人教版数学八年级上册 分式解答题综合测试卷(word含答案)
- 格式:doc
- 大小:468.00 KB
- 文档页数:10
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
15.3 分式方程一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?20.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?21.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?22.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)23.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?24.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?25.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?26.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.27.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.30.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.15.3 分式方程参考答案一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?【解答】解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解答】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【解答】解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.20.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;。
人教版八年级数学上册《15.2分式的运算》练习题-附带答案一、单选题1.化简的结果为()A.a B.C.D.2.下列计算正确的是()A.B.C.D.3.已知则A=()A.B.C.D.x2﹣14.当分式与经过计算后的结果是时则它们进行的运算是()A.分式的加法B.分式的减法C.分式的乘法D.分式的除法5.已知实数a、b满足且则的值为()A.-2 B.-1 C.1 D.26.如果那么的值是()A.正数B.负数C.零D.不确定7.已知那么之间的大小关系是()A.B.C.D.8.一项工程甲单独做需要m天完成乙单独做需要n天完成则甲、乙合作完成工程需要的天数为()A.m+n B.C.D.二、填空题9..10.计算: = .11.将写成只含有正整数指数幂的形式:.12.若a≠0 b≠0 且4a﹣3b=0 则的值为.13.我们常用一个大写字母来表示一个代数式已知则化简的结果为.三、计算题14.计算下列各小题(1)(2)(3)15.先化简再求值:其中.16.先化简再求值:其中x取不等式组的整数解中的一个值.17.老师所留的作业中有这样一个分式的计算题甲、乙两位同学完成的过程分别如下:甲同学:=第一步=第二步乙同学:=第一步=第二步=第三步=第三步老师发现这两位同学的解答过程都有错误.(1)请你从甲、乙两位同学中选择一位同学的解答过程帮助他分析错因并加以改正.我选择同学的解答过程进行分析(填“甲”或“乙”).该同学的解答从第步开始出现错误错误的原因是(2)请重新写出完成此题的正确解答过程:参考答案:1.A2.D3.B4.A5.A6.B7.B8.C9.110.211.12.-13.14.(1)解:原式(2)解:原式(3)解:原式.15.解:原式当时原式.16.解:===解不等式组得2≤x<5整数解有2 3 4因为x不能取2和4 所以x只能取3当x=3时原式=-217.(1)甲/乙一/二通分时第一个分式的分子少乘了x-1/直接去掉分母(2)解:(选甲为例)===。
八年级上册数学《分式》单元测试卷(时间:120分钟满分:150分)一、填空题1.__________,__________.2.当x______时,分式有意义.3.若,则__________.4.__________,__________.5.当x______时,分式的值为正.6.=__________.7.化简的结果是__________.8.写出下列分式中的未知的分子或分母:(1);(2);(3).9.分式方程若要化为整式方程,在方程两边同乘的最简公分母是__________.二、选择题10.在式子中,分式的个数是()A . 2个B . 3个C . 4个D . 5个11.若分式的值为0,则x的值是()A . 2或﹣2B . 2C . ﹣2D . 012.把实数用小数表示为()A . 0.0612B . 6120C . 0.00612D . 61200013.解分式方程﹣3=时,去分母可得()A . 1﹣3(x﹣2)=4B . 1﹣3(x﹣2)=﹣4C . ﹣1﹣3(2﹣x)=﹣4D . 1﹣3(2﹣x)=414.把分式中的x、y都扩大3倍,则分式的值( ).A . 扩大3倍B . 扩大6倍C . 缩小为原来的D . 不变15.根据分式的基本性质,分式可变形为()A .B .C .D .16.对分式通分时,最简公分母是()A .B .C .D .17.下列计算中正确的是()A .B .C .D .18.下列分式中,最简分式是()A .B .C .D .19.将分式方程化为整式方程时,方程两边应同乘()A .B .C .D .20.方程的解是()A . 0B . 2C . 3D . 无解21.计算÷(x-),结果正确的是( )A .B . 1C .D . -122.已知关于x的分式方程=1的解是负数,则m的取值范围是()A . m≤3B . m≤3且m≠2C . m<3D . m<3且m≠2三、解答题23.计算:(1);(2).24.已知x=+1,求代数式的值.25.已知,求的值.26. (8分)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.27.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、填空题1.__________,__________.[答案] (1). (2). -125[解析][分析]根据负指数幂的运算法则解题.[详解],= -125.故本题答案为:;-125.[点睛]本题考查了学生计算的能力.解题关键是熟练掌握负指数幂的计算法则.2.当x______时,分式有意义.[答案].[解析][分析]分母不为零时,分式有意义.[详解]当2x﹣1≠0,即x时,分式有意义.故答案为.[点睛]本题考点:分式有意义.3.若,则__________.[答案][解析][分析]根据负整数指数幂的逆运算解答即可.[详解]∵x-3n=6,∴.故答案是:.[点睛]考查负整数指数幂问题,解题关键是计算负整数指数幂时,一定要根据负整数指数幂的意义变形.4.__________,__________.[答案] (1). (2).[解析][分析]运用幂的乘方法则和同底数幂乘法法则计算.[详解]== .==.故答案是:(1). (2). .[点睛]考查了幂的乘方和同底数幂乘法,解题的关键是熟记幂的乘方和同底数幂乘法计算法则.5.当x______时,分式的值为正.[答案].[解析][分析]由题意可知分式分子小于0,所以分母也要小于0.[详解]根据题意得,当2x+1<0,即x时,分式的值为正.故答案为.[点睛]本题考点:分式的值.6.=__________.[答案][解析][分析]利用分式的乘方运算首先化简,进而结合单项式除以单项式运算法则求出即可.[详解]解:==×=[点睛]本题考查单项式除以单项式,正确把握运算法则是解题关键.7.化简的结果是__________.[答案][解析][分析]原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果. [详解]解:原式==·=[点睛]本题考查分式的混合运算,熟练掌握运算法则是解本题的关键.8.写出下列分式中的未知的分子或分母:(1);(2);(3).[答案](1);(2);(3)[解析][分析]1、观察(1)中等号左右两边的分子有什么变化,借助分式的性质对分母可进行同样的操作即可得到答案;2、同理,对于(2)、(3)可借助分式的性质进行变形即可.[详解]解:(1)对6mn,得;(2),得;(3)x,得[点睛]本题考查分式的通分、约分,解题关键是熟练掌握分式的性质.9.分式方程若要化为整式方程,在方程两边同乘的最简公分母是__________.[答案][解析][分析]三个分母分别为x+1,x-1和x2-1,所以最简公分母是x2-1.方程两边同乘最简公分母,可把分式方程转换为整式方程.[详解]解:将分式方程化为整式方程,两边同时乘以x2-1.故答案为:x2-1[点睛]本题考查最简公分母的的确定,解题关键是先把各分母进行因式分解,再确定最简公分母.二、选择题10.在式子中,分式的个数是()A . 2个B . 3个C . 4个D . 5个[答案]B[解析][分析]判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.[详解]分式有:,x+共有3个.故选B .[点睛]本题考查了分式的定义,注意π不是字母,是常数,所以不是分式,是整式.11.若分式的值为0,则x的值是()A . 2或﹣2B . 2C . ﹣2D . 0[答案]A[解析][分析]直接利用分式的值为零则分子为零进而得出答案.[详解]∵分式的值为0,∴x2﹣4=0,解得:x=2或﹣2.故选:A .[点睛]此题主要考查了分式的值为零的条件,正确把握定义是解题关键.12.把实数用小数表示为()A . 0.0612B . 6120C . 0.00612D . 612000[答案]C[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为A ×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]6.12×10−3=0.00612,故选:C .[点睛]本题考查用科学记数法表示较小的数,一般形式为A ×10−n,其中1≤|A |<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13.解分式方程﹣3=时,去分母可得()A . 1﹣3(x﹣2)=4B . 1﹣3(x﹣2)=﹣4C . ﹣1﹣3(2﹣x)=﹣4D . 1﹣3(2﹣x)=4[答案]B[解析][分析]方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断.[详解]方程两边同时乘以(x-2),得1﹣3(x﹣2)=﹣4,故选B .[点睛]本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项是解题的关键.14.把分式中的x、y都扩大3倍,则分式的值( ).A . 扩大3倍B . 扩大6倍C . 缩小为原来的D . 不变[答案]D[解析][分析]根据分式的基本性质进行解答即可.[详解]把分式中的x、y都扩大3倍得,=.故选D .[点睛]本题考点:分式的基本性质.15.根据分式的基本性质,分式可变形为()A .B .C .D .[答案]C[解析][分析]分式的恒等变形是依据分式的基本性质,分式的分子分母同时乘以或除以同一个非0的数或式子,分式的值不变.[详解]依题意得:=.故选C .[点睛]本题考查的是分式的性质,将负号提出不影响分式的值.16.对分式通分时,最简公分母是()A .B .C .D .[答案]D[解析][分析]利用分式通分即可求出答案.[详解]最简公分母为:12xy2.故选D .[点睛]本题考查了分式的通分,属于基础题型.17.下列计算中正确的是()A .B .C .D .[答案]D[解析][分析]根据非零数的零次幂等于1,负整数指数幂与正整数指数幂互为倒数,可得答案.[详解]解:A 、,故A 错误;B 、(-1)-1=-1,故B 错误;C 、2A -3=,故C 错误;D 、同底数幂的除法底数不变指数相减,负整数指数幂与正整数指数幂互为倒数,故D 正确;故选:D .[点睛]本题考查负整数指数幂,利用了非零数的零次幂等于1,负整数指数幂与正整数指数幂互为倒数.18.下列分式中,最简分式是()A .B .C .D .[答案]D[解析][分析]根据最简分式的定义即可求出答案.[详解]解:(A )原式=,故A 不是最简分式;(B )原式==x-y,故B 不是最简分式;(C )原式==x-y,故C 不是最简分式;(D ) 的分子分母都不能再进行因式分解、也没有公因式.故选:D .[点睛]本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.19.将分式方程化为整式方程时,方程两边应同乘()A .B .C .D .[答案]D[解析][分析]解题思路: 根据最简公分母的定义即可求得结果.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.[详解]解:、2、的最简公因式是∴方程两边应同乘.故选:D .[点睛]解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.因此确定正确的最简公分母很关键.20.方程的解是()A . 0B . 2C . 3D . 无解[答案]D[解析][分析]分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.[详解]解答:去分母得:1+2(x−3)=4−x,去括号得:1+2x−6=4−x,解得:x=3,经检验x=3是增根,原分式方程无解.故选D[点睛]本题考查解分式方程,解题关键是去分母和验根.21.计算÷(x-),结果正确的是( )A .B . 1C .D . -1[答案]A[解析][分析]先通分,再利用分式的除法法则化简.[详解]÷(x-)=)=)=.故选A .[点睛]通分的方法:把各分式变为同分母.首先要把各个分母进行因式分解,找出各自分母中所含的因式,然后再求最简公分母,最后再计算.22.已知关于x的分式方程=1的解是负数,则m的取值范围是()A . m≤3B . m≤3且m≠2C . m<3D . m<3且m≠2[答案]D[解析][分析]解方程得到方程的解,再根据解为负数得到关于m的不等式结合分式的分母不为零,即可求得m的取值范围.[详解]=1,解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2,故选D .[点睛]本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.三、解答题23.计算:(1);(2).[答案](1)3;(2).[解析][分析](1)先将小括号里的分式通分相加减,在计算分式除法,结果必须化成最简公分式.(2)先通分,再根据同分母分式的减法法则计算即可求解.[详解](1).(2)原式.[点睛]本题考查分式的混合运算,解题关键是通分约分.24.已知x=+1,求代数式的值.[答案][解析][分析]首先将原式进行通分,然后根据同分母的减法计算法则进行计算,最后将x的值代入化简后的式子进行计算得出答案.[详解]原式=,当x=时,原式=.[点睛]本题主要考查的是分式的化简求值问题,属于基础题型.解决这个问题的关键是将分式的分母进行通分,二次根式的计算是这个问题的基础.25.已知,求的值.[答案].[解析]设,根据比例的性质知x=3k,y=4k,z=5k.将它们代入所求的代数式,通过约分求值.[详解]设,则,,.所以.[点睛]此题考查了比例的性质.此题比较简单,解题的关键是注意掌握由(k≠0),得到x=3k,y=4k,z=5k的解题方法.26. (8分)济南与北京两地相距480km,乘坐高铁列车比乘坐普通快车能提前4h到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.[答案]240km/时.[解析]试题分析:首先设普通快车的速度为xkm/h,则高铁列车的平均行驶速度是3xkm/h,根据题意可得等量关系:乘坐普通快车所用时间﹣乘坐高铁列车所用时间=4h,根据等量关系列出方程,再解即可.试题解析:设普通快车的速度为xkm/h,由题意得:=4,解得:x=80,经检验:x=80是原分式方程的解,3x=3×80=240,答:高铁列车的平均行驶速度是240km/h.考点:分式方程的应用.[此处有视频,请去附件查看]27.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?[答案](1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里[分析](1)根据“大巴车行驶全程所需时间=小车行驶全程所需时间+小车晚出发的时间+小车早到的时间”列分式方程求解可得;(2)根据“从学校到相遇点小车行驶所用时间+小车晚出发时间=大巴车从学校到相遇点所用时间”列方程求解可得.[详解](1)设大巴的平均速度为x公里/时,则小车的平均速度为1.5x公里/时,根据题意,得:=++解得:x=40.经检验:x=40是原方程的解,∴1.5x=60公里/时.答:大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)设苏老师赶上大巴的地点到基地的路程有y公里,根据题意,得:+=解得:y=30.答:苏老师追上大巴的地点到基地的路程有30公里.[点睛]本题考查了分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.。
一、选择题1.已知分式24x x+的值是正数,那么x 的取值范围是( )A .x >0B .x >-4C .x ≠0D .x >-4且x ≠02.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变 3.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9-B .8-C .7-D .6-4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2C .3-D .35.如果分式11m m -+的值为零,则m 的值是( ) A .1m =- B .1m = C .1m =±D .0m =6.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( ) A .1B .2C .3D .47.已知2340x x --=,则代数式24xx x --的值是( )A .3B .2C .13D .128.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m -+-=- D .22112323x x x x--=--- 9.大爱无疆,在爆发新冠病毒疫情后,甲,乙两家单位分别组织了员工捐款.已知甲单位捐款7500元,乙单位捐款9800元,甲单位捐款人数比乙单位少10人,且甲单位人均捐款额比乙单位多20元,若设甲单位的捐款人数为x ,则可列方程为( ) A .7500980020x x 10-=- B .9800750020x 10x-=- C .7500980020x x 10-=+D .9800750020x 10x-=+ 10.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2±B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xyx y-中的,x y 都扩大3倍,分式的值不变D .分式211x x ++是最简分式 11.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5B .-5C .15D .15-12.下列各式计算正确的是( )A .33x x y y=B .632m m m=C .22a b a b a b+=++D .32()()a b a b b a -=-- 二、填空题13.当m=______时,解分式方程1m 233(2x 1)2x 1+=--会出现增根. 14.已知5,3a b ab -==,则b aa b+的值是__________. 15.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________. (2)方程{}3min 2,322x x x--=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 16.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1aa =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________.17.已知关于x 的分式方程239133x mx x x ---=--无解,则m 的值为______. 18.计算:()0322--⋅=________.19.分式2222,39a bb c ac 的最简公分母是______. 20.已知1112a b -=,则aba b-的值是________.三、解答题21.某高速公路有300km 的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km ?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.22.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍. (1)甲每小时走多少千米? (2)求甲乙相遇时乙走的路程. 23.解分式方程: (1)1171.572x x += (2)21533x x x -+=-- 24.先化简,再求值:22121124x x x x -+⎛⎫+÷ ⎪--⎝⎭,其中3x =. 25.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---. 26.某工程队用甲、乙两台隧道挖掘机从两个方向挖掘同一条隧道,因为地质条件不同,甲、乙的挖掘速度不同,已知甲、乙同时挖掘3天,可以挖216米,若甲挖2天,乙挖5天可以挖掘270米.(1)请问甲、乙挖掘机每天可以挖掘多少米?(2)若隧道的总长为2400米,甲、乙挖掘机工作20天后,因为甲挖掘机进行设备更新,乙挖掘机设备老化,甲比原来每天多挖m 米,同时乙比原来少挖m 米,最终,甲、乙两台挖掘机完成的时间相同,且各完成隧道总长的一半,请求出m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】若24x x+的值是正数,只有在分子分母同号下才能成立,即x +4>0,且x≠0,因而能求出x 的取值范围. 【详解】解:∵24x x +>0, ∴x +4>0,x≠0, ∴x >−4且x≠0. 故选:D . 【点睛】本题考查分式值的正负性问题,若对于分式ab(b≠0)>0时,说明分子分母同号;分式ab(b≠0)<0时,分子分母异号,也考查了解一元一次不等式. 2.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3.D解析:D 【分析】先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可. 【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解,∴12x m -≤≤-,∴21m -≥-, 得3m ≤, ∴53m -≤≤, ∵10x -≠,即502m +≠, ∴3m ≠-,∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3, 其和为:-6, 故选:D . 【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.D解析:D 【分析】根据方程1044m xx x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值. 【详解】解:去分母得:m +1−x =0,∵方程1044m xx x --=--无解, ∴x =4是方程的增根, ∴m =3. 故选:D . 【点睛】本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根.5.B解析:B 【分析】先根据分式为零的条件列出关于m 的不等式组并求解即可. 【详解】 解:∵11m m -+=0 ∴m-1=0,m+1≠0,解得m=1. 故选B . 【点睛】本题主要考查了分式为零的条件,掌握分式为零的条件是解答本题的关键,同时分母不等于零是解答本题的易错点.6.B解析:B 【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答. 【详解】解:分式方程不一定会产生增根,故①错误;方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x +=+-是分式方程,故④正确; 故选:B . 【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.7.D解析:D 【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D . 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a bc c--+=-,故B 正确;C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C解析:C 【分析】由设甲单位的捐款人数为x ,甲单位捐款人数比乙单位少10人,得到乙单位人数为(x+10),根据甲单位人均捐款额比乙单位多20元列得方程. 【详解】 解:由题意得:7500980020x x 10-=+, 故选:C . 【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.10.D解析:D 【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案. 【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误;B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误;C 、分式32xyx y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误;D 、分式211x x ++是最简分式,正确; 故选:D . 【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.11.C解析:C 【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解. 【详解】解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=, 解得,15a =, 经检验,15a =是原方程的解, 故选C 【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.12.D解析:D 【分析】根据分式的基本性质进行判断即可得到结论. 【详解】解:A 、33x y 是最简分式,所以33x xy y ≠,故选项A 不符合题意;B 、624m m m=,故选项B 不符合题意;C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D . 【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.二、填空题13.6【分析】分式方程的增根使分式中分母为0所以分式方程会出现增根只能是x=增根不符合原分式方程但是适合分式方程去分母后的整式方程于是将x=代入该分式方程去分母后的整式方程中即可求出m 的值【详解】解:由解析:6 【分析】分式方程的增根使分式中分母为0,所以分式方程1m 233(2x 1)2x 1+=--会出现增根只能是x=12,增根不符合原分式方程,但是适合分式方程去分母后的整式方程,于是将x=12代入该分式方程去分母后的整式方程中即可求出m 的值. 【详解】解:由题意知分式方程()1m 2332x 12x 1+=--会出现增根是x=12,去分母得7-2x=m 将x=12代入得m=6 即当m=6时,原分式方程会出现增根. 故答案为6. 【点睛】本题考查了分式方程增根的性质,增根使最简公分母等于0,不适合原分式方程,但是适合去分母后的整式方程.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果. 【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=,∴22313b a b a a b ab ++==. 故答案为:313.【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键. 16.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条解析:111a -+ 531a +- 2或6 【分析】 (1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.17.1或4【分析】先去分母将原方程化为整式方程根据一元一次方程无解的条件得出一个m 值再根据分式方程无解的条件得出一个m 值即可【详解】解:去分母得:2x-3-mx+9=x-3整理得:(m-1)x=9∴当m解析:1或4【分析】先去分母,将原方程化为整式方程,根据一元一次方程无解的条件得出一个m 值,再根据分式方程无解的条件得出一个m 值即可.【详解】解:去分母得:2x-3- mx+9 =x-3,整理得:(m-1)x=9,∴当m-1=0,即m=1时,方程无解;当m-1≠0时,由分式方程无解,可得x-3=0,即x=3,把x=3代入(m-1)x=9,解得:m=4,综上,m 的值为1或4.故答案为:1或4.【点睛】本题考查了分式方程的解,熟练掌握分式方程及整式方程无解的条件是解题的关键. 18.【分析】根据零指数幂定义及负整数指数幂定义解答【详解】故答案为:【点睛】此题考查实数的计算掌握零指数幂定义及负整数指数幂定义是解题的关键 解析:18【分析】根据零指数幂定义及负整数指数幂定义解答.【详解】()0322--⋅=118⨯=18, 故答案为:18. 【点睛】 此题考查实数的计算,掌握零指数幂定义及负整数指数幂定义是解题的关键.19.【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母这样的公分母叫做最简公分母【详解】分式的分母分别是3b2c9ac2故最简公分母是9ab2c2故答案为:9ab2c2【点睛】本题考查了解析:229ab c【分析】常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.【详解】 分式222239a b b c ac、的分母分别是3b 2c 、9ac 2,故最简公分母是9ab 2c 2.故答案为:9ab 2c 2.【点睛】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母. 一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里. ②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.(1)甲、乙工程队每天能完成维修公路的长度分别是8km 和4km ;(2)能,理由见解析【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x-=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =, 经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.22.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x-=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键.23.(1)1207x=;(2)无解【分析】(1)先去分母,解整式方程,求解后检验是否为原分式方程的解即可;(2)先去分母,解整式方程,求解后检验是否为原分式方程的解即可.【详解】(1)解:1171.572x x+=方程两边都乘72x,得:72+48=7x,解得:1207x=,经检验:1207x=是原方程的解;(2)21533xx x-+=--方程两边都乘(3x-),得:x-2-1=5(x-3),解得:3x=,检验:当3x=时,x-3=3-3=0,是增根,故原方程无解.【点睛】此题考查解分式方程,掌握解分式方程的步骤:去分母化为整式方程,解整式方程,检验解的情况.24.21xx+-;52【分析】先计算括号内的运算,然后计算除法,把分式进行化简得到最简分式,再把3x=代入计算,即可得到答案.【详解】解:原式=()()()22212211x xx xx xx+--+⨯=---;当3x=时,原式=522331=-+.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是掌握运算法则进行计算.25.(1)24m mn+;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.26.(1)甲每天挖30米,乙每天挖42米;(2)m=15【分析】(1)设甲、乙每天分别挖x 、y 米.等量关系:3(甲+乙)216=米、2⨯甲5+⨯乙270=;(2)由题意可知20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,根据关键描述语:甲、乙两台挖掘机在相同时间里各完成隧道总长的一半列出方程,解之即可.【详解】解:(1)设甲、乙每天分别挖x 、y 米.依题意得:3()21625270x y x y +=⎧⎨+=⎩. 解得3042x y =⎧⎨=⎩. 答:甲每天挖30米,乙每天挖42米;(2)由题意可知:20天后甲完成(30×20)米,剩余1(24003020)2⨯-⨯米,乙完成(4220⨯)米,剩余1(24004220)2⨯-⨯米,依题意得:112400302024004220 223042m m⨯-⨯⨯-⨯=+-,解得:m=15,经检验:m=15是原方程的解.【点睛】本题考查了二元一次方程组的应用,分式方程的应用,找到等量关系是解题的关键,切记,分式方程一定要验根.。
第十五章 分式15.1分式专题一 分式有意义的条件、分式的值为0的条件1.使代数式x -1有意义,那么x 的取值范围是( )A .x ≥0B .x ≠1C .x >0D .x ≥0且x ≠12.如果分式23273x x --的值为0,则x 的值应为 .3.若分式2299x x x --6+的值为零,求x 的值.专题二 约分4.化简222m mn n m mn -2+-的结果是( )A .2n 2B .m nm - C .m n m n -+ D .m nm +5.约分:29()2727a y x x y --=____________.6.从下列三个代数式中任选两个构成一个分式,并将它化简:4x 2-4xy +y 2,4x 2-y 2,2x -y .状元笔记【知识要点】1.分式的概念一般地,如果A,B表示两个整式,并且B中含有字母,那么式子AB叫做分式.2.分式的基本性质分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为:A B =CBCA⋅⋅,AB=A CB C÷÷(其中A,B,C是整式,C≠0).3.约分与通分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分.通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.【温馨提示】1.分式的值为0受到分母不等于0的限制,“分式的值为0”包含两层意思:一是分式有意义,二是分子的值为0,不要误解为“只要分子的值为0,分式的值就是0”.2.分式的基本性质中的A、B、C表示的都是整式,且C≠0.3.分子、分母必须“同时”乘C(C≠0),不要只乘分子(或分母).4.性质中“分式的值不变”这句话的实质,是当字母取同一值(零除外)时,变形前后分式的值是相等的.但是变形前后分式中字母的取值范围是变化的.【方法技巧】1.分式的符号法则可总结为:一个负号随意跑,两个负号都去掉.就是说,分式中若出现一个负号,则此负号可“随”我们的“意”(即根据题目要求)跑到分子、分母以及分式本身三者中的任何一个位置上;若分式中出现两个负号,则可以将这两个负号同时去掉.[来源:数理化网]2.分式的分子、分母系数化整问题的基本做法是分式的分子、分母都乘同一个“适当”的不为零的数,这里的“适当”的数又分两种情况:若分式分子、分母中的系数都是分数时,“适当”的数就是分子、分母中各项系数的所有分母的最小公倍数;若分式的分子、分母中各项系数是小数时,则“适当的数”就是10n,其中n是分子、分母中各项系数的小数点后最多的位数.最后根据情况需要约分时,则要约分.参考答案:1.D 解析:根据题意得:x ≥0且x -1≠0.解得x ≥0且x ≠1.故选D .2.-3 解析:根据分式值为0,可得⎩⎨⎧≠-=-0302732x x ,解得x =-3. 3.解:∵2299x x x --6+的值为0,∴x 2-9=0且x 2-6x +9≠0.解x 2-9=0,得x =±3.当x =3时,x 2-6x +9=32-6×3+9=0,故x =3舍去.当x =-3时,x 2-6x +9=(-3)2-6×(-3)+9=36.∴当分式2299x x x --6+的值为0时,x =-3.4.B 解析:222m mn n m mn -2+-=2()()m n m m n --=m nm -.故选B .5.3ax ay - 解析:29()2727a y x x y --=29()27()a x y x y --=()3a x y -=3ax ay-.6.解:答案不唯一,如:2222444x xy y x y -+-=2(2)(2)(2)x y x y x y -+-=22xyx y -+.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。
八年级上册数学分式综合题人教版一、单选题(共9道,每道11分)1.在下列各式,,,,,,中,分式的个数为()A.2个B.3个C.4个D.5个答案:C试题难度:三颗星知识点:分式定义2.分式有意义的条件为()A.x≠0且x≠1B.x≠1且x≠3C.x≠0,x≠1且x≠3D.x≠1,x≠2且x≠3答案:D试题难度:三颗星知识点:分式有意义的条件3.如果把分式中的、都扩大2倍,那么分式的值()A.缩小2倍B.扩大2倍C.扩大4倍D.不变答案:B试题难度:三颗星知识点:分式的基本性质4.若分式的值为整数,则整数x有()个。
A.1B.2C.3D.4答案:D试题难度:三颗星知识点:分式的值5.当分式的值为正时,x的范围为()A.B.C.D.答案:B试题难度:三颗星知识点:分式与不等式6.已知,则代数式的值为()A.B.C.4D.-2答案:C试题难度:三颗星知识点:整体代入7.如果,则A,B的值分别为()A.-1,1B.1,-1C.0,2D.2,0答案:A试题难度:三颗星知识点:分式加减逆运算8.先化简,然后从不等式组的解集中,从下面选项中选取你认为合适的一个整数x代入求值,那么应该选择,最后的结果为.()A.5,10B.-5,0C.4,9D.6,11答案:C试题难度:三颗星知识点:选取合适的值代入9.计算的值为()A.B.C.D.答案:B试题难度:三颗星知识点:有一分式分母为1。
一、八年级数学分式解答题压轴题(难)1.已知分式 A =2344(1)11a a a a a -++-÷--(1)化简这个分式;(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和. 【答案】(1)22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】 【分析】(1)根据分式混合运算顺序和运算法则化简即可得; (2)根据题意列出算式2622a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a的范围判断结果与0的大小即可得; (3)由24122a A a a +==+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】解:(1)A=2344(1)11a a a a a -++-÷-- =221311(2)a a a a ---⨯-- =2(2)(2)11(2)a a a a a +--⨯--=22a a +-; (2)变小了,理由如下:∵22a A a +=-, ∴62a B a +=+,∴261622(2)(2)a a A B a a a a ++-=-=-+-+;∵2a >,∴20a ->,24a +>, ∴0A B ->, ∴分式的值变小了;(3)∵A 是整数,a 是整数,则24122a A a a +==+--, ∴21a -=±、2±、4±,∵1a ≠,∴a 的值可能为:3、0、4、6、-2; ∴3046(2)11++++-=; ∴符合条件的所有a 值的和为11. 【点睛】本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.2.阅读下面材料并解答问题材料:将分式322231x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()322231()x x x x x a b --++=-+++, 则323223x x x x ax x a b --++=--+++ ∵对任意x 上述等式均成立, ∴2a =且3a b +=,∴2a =,1b =∴()2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681x x x --+-+的最小值.【答案】(1)3+101x -;(2)8 【解析】 【分析】(1)直接把分子变形为3(x-1)+10解答即可;(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】解:(1)371x x +-=33101x x -+-=()31101x x -+-=3+101x -; (2)由分母为21x -+,可设4268x x --+()()221x x a b =-+++, 则4268x x --+()()221x x a b =-+++ 422x ax x a b =--+++42(1)()x a x a b =---++.∵对于任意的x ,上述等式均成立, ∴168a a b -=⎧⎨+=⎩解得71a b =⎧⎨=⎩∴422681x x x --+-+()()2221711x x x -+++=-+()()222217111x x x x -++=+-+-+22171x x =++-+.∴当x=0时,22171x x ++-+取得最小值8,即 422681x x x --+-+的最小值是8. 【点睛】本题主要考查分式的混合运算,解答本题的关键是理解阅读材料中的方法,并能加以正确应用.3.符号a b c d称为二阶行列式,规定它的运算法则为:a b ad bc c d=-,请根据这一法则解答下列问题:(1)计算:211111xx x +-;(2)若2121122x xx -=--,求x 的值. 【答案】(1)()()111x x +- (2)5【解析】 【分析】(1)根据新定义列出代数式,再进行减法计算;(2)根据定义列式后得到关于x 的分式方程,正确求解即可. 【详解】 (1)原式2111x x x =--+ ()()()()11111x x x x x x -=-+-+-()()111x x =+-;(2)根据题意得:21222x x x--=-- 解之得:5x =经检验:5x =是原分式方程的解 所以x 的值为5. 【点睛】此题考察分式的计算,分式方程的求解,依据题意正确列式是解此题的关键.4.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
(1)甲、乙两次购买饲料的平均单价各是多少?(用字母m 、n 表示) (2)谁的购买方式比较合算? 【答案】(1)2m n +元/千克;2mnm n +元/千克;(2)乙的购货方式合算.【解析】 【分析】(1)表示出甲乙两人的总千克数与总钱数,用总钱数除以总千克数,即可表示出甲、乙两名采购员两次购买饲料的平均单价;(2)由表示出的甲、乙两名采购员两次购买饲料的平均单价相减,通分并利用同分母分式的减法法则计算,整理后根据完全平方式大于等于0,判断其差的正负,即可得到乙的购货方式合算.【详解】(1)根据题意列得:甲采购员两次购买饲料的平均单价为800()16002m n m n++=元/千克;乙采购员两次购买饲料的平均单价为16002800800mnm nm n=++元/千克;(2)222()4()22()2() m n mn m n mn m nm n m n m n++---==+++,∵(m-n)2≥0,2(m+n)>0,∴22m n mnm n+-+,即22m n mnm n++,则乙的购货方式合算.【点睛】此题考查了分式的混合运算的应用,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时,分式的分子分母出现多项式,应将多项式分解因式后再约分.5.“绿色环保,健康出行”新能源汽车越来越占领汽车市场,以“北汽”和“北汽新能源EV500”为例,分别在某加油站和某充电站加油和充电的电费均为 300 元,而续航里程之比则为 1∶4.经计算新能源汽车相比燃油车节约 0.6 元/公里.(1)分别求出燃油车和新能源汽车的续航单价(每公里费用);(2)随着更多新能源车进入千家万户,有条件的小区及用户将享受 0.48 元/度的优惠专用电费.以新能源 EV500 为例,充电 55 度可续航 400 公里,试计算每公里所需电费,并求出与燃油车相同里程下的所需费用(油电)百分比.【答案】(1)燃油车0.8;新能源汽车0.2;(2)8.25%【解析】【分析】(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,根据等量关系式:新能源汽车续航里程:燃油车续航里程=4∶1,列出方程,解之即可.(2)根据总价=单价×数量可得新能源汽车400公里所需费用,再用此费用÷总公里数即可得新能源汽车每公里所需电电费;由(1)知燃油汽车每公里费用,用此费用乘以总公里数可得燃油汽车总费用,再用新能源汽车的总费用÷燃油车相同里程下的所需费用即可得答案.【详解】解:(1)设新能源汽车续航单价为x元/公里,则燃油车续航单价为(x+0.6)元/公里,依题可得:300 x :3000.6x+=4:1,解得:x=0.2,∴燃油车续航单价为:x+0.6=0.2+0.6=0.8(元/公里),答:新能源汽车续航单价为0.2元/公里,燃油车续航单价为0.8元/公里. (2)依题可得新能源汽车400公里所需费用为: 0.48×55=26.4(元),∴新能源汽车每公里所需电电费为: 26.4÷400=0.066(元/公里),依题可得燃油汽车400公里所需费用为: 400×0.8=320(元),∴新能源汽车与燃油车相同里程下的所需费用(油电)百分比为: 26.4÷320=0.0825=8.25%.答:新能源汽车每公里所需电电费为0.066元;新能源汽车与燃油车相同里程下的所需费用(油电)百分比为8.25%. 【点睛】本题主要考查了分式方程的实际应用,找准等量关系,正确列出分式方程是解题的关键.6.为了迎接运动会,某校八年级学生开展了“短跑比赛”。
甲、乙两人同时从A 地出发,沿同一条道路去B 地,途中都使用两种不同的速度1v 与()212v v v <。
甲前一半的路程使用速度1v ,另一半的路程使用速度2v ;乙前一半的时间用速度1v ,另一半的时间用速度2v 。
(1)甲、乙二人从A 地到达B 地的平均速度分别为v v 甲乙、;则=v 甲___________,=v 乙____________(2)通过计算说明甲、乙谁先到达B 地?为什么?【答案】(1)12121222v v v v v v ++;;(2)乙先到达B 地. 【解析】 【分析】(1)设AB 两地的路程为s ,乙从A 地到B 地的总时间为a .先算出前一半的路程所用的时间,后一半的路程所用的时间相加,速度=路程÷时间求出V甲; 先算出前一半的时间所行的路程,后一半的时间所行的路程相加,速度=路程÷时间求出V乙;(2)看甲、乙两人谁先到达B 地,因为路程一定,比较V 甲,V 乙的大小即可. 【详解】(1)设AB 两地的路程为s ,乙从A 地到B 地的总时间为a .v 甲=12121221122v v sv v s s v v =++,v 乙=1212222v a v a v v a ++=.(2)v 乙﹣v 甲=122v v +-12122v v v v +=21212()2()v v v v -+ ∵0<v 1<v 2,∴v 乙﹣v 甲>0,乙先到B 地. 【点睛】本题重点考查了列代数式和分式的混合运算,是一道难度中等的题目.7.某快递公司有甲、乙、丙三个机器人分配快件,甲单独完成需要x 小时,乙单独完成需要y 小时,丙单独完成需要z 小时.(1)求甲单独完成的时间是乙丙合作完成时间的几倍?(2)若甲单独完成的时间是乙丙合作完成时间的a 倍,乙单独完成的时间是甲丙合作完成时间的b 倍,丙单独完成的时间是甲乙合作完成时间的c 倍,求111111a b c +++++的值.【答案】(1)甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)1 【解析】分析:(1)先求出乙丙合作完成时间,再用甲单独完成的时间除以乙丙合作完成时间即可求解;(2)根据“甲单独作完成的天数为乙丙合作完成天数的a 倍”,可得x =11ayz+,运用比例的基本性质、等式的性质及分式的基本性质可得11a +=yz xy yz xz ++;同理,根据“乙单独作完成的天数为甲、丙合作完成天数的b 倍”,可得11b +=xz xy yz xz ++;根据“丙单独作完成的天数为甲、乙合作完成天数的c 倍”,可得11c +=xy xy yz xz ++,将它们分别代入所求代数式,即可得出结果.详解:(1)x ÷[1÷(1y +1z )]=x ÷[1÷y zyz+]=x ÷yzy z+ =xy xzyz+. 答:甲单独完成的时间是乙丙合作完成时间的xy xzyz+倍;(2)由题意得x =11ayz +①,y =11bx z+②,z =11cx y +③.由①得a =x y +x z ,∴a +1=x y +x z +1,∴11a +=11x x y z++=yz xy yz xz ++;同理,由②得11b +=xz xy yz xz ++; 由③得11c +=xy xy yz xz++; ∴111111a b c +++++=yz xy yz xz +++xz xy yz xz +++xy xy yz xz ++=xy yz xz xy yz xz++++=1. 点睛:本题主要考查分式方程在工程问题中的应用及代数式求值.工程问题的基本关系式为:工作总量=工作效率×工作时间.注意两人合作的工作效率等于两人单独作的工作效率之和.本题难点在于将列出的方程变形,用含有x 、y 、z 的代数式分别表示11a +、11b +、11c +的值.8.为了践行“绿色低碳出行,减少雾霾”的使命,小红上班的交通方式由驾车改为骑自行车,小红家距单位的路程是20千米,在相同的路线上,小红驾车的速度是骑自行车速度的4倍,小红每天骑自行车上班比驾车上班要早出发45分钟,才能按原时间到达单位,求小红骑自行车的速度.【答案】小红骑自行车的速度是每小时20千米. 【解析】 【分析】设骑自行车的速度为x 千米/时,则驾车的速度为4x 千米/时.依据“小王每天骑自行车上班比驾车上班要早出发45分钟”列出方程并解答. 【详解】解:设小红骑自行车的速度是每小时x 千米,则驾车的速度是每小时4x 千米.根据题意得:202045460x x =+ 解得x =20经检验x =20是分式方程的解,并符合实际意义 答:小红骑自行车的速度是每小时20千米. 【点睛】本题考查了分式方程的应用.利用分式方程解应用题时,一般题目中会有两个相等关系,这时要根据题目所要解决的问题,选择其中的一个相等关系作为列方程的依据,而另一个则用来设未知数.9.某工程队接到任务通知,需要修建一段长1800米的道路,按原计划完成总任务的13后,为了让道路尽快投入使用,工程队将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的13时,已修建道路多少米? (2)求原计划每小时修建道路多少米?【答案】(1)已修建道路600米;(2)原计划每小时抢修道路140米. 【解析】 【分析】(1)全长1800,原计划已经完成13,单位“1”已知用乘法,已修道路=118003⨯=600米(2)本题可以采用直接设,设原计划每小时修路为x 米,加快后每小时变为1.5x 米,等量关系为:原计划修路时间+提高后修路时间=总时间,列方程即可解出. 【详解】解:(1)已修建道路600米; (2)设原计划每小时抢修道路x 米, 根据题意得:()6001800600x 150x -++%=10解得:x =140,经检验:x =140是原方程的解. 答:原计划每小时抢修道路140米. 【点睛】方程的应用题是中考常考的类型题,设未知数一般有直接设和间接设两种,做题时找好等量关系尤为重要,分式方程解出后要检验增根的情况,排除不合适的解.10.某商家用1200元购进了一批T 恤,上市后很快售完,商家又用2800元购进了第二批这种T 恤,所购数量是第一批购进量的2倍,但单价贵了5元. (1)该商家购进的第一批T 恤是多少件?(2)若两批T 恤按相同的标价销售,最后剩下20件按八折优惠卖出,如果希望两批T 恤全部售完的利润率不低于16%(不考虑其它因素),那么每件T 恤的标价至少是多少元? 【答案】(1)商家购进的第一批恤是40件;(2)每件恤的标价至少40元. 【解析】 【分析】(1)可设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件,根据第二批这种衬衫单价贵了5元,列出方程求解即可;(2)设每件衬衫的标价y元,求出利润表达式,然后列不等式解答.【详解】(1)解:设购进的第一批恤是x件.由题意,得1200280052x x=-解得x=40.经检验,x=40是所列方程的解.所以商家购进的第一批恤是40件.(2)设每件的标价是y元由题意,(40+40×2-20)y+0.8×20y≥(1200+2800)(1+16%)解得y≥40.即每件恤的标价至少40元.【点睛】本题考查的知识点是分式方程的应用和一元一次不等式的应用,解题关键是弄清题意并找出题中的数量关系并列出方程.。