形C.一组对边平行,另一组对边相等的四边形是平行四边形D.有一组邻边相等的矩形是正方形8、如图所示,四边形ABCD是矩形,过点D作对角线BD的垂线,交BC的延长线于点E,取BE的中点F,连接DF,DF=5,设AB=x,AD=y,则x2+(y﹣5)2的值为()A.10 B.25 C.50 D.759、如图,在矩形ABCD中,点O为对角线BD的中点,过点O作线段EF交AD于F,交BC于E,OB=EB,点G为BD上一点,满足EG⊥FG,若∠DBC=30°,则∠OGE的度数为()A.30°B.36°C.37.5°D.45°10、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且∠DAE=∠B=80º,那么∠CDE的度数为()A.20ºB.25ºC.30ºD.35º第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若正n边形的每个内角都等于120°,则这个正n边形的边数为________.2、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).3、如图,a//b//c,直线a与直线b c与直线b之间的距离为ABC的三个顶点分别在直线a、直线b、直线c上,则等边三角形的边长是______.4、如图,矩形ABCD的两条对角线AC,BD交于点O,∠AOB=60°,AB=3,则矩形的周长为_____.5、如图,点O是正方形ABCD的称中心O,互相垂直的射线OM,ON分别交正方形的边AD,CD于E,F 两点,连接EF;已知2AD .(1)以点E,O,F,D为顶点的图形的面积为________________;(2)线段EF的最小值是_______________.三、解答题(5小题,每小题10分,共计50分)1、如图,已知正方形ABCD中,点E是边BC延长线上一点,连接DE,过点B作BF DE⊥,垂足为点F,BF与CD交于点G.(1)求证:CG CE=;(2)若BE=DG=BG的长.2、问题背景:课外学习小组在一次学习研讨中,得到了如下两个命题:①如图(1),在正△ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图(2),在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类似的思想提出了如下命题:③如图(3),在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求:(1)请你从①②③三个命题中选择一个进行证明;(2)请你继续完成下面的探索;①在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON 等于多少度时,结论BM=CN成立(不要求证明);②如图(4),在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,∠BON=108°时,试问结论BM=CN是否成立.若成立,请给予证明;若不成立,请说明理由.3、如图(1),正方形ABCD顶点A、B在函数y=kx(k>0)的图象上,点C、D分别在x轴、y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.(1)若点A的横坐标为5,求点D的纵坐标;(2)如图(2),当k=8时,分别求出正方形A′B'C′D′的顶点A′、B′两点的坐标.4、如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明BE=DF.5、如图,已知△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足是E,F是BC的中点,求证:BD=2EF.-参考答案-一、单选题1、B【分析】连接EG ,根据AG 垂直平分EF ,即可得出EG FG =,设CE x =,则5DE x BF =-=,8FG EG x ==-,再根据Rt CEG △中,222CE CG EG +=,即可得到CE 的长.【详解】解:如图所示,连接EG ,由旋转可得,ADE ≌ABF ,AE AF ∴=,DE BF =,又AG EF ⊥,H ∴为EF 的中点,AG ∴垂直平分EF ,EG FG ∴=,设CE x =,则5DE x BF =-=,8FG x =-,8EG x ∴=-,90C ∠=︒,Rt CEG ∴中,222CE CG EG +=,即2222(8)x x +=-, 解得154x =, CE ∴的长为154,故选:B.【点睛】本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.2、D【分析】根据正方形的判定定理依次分析判断.【详解】解:①有一组邻边相等的矩形是正方形,故该项正确;②对角线互相垂直的矩形是正方形,故该项正确;②有一个角是直角的菱形是正方形,故该项正确;④对角线相等的菱形是正方形,故该项正确;故选:D.【点睛】此题考查了正方形的判定定理,正确掌握正方形与矩形菱形的特殊关系及对应添加的条件证得正方形是解题的关键.3、B【分析】过点A作AM⊥x轴于点M,根据反比例函数图象系数k的几何意义即可得出S矩形ODBC=-k、S△AOM=-12k,再根据中位线的性质即可得出S△EOF=4S△AOM=-2k,由此即可得出S1、S2的数量关系.【详解】解:过点A作AM⊥x轴于点M,如图所示.∵AM ⊥x 轴,BC ⊥x 轴,BD ⊥y 轴,∴S 矩形ODBC =-k ,S △AOM =-12k .∵AE =AF .OF ⊥x 轴,AM ⊥x 轴,∴AM =12OF ,ME =OM =12OE ,∴S △EOF =12OE •OF =4S △AOM =-2k ,∴2S 矩形ODBC =S △EOF ,即2S 1=S 2.故选:B .【点睛】本题考查了反比例函数图象系数k 的几何意义以及三角形的中位线,根据反比例函数图象系数k 的几何意义找出S 矩形ODBC =-k 、S △EOF =-2k 是解题的关键.4、D【分析】延长AB 交直线n 于点F ,由正五边形ABCDE ,可得出五边形每个内角的度数,再由三角形外角的性质可得128EGB ∠=︒,根据平行线的性质可得52GFH ∠=︒,最后再利用一次三角形外角的性质即可得.【详解】解:如图所示,延长AB 交直线n 于点F ,∵正五边形ABCDE ,∴108A ABC C D AED ∠=∠=∠=∠=∠=︒,∵120∠=︒,∴1128EGB A ∠=∠+∠=︒,∵m n ∥,∴18052GFH EGB ∠=︒-∠=︒,∴256GBH GFH ∠=∠-∠=︒,故选:D .【点睛】题目主要考查正多边形的内角,平行线的性质,三角形外角的性质等,理解题意,作出辅助线,综合运用这几个性质是解题关键.5、C【分析】根据平行四边形的性质,可得AB =CD ,BC =AD ,然后设3cm,5cm AB x BC x == ,可得到()23532x x += ,即可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AB =CD ,BC =AD ,∵AB :BC =3:5,∴可设3cm,5cm AB x BC x == ,∵ABCD 的周长为32cm ,∴()232AB BC += ,即()23532x x += ,解得:2x = ,∴6cm,10cm AB BC == .故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.6、D【分析】根据两点之间的距离、多边形的对角线、线段中点的定义以及截几何体进行判断即可.【详解】解:A 、连接两点的线段的长度叫做两点间的距离,故原说法错误,该选项不符合题意;B 、过七边形的一个顶点有4条对角线,故原说法错误,该选项不符合题意;C 、当点C 在线段AB 上时,若AC =BC ,则C 是线段AB 的中点,故原说法错误,该选项不符合题意;D 、用垂直于底面的平面去截三棱柱,可得到长方形的的截面,故原说法正确,该选项符合题意; 故选:D .【点睛】本题考查了两点之间的距离、多边形的对角线、截一个几何体以及线段中点的定义,掌握相关定义是正确判断的前提.7、D【分析】根据矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,结合选项进行判断即可.【详解】A.有三个角是直角的四边形是矩形,故本选项为假命题;B.两条对角线互相垂直的平行四边形是菱形,故本选项为假命题;C.一组对边平行且相等的四边形是平行四边形,故本选项为假命题;D.有一组邻边相等的矩形是正方形,故本选项为真命题.故选:D.【点睛】考查矩形的判定、菱形的判定、平行四边形的判定及正方形的判定,熟练掌握它们的判定方法是解题的关键.8、B【分析】根据题意知点F是Rt△BDE的斜边上的中点,因此可知DF=BF=EF=5,根据矩形的性质可知AB=DC=x,BC=AD=y,因此在Rt△CDF中,CD2+CF2=DF2,即可得答案.【详解】解:∵四边形ABCD是矩形,AB=x,AD=y,∴CD=AB=x,BC=AD=y,∠BCD=90°,又∵BD⊥DE,点F是BE的中点,DF=5,∴BF=DF=EF=5,∴CF=5-BC=5-y,∴在Rt△DCF 中,DC 2+CF 2=DF 2,即x 2+(5-y )2=52=25,∴x 2+(y -5)2=x 2+(5-y )2=25,故选:B .【点睛】本题考查了直角三角形斜边中线等于斜边的一半、矩形的性质、勾股定理,做题的关键是利用直角三角形斜边中线等于斜边的一半求出BF 的长度.9、C【分析】根据矩形和平行线的性质,得30DBC BDA ∠=∠=︒;根据等腰三角形和三角形内角和性质,得∠BOE ;根据全等三角形性质,通过证明OBE ODF △∽△,得OE OF =;根据直角三角形斜边中线、等腰三角形、三角形内角和性质,推导得OFG ∠,再根据余角的性质计算,即可得到答案.【详解】∵矩形ABCD∴//AD BC∴30DBC BDA ∠=∠=︒∵OB =EB , ∴180752DBC BOE BEO ︒-∠∠=∠==︒ ∴75FOG BOE ∠=∠=︒∵点O 为对角线BD 的中点,∴OB OD =OBE △和ODF △中30DBC BDA OB OD BOE DOF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴OBE ODF △∽△∴OE OF =∵EG ⊥FG ,即90EGF ∠=︒∴OE OF OG ∴18052.52FOG OFG OGF ︒-∠∠=∠==︒ ∴9037.5OGE OGF ∠=︒-∠=︒故选:C .【点睛】本题考查了矩形、平行线、全等三角形、等腰三角形、三角形内角和、直角三角形的知识;解题的关键是熟练掌握矩形、全等三角形、等腰三角形、直角三角形斜边中线的性质,从而完成求解.10、C【分析】依题意得出AE =AB =AD ,∠ADE =50°,又因为∠B =80°故可推出∠ADC =80°,∠CDE =∠ADC -∠ADE ,从而求解.【详解】∵AD ∥BC ,∴∠AEB =∠DAE =∠B =80°,∴AE =AB =AD ,在三角形AED 中,AE =AD ,∠DAE =80°,∴∠ADE =50°,又∵∠B =80°,∴∠ADC =80°,∴∠CDE =∠ADC -∠ADE =30°.故选:C .【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得∠ADE 的度数.二、填空题1、6【分析】多边形的内角和可以表示成(2)180n -⋅︒,因为所给多边形的每个内角均相等,故又可表示成120n ︒,列方程可求解.【详解】解:设所求正n 边形边数为n ,则120(2)180n n ︒=-⋅︒,解得6n =,故答案是:6.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解题的关键是要会根据公式进行正确运算、变形和数据处理.2、AC =BD 且AC ⊥BD (答案不唯一)【分析】根据正方形的判定定理,即可求解.【详解】解:当AC =BD 时,平行四边形ABCD 为菱形,又由AC ⊥BD ,可得菱形ABCD 为正方形,所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.故答案为:AC=BD且AC⊥BD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.3、【分析】如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,先证明四边形ADEF是矩形,得到AF=DE,AD=EF,再由直线a与直线b c与直线b之间的距==+=AB=AC=BC=x,由勾股定理BF=BE=AD EF BF BE得:AF=,EC=CD=AF EC CD=+,即可得到=【详解】解:如图所示,过点A作AD⊥直线c于D,过点B作EF⊥直线b分别交直线a、c于F、E,∵a∥b∥c,∴AD⊥直线a,EF⊥直线a,EF⊥直线c,∴四边形ADEF是矩形,∴AF=DE,AD=EF,∵直线a与直线b c与直线b之间的距离为∴BF=BE=∴AD EF BF BE==+=∵△ABC是等边三角形,∴可设AB =AC =BC =x ,由勾股定理得:AF =EC =,CD =又∵AF EC CD =+,∴22231227x x x -=-+-+∴236x -=∴()()422272129641227x x x x -+=--∴()4242721296439324x x x x -+=-+,∴424272129641561296x x x x -+=-+,∴423840x x -=,解得x =,∴△ABC 的边长为故答案为:【点睛】本题主要考查了等边三角形的性质,矩形的性质与判定,勾股定理,平行线的间距,解题的关键在于熟练掌握相关知识.4、663##【分析】根据矩形性质得出AD=BC,AB=CD,∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,推出OA=OB=OC=OD,得出等边三角形AOB,求出BD,根据勾股定理求出AD即可.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,BO=OD=12BD,AC=BD,∴OA=OB=OC=OD,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD的周长是AB+BC+CD+AD=故答案为:【点睛】本题考查了矩形性质,等边三角形的性质和判定,勾股定理等知识点,关键是求出AD 的长. 5、【分析】(1)连接OA 、OD ,根据正方形的性质和全等三角形的判定证明△OAE ≌△ODF ,利用全等三角形的性质得出四边形EOFD 的面积等于△AOD 的面积即可求解;(2)根据全等三角形的性质证得△EOF 为等腰直角三角形,则EFOE ,当OE ⊥AD 时OE 最小,则EF 最小,求解此时在OE 即可解答.【详解】解:(1)连接OA 、OD ,∵四边形ABCD 是正方形,∴OA=OD ,∠AOD =90°,∠EAO =∠FDO =45°,∴∠AOE +∠DOE =90°,∵OE ⊥OF ,∴∠DOF +∠DOE =90°,∴∠AOE =∠DOF ,在△OAE 和△ODF 中,EAO FDO OA ODAOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△OAE ≌△ODF (ASA ),∴S △OAE =S △ODF ,∴S 四边形EOFD = S △ODE +S △ODF = S △ODE +S △OAE = S △AOD = 14S 正方形ABCD ,∵AD=2,∴S四边形EOFD= 14×4=1,故答案为:1;(2)∵△OAE≌△ODF,∴OE=OF,∴△EOF为等腰直角三角形,则EF OE,当OE⊥AD时OE最小,即EF最小,∵OA=OD,∠AOD=90°,∴OE=12AD=1,∴EF.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等角的余角相等、等腰直角三角形的判定与性质、垂线段最短,熟练掌握相关知识的联系与运用是解答的关键.三、解答题1、(1)见解析;(2)BG【分析】(1)由正方形的性质可得BC DC =,BCG DCE ∠=∠,由E ∠的余角相等可得∠CBG =∠CDE ,进而证明△BCG ≌△DCE ,从而证明CG =CE ;(2)证明正方形的性质可得BC DC =,结合已知条件即可求得,CG BC ,进而勾股定理即可求得BG 的长【详解】(1)∵BF ⊥DE∴∠BFE =90°∵四边形ABCD 是正方形∴∠DCE =90°BC DC =,BCG DCE ∴∠=∠∴∠CBG +∠E =∠CDE+∠E ,∴∠CBG =∠CDE∴△BCG ≌△DCE∴CG =CE(2)∵BC DC =,且BE =DG =∴CE CG =∵CG =CE∴CG BC =在Rt BCG 中,BG ==【点睛】本题考查了正方形的性质,全等三角形的性质与判定,勾股定理,掌握三角形全等的性质与判定与勾股定理是解题的关键.2、(1)选①或②或③,证明见详解;(2)①当2180()-∠︒=n BON n 时,结论BM CN =成立;②当108BON ∠=︒时,BM CN =还成立,证明见详解.【分析】(1)命题①,根据等边三角形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CAN ≌,再由全等三角形的性质即可证明;命题②,根据正方形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;命题③,根据正五边形的性质及各角之间的等量代换可得:13∠=∠,然后依据全等三角形的判定定理可得:BCM CDN ≌,再由全等三角形的性质即可证明;(2)①根据(1)中三个命题的结果,得出相应规律,即可得解;②连接BD 、CE ,根据全等三角形的判定定理和性质可得:BCD CDE ≌, BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,利用各角之间的关系及等量代换可得:BDM CEN ∠=∠, DBM ECN ∠=∠,继续利用全等三角形的判定定理和性质即可得出证明.【详解】解:(1)如选命题①,证明:如图所示:∵ 60BON ∠=︒,∴ 1260∠+∠=︒,∵ 3260∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1360BC CA BCM CAN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CAN ≌,∴ BM CN =;如选命题②,证明:如图所示:∵ 90BON ∠=︒,∴ 1290∠+∠=︒,∵ 3290∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,1390BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;如选命题③,证明:如图所示:∵ 108BON ∠=︒,∴ 12108∠+∠=︒,∵ 23108∠+∠=︒,∴ 13∠=∠,在 BCM ∆与ΔΔΔΔ中,13108BC CD BCM CDN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴ BCM CDN ≌,∴ BM CN =;(2)①根据(1)中规律可得:当2180()-∠︒=n BON n 时,结论BM CN =成立;②答:当108BON ∠=︒时,BM CN =成立.证明:如图所示,连接BD 、CE ,在BCD 和CDE 中,108BC CD BCD CDE CD DE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴ BCD CDE ≌,∴ BD CE =,BDC CED ∠=∠,DBC ECD ∠=∠,∵ 108CDE DEN ∠=∠=︒,∴ BDM CEN ∠=∠,∵ 108OBC OCB ∠+∠=︒,108OCB OCD ∠+∠=︒.∴ MBC NCD ∠=∠,又∵ 36DBC ECD ∠=∠=︒,∴ DBM ECN ∠=∠,在BDM 和CEN 中,BDM CEN BD CE DBM ECN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ BDM CEN ≌,∴ BM CN =.【点睛】题目主要考查全等三角形的判定定理和性质,正多边形的内角,等腰三角形的性质,三角形内角和定理等,理解题意,结合相应图形证明是解题关键.3、(1)5;(2)A ′、B ′两点的坐标分别为(2,4),(4,2).【分析】(1)过点A 作AE ⊥y 轴于点E ,则∠AED =90︒利用正方形的性质得AD =DC ,∠ADC =90︒,再根据等角的余角相等得到∠EDA =∠OCD ,利用全等三角形的判定方法可判断出△AED ≌△DOC ,从而得到OD =EA =5,于是确定点D 的纵坐标;(2)作y A M '⊥轴于M ,B N x '⊥轴于点N ,设OD '=a ,OC '=b ,同理可得B C N C D O A D E ''''''△≌△≌△,利用全等的性质得C N OD A M a '''===,B N C O D M b '''===则A a a b '+(,),B a b b '+(,),再根据反比例函数图象上点的坐标特征得到()8a a b +=,()8b a b +=,解方程组求出a 、b ,从而得到A ',B '两点的坐标.【详解】解:(1)如图,过点A 作AE ⊥y 轴于点E ,则∠AED =90︒.∵四边形ABCD 为正方形,∴AD =DC ,∠ADC =90︒,∴∠ODC +∠EDA =90︒.∵∠ODC +∠OCD =90︒,∴∠EDA =∠OCD ,在△AED 和△DOC 中AED DOC EDA OCD AD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△DOC (AAS ),∴OD =EA =5,∴点D 的纵坐标为5;(2)作y A M '⊥轴于M ,B N x '⊥轴于点N ,设OD '=a ,OC '=b ,同理可得B C N C D O A D E ''''''△≌△≌△∴C N OD A M a '''===,B N C O D M b '''===∴A a a b '+(,),B a b b '+(,), ∵点A ′、B ′在反比例函数y =8x的图象上,∴()8a a b +=,()8b a b +=,∴解得a =b =2或a =b =﹣2(舍去),∴A ',B '两点的坐标分别为(2,4),(4,2).【点睛】本题主要考查了反比例函数的图象性质,正方型的性质,全等三角型的判定及性质等知识点,合理做出辅助线是解题的关键.4、见详解【分析】由题意易得AB =CD ,AB ∥CD ,AE =CF ,则有∠BAE =∠DCF ,进而问题可求证.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∵E ,F 是对角线AC 的三等分点,∴AE =CF ,在△ABE 和△CDF 中,AB CD BAE DCF AE CF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABE ≌△CDF (SAS ),∴BE =DF .【点睛】本题主要考查平行四边形的性质及全等三角形的性质与判定,熟练掌握平行四边形的性质及全等三角形的性质与判定是解题的关键.5、见解析.【分析】先证明,CE DE = 再证明EF 是△CDB 的中位线,从而可得结论.【详解】证明:∵AD=AC,AE⊥CD∴CE=ED∵F是BC的中点∴EF是△CDB的中位线∴BD=2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.。