2018年高考物理大一轮复习课时规范训练:第6章-第2节碰撞与能量守恒 含解析
- 格式:doc
- 大小:133.00 KB
- 文档页数:8
六碰撞动量守恒定律第1节动量动量定理动量守恒定律一、冲量、动量和动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)表达式:p=mv.(3)单位:千克·米/秒.符号:kg·m/s.(4)特征:动量是状态量,是矢量,其方向和速度方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的变化量.(2)表达式:F合·t=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.二、动量守恒定律1.系统:相互作用的几个物体构成系统.系统中各物体之间的相互作用力称为内力,外部其他物体对系统的作用力叫做外力.2.定律内容:如果一个系统不受外力作用,或者所受的合外力为零,这个系统的总动量保持不变.3.定律的表达式m1v1+m2v2=m1v1′+m2v2′,两个物体组成的系统初动量等于末动量.可写为:p =p ′、Δp =0和Δp 1=-Δp 24.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.[自我诊断]1.判断正误(1)动量越大的物体,其运动速度越大.(×)(2)物体的动量越大,则物体的惯性就越大.(×)(3)物体的动量变化量等于某个力的冲量.(×)(4)动量是过程量,冲量是状态量.(×)(5)物体沿水平面运动,重力不做功,重力的冲量也等于零.(×)(6)系统动量不变是指系统的动量大小和方向都不变.(√)2.(2017·广东广州调研)(多选)两个质量不同的物体,如果它们的( )A .动能相等,则质量大的动量大B .动能相等,则动量大小也相等C .动量大小相等,则质量大的动能小D .动量大小相等,则动能也相等解析:选AC.根据动能E k =12mv 2可知,动量p =2mE k ,两个质量不同的物体,当动能相等时,质量大的动量大,A 正确、B 错误;若动量大小相等,则质量大的动能小,C 正确、D 错误.3.篮球运动员通常伸出双手迎接传来的篮球.接球时,两手随球迅速收缩至胸前.这样做可以( )A .减小球对手的冲量B .减小球对手的冲击力C .减小球的动量变化量D .减小球的动能变化量解析:选B.由动量定理Ft =Δp 知,接球时两手随球迅速收缩至胸前,延长了手与球接触的时间,从而减小了球对手的冲击力,选项B 正确.4.(2017·河南开封质检)(多选) 如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是( )A .两手同时放开后,系统总动量始终为零B.先放开左手,后放开右手,动量不守恒C.先放开左手,后放开右手,总动量向左D.无论何时放手,两手放开后在弹簧恢复原长的过程中,系统总动量都保持不变,但系统的总动量不一定为零解析:选ACD.当两手同时放开时,系统所受的合外力为零,所以系统的动量守恒,又因开始时总动量为零,故系统总动量始终为零,选项A正确;先放开左手,左边的物体就向左运动,当再放开右手后,系统所受合外力为零,故系统的动量守恒,且开始时总动量方向向左,放开右手后总动量方向也向左,故选项B错,而C、D正确.5.(2017·湖南邵阳中学模拟)一个质量m=1.0 kg的物体,放在光滑的水平面上,当物体受到一个F=10 N与水平面成30°角斜向下的推力作用时,在10 s内推力的冲量大小为________ N·s,动量的增量大小为________ kg·m/s.解析:根据p=Ft,可知10 s内推力的冲量大小p=Ft=100 N·s,根据动量定理有Ft cos 30°=Δp.代入数据解得Δp=50 3 kg·m/s=86.6 kg·m/s.答案:100 86.6考点一动量定理的理解及应用1.应用动量定理时应注意两点(1)动量定理的研究对象是一个质点(或可视为一个物体的系统).(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向.2.动量定理的三大应用(1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小.②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小.(2)应用I=Δp求变力的冲量.(3)应用Δp=F·Δt求恒力作用下的曲线运动中物体动量的变化量.[典例1] (2016·高考全国乙卷)某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析 (1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为Δm Δt=ρv 0S ③ (2)设玩具悬停时其底面相对于喷口的高度为h ,水从喷口喷出后到达玩具底面时的速度大小为v .对于Δt 时间内喷出的水,由能量守恒得12(Δm )v 2+(Δm )gh =12(Δm )v 20④ 在h 高度处,Δt 时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为 Δp =(Δm )v ⑤设水对玩具的作用力的大小为F ,根据动量定理有F Δt =Δp ⑥由于玩具在空中悬停,由力的平衡条件得F =Mg ⑦联立③④⑤⑥⑦式得h =v 202g -M 2g 2ρ2v 20S 2⑧ 答案 (1)ρv 0S (2)v 202g -M 2g 2ρ2v 20S 2(1)用动量定理解题的基本思路(2)对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.1.如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度向左飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,则这一过程中动量的变化量为( ) A.大小为3.6 kg·m/s,方向向左B.大小为3.6 kg·m/s,方向向右C.大小为12.6 kg·m/s,方向向左D.大小为12.6 kg·m/s,方向向右解析:选D.选向左为正方向,则动量的变化量Δp=mv1-mv0=-12.6 kg·m/s,大小为12.6 kg·m/s,负号表示其方向向右,D正确.2. 质量为1 kg的物体做直线运动,其速度图象如图所示.则物体在前10 s内和后10 s内所受外力的冲量分别是( )A.10 N·s10 N·sB.10 N·s-10 N·sC.0 10 N·sD.0 -10 N·s解析:选D.由图象可知,在前10 s内初、末状态的动量相同,p1=p2=5 kg·m/s,由动量定理知I1=0;在后10 s内末状态的动量p3=-5 kg·m/s,由动量定理得I2=p3-p2=-10 N·s,故正确答案为D.3.如图所示,在倾角为θ的斜面上,有一个质量是m的小滑块沿斜面向上滑动,经过时间t1,速度为零后又下滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大小始终是F f,在整个运动过程中,摩擦力对滑块的总冲量大小为________,方向是________;合力对滑块的总冲量大小为________,方向是________.解析:摩擦力先向下后向上,因上滑过程用时短,故摩擦力的冲量为F f(t2-t1),方向与向下运动时的摩擦力的方向相同,故沿斜面向上.合力的冲量为mg(t1+t2)sin θ+F f(t1-t2),沿斜面向下.答案:F f(t2-t1) 沿斜面向上mg(t1+t2)sin θ+F f(t1-t2) 沿斜面向下4.如图所示,一质量为M的长木板在光滑水平面上以速度v0向右运动,一质量为m的小铁块在木板上以速度v0向左运动,铁块与木板间存在摩擦.为使木板能保持速度v0向右匀速运动,必须对木板施加一水平力,直至铁块与木板达到共同速度v0.设木板足够长,求此过程中水平力的冲量大小.解析:考虑M、m组成的系统,设M运动的方向为正方向,根据动量定理有Ft=(M+m)v0-(Mv0-mv0)=2mv0则水平力的冲量I=Ft=2mv0.答案:2mv05.(2017·甘肃兰州一中模拟)如图所示,一质量为M=2 kg的铁锤从距地面h=3.2 m 高处自由下落,恰好落在地面上的一个质量为m=6 kg的木桩上,随即与木桩一起向下运动,经时间t=0.1 s停止运动.求木桩向下运动时受到地面的平均阻力大小.(铁锤的横截面小于木桩的横截面,木桩露出地面部分的长度忽略不计,重力加速度g取10 m/s2) 解析:铁锤下落过程中机械能守恒,则v=2gh=8 m/s.铁锤与木桩碰撞过程中动量守恒,Mv=(M+m)v′,v′=2 m/s.木桩向下运动,由动量定理(规定向下为正方向)得[(M+m)g-f]Δt=0-(M+m)v′,解得f=240 N.答案:240 N6.(2016·河南开封二模)如图所示,静止在光滑水平面上的小车质量M=20 kg.从水枪中喷出的水柱的横截面积S=10 cm2,速度v=10 m/s,水的密度ρ=1.0×103 kg/m3.若用水枪喷出的水从车后沿水平方向冲击小车的前壁,且冲击到小车前壁的水全部沿前壁流进小车中.当有质量m=5 kg的水进入小车时,试求:(1)小车的速度大小;(2)小车的加速度大小.解析:(1)流进小车的水与小车组成的系统动量守恒,设当进入质量为m的水后,小车速度为v1,则mv=(m+M)v1,即v1=mvm+M=2 m/s(2)质量为m的水流进小车后,在极短的时间Δt内,冲击小车的水的质量Δm=ρS(v -v1)Δt,设此时水对车的冲击力为F,则车对水的作用力为-F,由动量定理有-FΔt=Δmv1-Δmv,得F=ρS(v-v1)2=64 N,小车的加速度a=FM+m=2.56 m/s2答案:(1)2 m/s (2)2.56 m/s2考点二动量守恒定律的理解及应用1.动量守恒的“四性”(1)矢量性:表达式中初、末动量都是矢量,需要首先选取正方向,分清各物体初末动量的正、负.(2)瞬时性:动量是状态量,动量守恒指对应每一时刻的总动量都和初时刻的总动量相等.(3)同一性:速度的大小跟参考系的选取有关,应用动量守恒定律,各物体的速度必须是相对同一参考系的速度.一般选地面为参考系.(4)普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.2.动量守恒定律的不同表达形式(1)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(2)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(3)Δp =0,系统总动量的增量为零.[典例2] (2017·山东济南高三质检)光滑水平轨道上有三个木块A 、B 、C ,质量分别为m A =3m 、m B =m C =m ,开始时B 、C 均静止,A 以初速度v 0向右运动,A 与B 碰撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.解析 设A 与B 碰撞后,A 的速度为v A ,B 与C 碰撞前B 的速度为v B ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得对A 、B 木块:m A v 0=m A v A +m B v B ①对B 、C 木块:m B v B =(m B +m C )v ②由A 与B 间的距离保持不变可知v A =v ③联立①②③式,代入数据得v B =65v 0④答案 65v 0应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.1.如图所示,在光滑的水平面上放有一物体M ,物体M 上有一光滑的半圆弧轨道,轨道半径为R ,最低点为C ,两端A 、B 等高,现让小滑块m 从A 点由静止开始下滑,在此后的过程中,则( )A .M 和m 组成的系统机械能守恒,动量守恒B .M 和m 组成的系统机械能守恒,动量不守恒C .m 从A 到C 的过程中M 向左运动,m 从C 到B 的过程中M 向右运动D .m 从A 到B 的过程中,M 运动的位移为mRM +m解析:选B.M 和m 组成的系统机械能守恒,总动量不守恒,但水平方向动量守恒,A 错误,B 正确;m 从A 到C 过程中,M 向左加速运动,当m 到达C 处时,M 向左速度最大,m 从C 到B 过程中,M 向左减速运动,C 错误;在m 从A 到B 过程中,有Mx M =mx m ,x M +x m =2R ,得x M =2mR /(m +M ),D 错误.2.(2016·广东湛江联考)如图所示,质量均为m 的小车和木箱紧挨着静止在光滑的水平冰面上,质量为2m 的小孩站在小车上用力向右迅速推出木箱,木箱相对于冰面运动的速度为v ,木箱运动到右侧墙壁时与竖直墙壁发生弹性碰撞,反弹后能被小孩接住,求:(1)小孩接住箱子后共同速度的大小;(2)若小孩接住箱子后再次以相对于冰面的速度v 将木箱向右推出,木箱仍与竖直墙壁发生弹性碰撞,判断小孩能否再次接住木箱.解析:(1)取向左为正方向,根据动量守恒定律可得推出木箱的过程中0=(m +2m )v 1-mv ,接住木箱的过程中mv +(m +2m )v 1=(m +m +2m )v 2.解得v 2=v 2. (2)若小孩第二次将木箱推出,根据动量守恒定律可得4mv 2=3mv 3-mv ,则v 3=v ,故无法再次接住木箱.答案:(1)v 2(2)否 3.(2017·山东济南高三质检)如图所示,光滑水平轨道上放置长板A (上表面粗糙)和滑块C ,滑块B 置于A 的左端.三者质量分别为m A =2 kg 、m B =1 kg 、m C =2 kg ,开始时C 静止,A 、B 一起以v 0=5 m/s 的速度匀速向右运动,A 与C 相碰撞(时间极短)后C 向右运动,经过一段时间,A 、B 再次达到共同速度一起向右运动,且恰好不再与C 碰撞.求A 与C 发生碰撞后瞬间A 的速度大小.解析:因碰撞时间极短,A 与C 碰撞过程动量守恒,设碰撞后瞬间A 的速度大小为v A ,C 的速度大小为v C ,以向右为正方向,由动量守恒定律得m A v 0=m A v A +m C v C ,A 与B 在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB,A、B达到共同速度后恰好不再与C碰撞,应满足v AB=v C,联立解得v A=2 m/s.答案:2 m/s4.人和冰车的总质量为M,另一木球质量为m,且M∶m=31∶2.人坐在静止于水平冰面的冰车上,以速度v(相对地面)将原来静止的木球沿冰面推向正前方向的固定挡板,不计一切摩擦阻力,设小球与挡板的碰撞是弹性的,人接住球后,再以同样的速度v(相对地面)将球推向挡板.求人推多少次后不能再接到球?解析:设第1次推球后人的速度为v1,有0=Mv1-mv,第1次接球后人的速度为v1′,有Mv1+mv=(M+m)v1′;第2次推球(M+m)v1′=Mv2-mv,第2次接球Mv2+mv=(M+m)v2′……第n次推球(M+m)v n-1′=Mv n-mv,可得v n=n-mv M,当v n≥v时人便接不到球,可得n≥8.25,取n=9.答案:9次课时规范训练[基础巩固题组]1.关于物体的动量,下列说法中正确的是( )A.物体的动量越大,其惯性也越大B.同一物体的动量越大,其速度不一定越大C.物体的加速度不变,其动量一定不变D.运动物体在任一时刻的动量方向一定是该时刻的速度方向解析:选 D.惯性大小的唯一量度是物体的质量,如果物体的动量大,但也有可能物体的质量很小,所以不能说物体的动量大其惯性就大,故A错误;动量等于物体的质量与物体速度的乘积,即p=mv,同一物体的动量越大,其速度一定越大,故B错误;加速度不变,速度是变化的,所以动量一定变化,故C错误;动量是矢量,动量的方向就是物体运动的方向,故D正确.2. 运动员向球踢了一脚(如图),踢球时的力F=100 N,球在地面上滚动了t=10 s停下来,则运动员对球的冲量为( )A.1 000 N·s B.500 N·sC.零D.无法确定解析:选D.滚动了t=10 s是地面摩擦力对足球的作用时间.不是踢球的力的作用时间,由于不能确定人作用在球上的时间,所以无法确定运动员对球的冲量.3.(多选)如图所示为两滑块M、N之间压缩一轻弹簧,滑块与弹簧不连接,用一细绳将两滑块拴接,使弹簧处于锁定状态,并将整个装置放在光滑的水平面上.烧断细绳后到两滑块与弹簧分离的过程中,下列说法正确的是( )A.两滑块的动量之和变大B.两滑块与弹簧分离后动量等大反向C.如果两滑块的质量相等,则分离后两滑块的速率也相等D.整个过程中两滑块的机械能增大解析:选BCD.对两滑块所组成的系统,互推过程中,合外力为零,总动量守恒且始终为零,A错误;由动量守恒定律得0=m M v M-m N v N,显然两滑块动量的变化量大小相等,方向相反,B正确;当m M=m N时,v M=v N,C正确;由于弹簧的弹性势能转化为两滑块的动能,则两滑块的机械能增大,D正确.4.(多选)静止在湖面上的小船中有两人分别向相反方向水平抛出质量相同的小球,先将甲球向左抛,后将乙球向右抛.抛出时两小球相对于河岸的速率相等,水对船的阻力忽略不计,则下列说法正确的是( )A.两球抛出后,船向左以一定速度运动B.两球抛出后,船向右以一定速度运动C.两球抛出后,船的速度为0D.抛出时,人给甲球的冲量比人给乙球的冲量大解析:选CD.水对船的阻力忽略不计,根据动量守恒定律,两球抛出前,由两球、人和船组成的系统总动量为0,两球抛出后的系统总动量也是0.两球质量相等,速度大小相等,方向相反,合动量为0,船的动量也必为0,船的速度必为0.具体过程是:当甲球向左抛出后,船向右运动,乙球抛出后,船静止.人给甲球的冲量I甲=mv-0,人给乙球的冲量I2=mv-mv′,v′是甲球抛出后的船速,方向向右,所以乙球的动量变化量小于甲球的动量变化量,乙球所受冲量也小于甲球所受冲量.5.高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t +mg B.m 2gh t -mg C.m gh t +mg D.m gh t-mg 解析:选A.由动量定理得(mg -F )t =0-mv ,得F =m 2gh t +mg .选项A 正确. 6. (多选)静止在光滑水平面上的物体,受到水平拉力F 的作用,拉力F 随时间t 变化的图象如图所示,则下列说法中正确的是( )A .0~4 s 内物体的位移为零B .0~4 s 内拉力对物体做功为零C .4 s 末物体的动量为零D .0~4 s 内拉力对物体的冲量为零解析:选BCD.由图象可知物体在4 s 内先做匀加速后做匀减速运动,4 s 末的速度为零,位移一直增大,A 错;前2 s 拉力做正功,后2 s 拉力做负功,且两段时间做功代数和为零,故B 正确;4 s 末的速度为零,故动量为零,故C 正确;根据动量定理,0~4 秒内动量的变化量为零,所以拉力对物体的冲量为零,故D 正确.7.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务.某时刻甲、乙都以大小为v 0=2 m/s 的速度相向运动,甲、乙和空间站在同一直线上且可当成质点.甲和他的装备总质量为M 1=90 kg ,乙和他的装备总质量为M 2=135 kg ,为了避免直接相撞,乙从自己的装备中取出一质量为m =45 kg 的物体A 推向甲,甲迅速接住A 后即不再松开,此后甲、乙两宇航员在空间站外做相对距离不变的同向运动,且安全“飘”向空间站.(设甲、乙距离空间站足够远,本题中的速度均指相对空间站的速度)(1)乙要以多大的速度v (相对于空间站)将物体A 推出?(2)设甲与物体A作用时间为t=0.5 s,求甲与A的相互作用力F的大小.解析:(1)以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的方向为正方向,则有:M2v0-M1v0=(M1+M2)v1以乙和A组成的系统为研究对象,有:M2v0=(M2-m)v1+mv代入数据联立解得v1=0.4 m/s,v=5.2 m/s(2)以甲为研究对象,由动量定理得,Ft=M1v1-(-M1v0)代入数据解得F=432 N答案:(1)5.2 m/s (2)432 N[综合应用题组]8. (多选)如图把重物压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面拉出,解释这些现象的正确说法是( )A.在缓慢拉动纸带时,重物和纸带间的摩擦力大B.在迅速拉动时,纸带给重物的摩擦力小C.在缓慢拉动纸带时,纸带给重物的冲量大D.在迅速拉动时,纸带给重物的冲量小解析:选CD.在缓慢拉动纸带时,两物体之间的作用力是静摩擦力,在迅速拉动时,它们之间的作用力是滑动摩擦力.由于通常认为滑动摩擦力等于最大静摩擦力,所以一般情况是缓拉摩擦力小,快拉摩擦力大,故判断A、B都错;在缓慢拉动纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量即动量的变化可以很大,所以能把重物带动,快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量改变很小.9.(多选)某同学质量为60 kg,在军事训练中要求他从岸上以大小为2 m/s的速度跳到一条向他缓缓飘来的小船上,然后去执行任务,小船的质量是140 kg,原来的速度大小是0.5 m/s,该同学上船后又跑了几步,最终停在船上.则( )A.人和小船最终静止在水面上B.该过程同学的动量变化量为105 kg·m/sC.船最终的速度是0.95 m/sD.船的动量变化量是105 kg·m/s解析:选BD.规定人原来的速度方向为正方向,设人上船后,船与人共同速度为v.由题意,水的阻力忽略不计,该同学跳上小船后与小船达到同一速度的过程,人和船组成的系统合外力为零,系统的动量守恒,则由动量守恒定律得:m 人v 人-m 船v 船=(m 人+m 船)v ,代入数据解得:v =0.25 m/s ,方向与人的速度方向相同,与船原来的速度方向相反.故A 错误,C 错误;人的动量的变化Δp 为:Δp =m 人v -m 人v 人=60×(0.25-2)=-105 kg·m/s,负号表示方向与选择的正方向相反;故B 正确;船的动量变化量为:Δp ′=m 船v -m 船v 船=140×(0.25+0.5)=105 kg·m/s;故D 正确.10.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一质量为m =1.0 kg 的小木块A .现以地面为参照系,给A 和B 以大小均为4.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,但最后A 并没有滑离木板B .站在地面的观察者看到在一段时间内小木块A 正在做加速运动,则在这段时间内的某时刻木板B 相对地面的速度大小可能是( )A .2.4 m/sB .2.8 m/sC .3.0 m/sD .1.8 m/s解析:选A.A 相对地面速度为0时,木板的速度为v 1,由动量守恒得(向右为正):Mv-mv =Mv 1,解得:v 1=83m/s.木块从此时开始向右加速,直到两者有共速为v 2,由动量守恒得:Mv -mv =(M +m )v 2,解得:v 2=2 m/s ,故B 对地的速度在2 m/s ~83m/s 范围内,选项A 正确.11.如图甲所示,物块A 、B 的质量分别是m A =4.0 kg 和m B =3.0 kg.用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触,另有一物块C 从t =0时以一定速度向右运动,在t =4 s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v t 图象如图乙所示,求:(1)物块C 的质量m C ;(2)从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小.解析:(1)由图可知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒,m C v 1=(m A +m C )v 2,代入数据解得m C =2 kg.(2)12 s 时B 离开墙壁,此时B 速度为零,A 、C 速度相等时,v 3=-v 2从物块C 与A 相碰到B 离开墙的运动过程中,A 、C 两物体的动量变化为:Δp =(m A +m C )v 3-(m A +m C )v 2从物块C 与A 相碰到B 离开墙的运动过程中弹簧对A 物体的冲量大小为I =2(m A +m C )v 2,代入数据整理得到I =36 N·s.答案:(1)2 kg (2)36 N·s12. 如图所示,质量为0.4 kg 的木块以2 m/s 的速度水平地滑上静止的平板小车,小车的质量为1.6 kg ,木块与小车之间的动摩擦因数为0.2(g 取10 m/s 2).设小车足够长,求:(1)木块和小车相对静止时小车的速度;(2)从木块滑上小车到它们处于相对静止所经历的时间;(3)从木块滑上小车到它们处于相对静止木块在小车上滑行的距离.解析:(1)以木块和小车为研究对象,由动量守恒定律可得mv 0=(M +m )v 解得:v =m M +mv 0=0.4 m/s. (2)再以木块为研究对象,由动量定理可得-μmgt =mv -mv 0解得:t =v 0-v μg=0.8 s. (3)木块做匀减速运动,加速度为a 1=F f m=μg =2 m/s 2 小车做匀加速运动,加速度为a 2=F f M =μmg M=0.5 m/s 2 在此过程中木块的位移为x 1=v 2-v 202a 1=0.96 m 车的位移为:x 2=12a 2t 2=12×0.5×0.82 m =0.16 m 由此可知,木块在小车上滑行的距离为:Δx =x 1-x 2=0.8 m.答案:(1)0.4 m/s (2)0.8 s (3)0.8 m第2节碰撞与能量守恒一、碰撞1.概念:碰撞指的是物体间相互作用持续时间很短,物体间相互作用力很大的现象,在碰撞过程中,一般都满足内力远大于外力,故可以用动量守恒定律处理碰撞问题.2.分类(1)弹性碰撞:这种碰撞的特点是系统的机械能守恒,相互作用过程中遵循的规律是动量守恒和机械能守恒.(2)非弹性碰撞:在碰撞过程中机械能损失的碰撞,在相互作用过程中只遵循动量守恒定律.(3)完全非弹性碰撞:这种碰撞的特点是系统的机械能损失最大,作用后两物体粘合在一起,速度相等,相互作用过程中只遵循动量守恒定律.二、动量与能量的综合1.区别与联系:动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体所构成的系统,且研究的都是某一个物理过程.但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,决定于系统是否有除重力和弹簧弹力以外的力是否做功.2.表达式不同:动量守恒定律的表达式为矢量式,机械能守恒定律的表达式则是标量式,对功和能量只是代数和而已.[自我诊断]1.判断正误(1)碰撞过程只满足动量守恒,不可能满足动能守恒(×)(2)发生弹性碰撞的两小球有可能交换速度(√)(3)完全非弹性碰撞不满足动量守恒(×)(4)无论哪种碰撞形式都满足动量守恒,而动能不会增加(√)(5)爆炸现象中因时间极短,内力远大于外力,系统动量守恒(√)(6)反冲运动中,动量守恒,动能也守恒(×)2.(2017·山西运城康杰中学模拟)(多选)有关实际中的现象,下列说法正确的是( ) A.火箭靠喷出气流的反冲作用而获得巨大速度B.体操运动员在着地时屈腿是为了减小地面对运动员的作用力C.用枪射击时要用肩部抵住枪身是为了减少反冲的影响D.为了减轻撞车时对司乘人员的伤害程度,发动机舱越坚固越好。
第二节动量守恒定律碰撞爆炸反冲一、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.1。
(2017·安徽名校联考)如图所示,小车与木箱紧挨着静止在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱,关于上述过程,下列说法中正确的是() A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量不相同提示:选C.当把男孩、小车与木箱看做整体时水平方向所受的合外力才为零,所以选项C正确.二、碰撞爆炸反冲1.碰撞(1)碰撞现象:物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.(2)特点:在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.(3)分类2.系统总动量守恒.3.反冲运动(1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.2。
(2015·高考福建卷)如图,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()A.A和B都向左运动 B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动提示:选D.选向右为正方向,则A的动量p A=m·2v0=2mv0,B 的动量p B=-2mv0。
碰前A、B的动量之和为零,根据动量守恒,碰后A、B的动量之和也应为零,可知四个选项中只有选项D符合题意.对动量守恒定律的理解和应用【知识提炼】1.动量守恒定律常用的四种表达形式(1)p=p′:即系统相互作用前的总动量p和相互作用后的总动量p′大小相等,方向相同.(2)Δp=p′-p=0:即系统总动量的增加量为零.(3)Δp1=-Δp2:即相互作用的系统内的两部分物体,其中一部分动量的增加量等于另一部分动量的减少量.(4)m1v1+m2v2=m1v′1+m2v′2,即相互作用前后系统内各物体的动量都在同一直线上时,作用前总动量与作用后总动量相等.2.动量守恒定律的“五性"系统性研究的对象是相互作用的两个或多个物体组成的系统,而不是其中的一个物体,更不能题中有几个物体就选几个物体普适性动量守恒定律不仅适用于低速宏观物体组成的系统,还适用于接近光速运动的微观粒子组成的系统【典题例析】(2016·高考全国卷甲)如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0。
课时规范训练[基础巩固题组]1.如图所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动( )A .它们碰撞前的总动量是18 kg·m/s ,方向水平向右B .它们碰撞后的总动量是18 kg·m/s ,方向水平向左C .它们碰撞前的总动量是2 kg·m/s ,方向水平向右D .它们碰撞后的总动量是2 kg·m/s ,方向水平向左解析:选C.它们碰撞前的总动量是2 kg·m/s ,方向水平向右,A 、B 相碰过程中动量守恒,故它们碰撞后的总动量也是2 kg·m/s ,方向水平向右,选项C 正确.2. 一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2) 解析:选 D.由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2得v 1=v 0+m 2m 1(v 0-v 2).3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有:p 1+p 2=p 1′+p 2′,即:p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有:m 1≤2151m 2,因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1<p 2′m 2,所以m 1>15m 2.因此C 选项正确. 4.(多选) 如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置解析:选AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定律有:m v 0=m v 1+3m v 2;又两球碰撞是弹性的,故机械能守恒,即12m v 20=12m v 21+123m v 22,解两式得:v 1=-v 02,v 2=v 02,可见第一次碰撞后的瞬间,两球的速度大小相等,选项A 正确;因两球质量不相等,故两球碰后的动量大小不相等,选项B 错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等,故两球碰后的最大摆角相同,选项C 错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项D 正确.5. (多选)在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=M v1+m v2+m0v3B.摆球的速度不变,小车和木块的速度变化为v1和v2,满足M v=M v1+m v2C.摆球的速度不变,小车和木块的速度都变为v1,满足M v=(M+m)v1D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M +m0)v1+m v2解析:选BC.在小车M和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起以共同速度v匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未受到水平力作用,球的速度不变,可以判定A、D项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能发生,即B、C选项正确.6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量M=3.0 kg,质量m=1.0 kg的铁块以水平速度v0=4.0 m/s,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为()A.4.0 J B.6.0 JC.3.0 J D.20 J解析:选C.设铁块与木板速度相同时,共同速度大小为v,铁块相对木板向右运动时,相对滑行的最大路程为L,摩擦力大小为F f,根据能量守恒定律得铁块相对于木板向右运动过程12m v 20=F f L+12(M+m)v2+Ep铁块相对于木板运动的整个过程12m v 20=2F f L+12(M+m)v2又根据系统动量守恒可知,m v0=(M+m)v联立得到:E p=3.0 J,故选C.7.A、B两个物体粘在一起以v0=3 m/s的速度向右运动,物体中间有少量炸药,经过O点时炸药爆炸,假设所有的化学能全部转化为A、B两个物体的动能且两物体仍然在水平面上运动,爆炸后A物体的速度依然向右,大小变为v A =2 m/s,B物体继续向右运动进入半圆轨道且恰好通过最高点D,已知两物体的质量m A=m B=1 kg,O点到半圆最低点C的距离x OC=0.25 m,水平轨道的动摩擦因数μ=0.2,半圆轨道光滑无摩擦,求:(1)炸药的化学能E;(2)半圆弧的轨道半径R.解析:(1)A、B在爆炸前后动量守恒,得2m v0=m v A+m v B,解得v B=4 m/s 根据系统能量守恒有:12(2m)v 2+E=12m v2A+12m v2B,解得E=1 J.(2)由于B物体恰好经过最高点,故有mg=m v2D R对O到D的过程根据动能定理可得:-μmgx OC-mg·2R=12m v2D-12m v2B联立解得R=0.3 m.答案:(1)1 J(2)R=0.3 m[综合应用题组]8.冰球运动员甲的质量为80.0 kg.当他以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1)碰后乙的速度的大小;(2)碰撞中总机械能的损失.解析:(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v和v1,碰后乙的速度大小为v1′,由动量守恒定律得m v-M v1=M v1′①代入数据得v1′=1.0 m/s②(2)设碰撞过程中总机械能的损失为ΔE,有12m v 2+12M v21=12M v1′2+ΔE③联立②③式,代入数据得ΔE=1 400 J.答案:(1)1.0 m/s(2)1 400 J9.如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:(1)B球第一次到达地面时的速度;(2)P点距离地面的高度.解析:(1)设B球第一次到达地面时的速度大小为v B,由运动学公式有v B=2gh①将h=0.8 m代入上式,得v B=4 m/s②(2)设两球相碰前、后,A球的速度大小分别为v1和v1′(v1′=0),B球的速度分别为v2和v2′.由运动学规律可得v1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相撞前、后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v1+m B v2=m B v2′④12m A v 21+12m B v 22=12m B v ′22⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得 v B ′=v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦ 联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧答案:(1)4 m/s (2)0.75 m10.如图所示,固定的圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m 的物块B 与轻质弹簧拴接静止在水平面上,弹簧右端固定.质量为3m 的物块A 从圆弧轨道上距离水平面高h 处由静止释放,与B 碰撞后推着B 一起运动但与B 不粘连.求:(1)弹簧的最大弹性势能;(2)A 与B 第一次分离后,物块A 沿圆弧面上升的最大高度.解析:(1)A 下滑与B 碰撞前,根据机械能守恒得3mgh =12×3m v 21A 与B 碰撞,根据动量守恒得3m v 1=4m v 2弹簧最短时弹性势能最大,系统的动能转化为弹性势能根据能量守恒得E pmax =12×4m v 22=94mgh(2)根据题意,A 与B 分离时A 的速度大小为v 2A 与B 分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh ′=12×3m v 22解得h ′=916h答案:(1)94mgh (2)916h11. 如图所示,质量为M 的平板车P 高为h ,质量为m 的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为R ,一端悬于Q 正上方高为R 处,另一端系一质量为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无机械能损失,已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,已知质量M ∶m =4∶1,重力加速度为g ,求:(1)小物块Q 离开平板车时,二者速度各为多大?(2)平板车P 的长度为多少?(3)小物块Q 落地时与小车的水平距离为多少?解析:(1)设小球与Q 碰前的速度为v 0,小球下摆过程机械能守恒:mgR (1-cos 60°)=12m v 20v 0=gR小球与Q 进行弹性碰撞,质量又相等,二者交换速度.小物块Q 在平板车P 上滑动的过程中,Q 与P 组成的系统动量守恒: m v 0=m v 1+M v 2其中v 2=12v 1,M =4m ,解得:v 1=gR 3,v 2=gR 6.(2)对系统由能量守恒:12m v 20=12m v 21+12M v 22+μmgL ,解得:L =7R 18μ.(3)Q 脱离P 后做平抛运动,由h =12gt 2,解得:t =2h gQ 落地时二者相距:s =(v 1-v 2)t =2Rh 6.gR 3gR6(2)7R18μ(3)2Rh6答案:(1)。
功能关系能量守恒一、选择题(1〜4题只有一个选项符合题目要求, 5〜7题有多个选项符合题目要求 )1.自然现象中蕴藏着许多物理知识, 变形,则水的重力势能()A. 变大 B .变小C.不变 D .不能解析:人缓慢推水袋,对水袋做正功,由功能关系可知,水的重力势能一定增加, A 正确.答案:A 2.滑块静止于光滑水平面上,与之相连的轻质弹簧处于自然伸直状态, 现用恒定的水平外 力F 作用于弹簧右端,在向右移动一段距离的过程中拉力 F 做了 10 J 的功.在上述过程中 ( )A 弹簧的弹性势能增加了10 JB. 滑块的动能增加了 10 JC.滑块和弹簧组成的系统机械能增加了 10 JD. 滑块和弹簧组成的系统机械能守恒解析:拉力F 做功的同时,弹簧伸长,弹性势能增大,滑块向右加速,滑块动能增加, 由功能关系可知,拉力做功等于滑块的动能与弹簧弹性势能的增加量之和, C 正确,A 、B 、D 均错误.答案:C3 . (2017 •宜昌模拟)在离水平地面h 高处将一质量为 m 的小球水平抛出,在空中运动 的过程中所受空气阻力大小恒为 F 阻,落地时小球距抛出点的水平距离为 x ,速率为v ,那么,在小球运动的过程中()A. 重力势能减少mg'h 2+ x 2B. 克服空气阻力做的功为 F 阻• h 2 + x 2C.落地时,重力的瞬时功率为 mgvD. 机械能逐渐减少解析:重力做功为WG= mgh 由功能关系可知重力势能减少 mgh 选项A 错误;空气阻力做功与经过的路程有关,而小球经过的路程大于h 2+ x 2,故克服空气阻力做的功大于F阻• h 2+ x 2,选项B 错误;落地时,重力的瞬时功率为重力与沿重力方向的分速度的乘积, 故落地时重力的瞬时功率小于 mgv 选项C 错误;空气阻力做负功,机械能减少,选项 D 正 确.答案:D-Tsramfr ——L754.为m 的小物块并让其从静止出发下滑•已知盆内侧壁是光滑的,而盆底 BC 面与小物块间的 动摩擦因数为 卩=0.10,小物块在盆内来回滑动,最后停下来,则停下的位置到 B 的距离 为()A. 0.50 m B • 0.25 m C. 0.10 m D . 0解析:分析小物块的运动过程, 可知由于克服摩擦力做功,物块的机械能不断减小•设一 一 h 0.30物块在BC 上运动的总路程为I .根据动能定理得 mghr 卩mgl = 0,解得I =一= m = 33 0.10=6d ,即小物块正好停在 B 点,所以D 选项正确.答案:D5. (2017 •四川乐山一模)I -- L ----- 1如图所示,质量为 M 长度为L 的小车静止在光滑的水平面上,质量为 m 的小物块(可的距离为x .在这个过程中,以下结论正确的是 (A. 小物块到达小车最右端时,小车具有的动能为B. 小物块到达小车最右端时,小车具有的动能为C. 小物块和小车增加的机械能为Rx D.小物块克服摩擦力所做的功为F 1(L + x )解析:对小车运动x 的过程运用动能定理有 Rx = 0,物块滑到小车右端时,小车具有的动能为Rx ,故A 错误,B 正确.摩擦产生的内能等于摩擦力与相对路程的乘积,即=f △x ,根据功能关系知,拉力做的功转化为小车和物块增加的机械能和摩擦产生的内能,有F ( L + x ) = A E + F 1L ,所以增加的机械能 △ E = F ( L + x ) — FL ,故C 错误.小物块克服摩擦 力所做的功等于摩擦力的大小乘小物块的位移,故 R (x + L ), D 正确.答案:BD6.相同,顶角b 处安装一定滑轮.质量分别为 M mM >m 的滑块,通过不可伸长的轻绳跨过定 滑轮连接,轻绳与斜面平行.两滑块由静止释放后,沿斜面做匀加速运动. 若不计滑轮的质 量和摩擦,在两滑块沿斜面运动的过程中( )视为质点)放F 作用在小物块上,使小物块从静止开始做匀加速直线运动,小物块和小车之间的摩擦力为F 1,小物块滑到小车的最右端时,小车运动) (F + F 1) •( L + x ) F 1X 如图所示,楔形木块be 与水平面的夹角A. 两滑块组成系统的机械能守恒B. 重力对M做的功等于M动能的增加C. 轻绳对m做的功等于m机械能的增加D. 两滑块组成系统的机械能损失等于M克服摩擦力做的功解析:由于系统受到摩擦力的作用,且摩擦力做功,故系统机械能不守恒,选项A错误; 根据动能定理可知,合力对M做的功等于M动能的增加,选项B错误;除重力以外的力对物体做的功等于机械能的增加,故选项C正确;由能量守恒定律可知,选项D正确.答案:CD7. (2017 •湖北八校联考)如图甲所示,质量为1 kg的小物块以初速度v。
第2讲碰撞反冲和火箭一、碰撞及特征1.碰撞碰撞是两个或两个以上的物体在相同的极短时间内产生非常大的相互作用的过程.2.碰撞特征(1)作用时间短.(2)作用力变化快.(3)内力远大于外力.(4)满足动量守恒.二、三种碰撞类型1.弹性碰撞(1)动量守恒:m1v1+m2v2=m1v1′+m2v2′(2)机械能守恒:错误!m1v12+错误!m1v22=错误!m1v1′2+错误!m2v2′2当v2=0时,有v1′=错误!v1,v2′=错误!v1.(3)推论:质量相等,大小、材料完全相同的弹性小球发生弹性碰撞,碰后交换速度.即v1′=v2,v2′=v1。
2.非弹性碰撞(1)动量守恒:m1v1+m2v2=m1v1′+m2v2′(2)机械能减少,损失的机械能转化为内能|ΔE k|=E k初-E k末=Q3.完全非弹性碰撞(1)动量守恒:m1v1+m2v2=(m1+m2)v共(2)碰撞中机械能损失最多|ΔE k|=错误!m1v12+错误!m2v22-错误!(m1+m2)v共2三、碰撞现象满足的规律1.动量守恒定律.2.机械能不增加(弹性碰撞机械能守恒、非弹性碰撞机械能减少).3.速度要合理.(1)碰前两物体同向运动,若要发生碰撞,则应有v后>v前(填“<”“=”或“>”),碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′。
(2)碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.四、爆炸和反冲运动1.爆炸爆炸过程中的内力远大于外力,爆炸的各部分组成的系统总动量守恒.2.反冲运动(1)物体在内力作用下分裂为两个不同部分并且这两部分向相反方向运动的现象.(2)反冲运动中,相互作用力一般较大,通常可以用动量守恒定律来处理.1.(多选)A、B两球在光滑水平面上做相向运动,已知m A>m B,当两球相碰后.其中一球停止,则可以断定( )A.碰前A的动量等于B的动量B.碰前A的动量大于B的动量C.若碰后A的速度为零,则碰前A的动量大于B的动量D.若碰后B的速度为零,则碰前A的动量小于B的动量答案CD2.将静置在地面上、质量为M(含燃料)的火箭模型点火升空,在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A。
第2讲动量守恒定律及其应用教材知识梳理一、动量守恒定律1.内容:一个系统________或者________为零时,这个系统的总动量保持不变.2.常用的表达式:m1v1+m2v2=________.二、系统动量守恒的条件1.理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.2.近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.3.分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.三、动量守恒的实例1.碰撞(1)概念:碰撞是指物体间的相互作用持续时间________,而物体间相互作用力________的现象.(2)特点:在碰撞现象中,一般都满足内力________外力,可认为相互碰撞的系统动量守恒.(3)分类:2.反冲运动(1)定义:静止或运动的物体通过分离出部分物质,而使自身在反方向获得加速的现象.(2)特点:在反冲运动中,如果没有外力作用或外力远小于物体间的相互作用力,系统的________是守恒的.3.爆炸现象爆炸与碰撞类似,物体间的相互作用力很大,且________系统所受的外力,所以系统动量________,爆炸过程中位移很小,可忽略不计,作用后从相互作用前的位置以新的动量开始运动.答案:一、1.不受外力所受外力的矢量和2.m1v1′+m2v2′三、1.(1)很短很大(2)远大于(3)守恒最大2.(2)动量3.远大于守恒【思维辨析】(1)动量守恒定律中的速度是相对于同一参考系的速度.( )(2)系统动量守恒,则机械能也守恒.( )(3)质量相等的两个物体发生碰撞时,一定交换速度.( )(4)系统的总动量不变是指系统总动量的大小保持不变.( )答案:(1)(√)(2)(×)(3)(×)(4)(×)【思维拓展】碰撞过程除了系统动量守恒之外,还需要满足什么条件?碰撞与爆炸在能量转化方面有何不同?答案:碰撞过程除了系统动量守恒之外,还要满足的条件:系统动能不增加;碰撞结果要符合实际情况.碰撞系统动能不增加,而爆炸系统动能增加,这是二者最大的不同.考点互动探究考点一动量守恒条件的理解和应用1.动量守恒的判定(1)系统不受外力或者所受外力之和为零,则系统动量守恒;(2)系统受外力,但外力远小于内力,可以忽略不计时,则系统动量守恒;(3)系统在某一个方向上所受的合力为零,则该方向上动量守恒.(4)全过程的某一阶段系统受的合外力零,则该阶段系统动量守恒.2.应用动量守恒定律解题的一般步骤:(1)确定研究对象,选取研究过程;(2)分析内力和外力的情况,判断是否符合动量守恒条件;(3)选定正方向,确定初、末状态的动量,最后根据动量守恒定律列方程求解.[2014·浙江卷] 如图6181所示,甲木块的质量为m1,以速度v沿光滑水平地面向前运动,正前方有一静止的、质量为m2的乙木块,乙上连有一轻质弹簧.甲木块与弹簧接触后( )图6181A. 甲木块的动量守恒B. 乙木块的动量守恒C. 甲、乙两木块所组成的系统的动量守恒D. 甲、乙两木块所组成系统的动能守恒答案:C[解析] 甲木块与弹簧接触后,由于弹簧弹力的作用,甲、乙的动量要发生变化,但对于甲、乙所组成的系统因所受合力的冲量为零,故动量守恒,选项A、B错误,选项C正确;甲、乙两木块所组成系统的动能,一部分转化为弹簧的势能,故不守恒.如图6182所示,小车与木箱紧挨着静放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱.关于上述过程,下列说法中正确的是( )图6182A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量相同答案:C [解析] 根据动量守恒的条件可知,男孩、小车与木箱组成的系统动量守恒,木箱的动量增量与男孩、小车的总动量增量大小相等,方向相反,选项C正确.■ 要点总结注意动量守恒定律的“四性”1.矢量性:动量守恒定律表达式是矢量方程,在解题时应规定正方向.2.同一性:定律表达式中的速度应相对同一参考系,一般以地面为参考系.3.瞬时性:定律中的初态动量是相互作用前同一时刻的瞬时值,末态动量是相互作用后同一时刻的瞬时值.4.普适性:它不仅适用于两个物体所组成的系统,也适用于多个物体组成的系统;不仅适用于宏观物体组成的系统,也适用于微观粒子组成的系统.考点二1.三种碰撞形式的理解2.判断碰撞的可能性问题(1)动量守恒,即p 1+p 2=p ′1+p ′2.(2)动能不增加,即E k1+E k2≥E ′k1+E ′k2或p 212m 1+p 222m 2≥p ′212m 1+p ′222m 2.3.速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v 后>v前,否则无法实现碰撞.碰撞后,原来在前面的物体的速度一定增大,且原来在前面的物体速度大于或等于原来在后面的物体的速度,即v ′前≥v ′后,否则碰撞没有结束.如果碰前两物体相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零.分)[2015·全国卷Ⅰ] 如图6183所示,在足够在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者都处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图6183[解答规范] A 向右运动与C 发生第一次碰撞,碰撞过程中,系统的动量守恒、机械能守恒.设速度方向向右为正,开始时A 的速度为v 0,第一次碰撞后C 的速度为v C 1,A 的速度为v A 1.由动量守恒定律和机械能守恒定律得mv 0=________________①(2分)12mv 20=________________②(2分) 联立①②式得v A 1=________③(1分) v C 1=________④(1分)如果m >M ,第一次碰撞后,A 与C 速度同向,且A 的速度小于C 的速度,不可能与B 发生碰撞;如果m =M ,第一次碰撞后,A 停止,C 以A 碰前的速度向右运动,A 不可能与B 发生碰撞;所以只需考虑m <M 的情况.(2分)第一次碰撞后,A 反向运动与B 发生碰撞.设与B 发生碰撞后,A 的速度为v A 2,B 的速度为v B 1,同样有v A 2=m -M m +Mv A 1=________⑤(1分)根据题意,要求A 只与B 、C 各发生一次碰撞,应有v A 2________v C 1⑥(1分)联立④⑤⑥式得________________≥0⑦(2分) 解得m ≥________⑧(1分)另一解m ≤-(5+2)M 舍去.所以,m 和M 应满足的条件为 ________________⑨(2分) 答案:mv A 1+Mv C 1 12mv 2A 1+12Mv 2C 1m -M m +M v 0 2mm +Mv 0 ⎝ ⎛⎭⎪⎫m -M m +M 2v 0 ≤m 2+4mM -M 2 (5-2)M (5-2)M ≤m <M1 如图6184所示,竖直平面内的四分之一圆弧轨道下端与水平桌面相切,小滑块A 和B 分别静止在圆弧轨道的最高点和最低点.现将A 无初速释放,A 与B 碰撞后结合为一个整体,并沿桌面滑动.已知圆弧轨道光滑,半径R =0.2 m ;A 和B 的质量相等;A 和B 整体与桌面之间的动摩擦因数μ=0.2.重力加速度g 取10 m/s 2.求:(1)碰撞前瞬间A 的速率v ;(2)碰撞后瞬间A 和B 整体的速率v ′; (3) A 和B 整体在桌面上滑动的距离l .图6184答案:(1)2 m/s (2)1 m/s (3)0.25 m [解析] 设滑块的质量为m .(1)根据机械能守恒定律有mgR =12mv 2解得碰撞前瞬间A 的速率为v =2gR =2 m/s. (2)根据动量守恒定律有mv =2mv ′解得碰撞后瞬间A 和B 整体的速率v ′=12v =1 m/s.(3)根据动能定理有-μ·2m ·gl =0-12·2m ·v ′2解得A 和B 整体沿水平桌面滑动的距离l =v ′22μg=0.25 m.2 如图6185所示,MNP 为竖直面内一固定轨道,其圆弧段MN 与水平段NP 相切于N ,P 端固定一竖直挡板.M 相对于N 的高度为h ,NP 长度为s .一物块自M 端从静止开始沿轨道下滑,与挡板发生一次弹性碰撞后停止在水平轨道上某处.MN 段轨道光滑,物块与NP 段轨道间的动摩擦因数为μ,求物块停止的位置与N 点距离的可能值.6185答案:2s -h μ或hμ-2s[解析] 根据功能关系,在物块从开始下滑到停止在水平轨道上的过程中,物块的重力势能的减少量ΔE p 与物块克服摩擦力所做功的数值相等.ΔE p=W设物块的质量为m,在水平轨道上滑行的总路程为s′,则ΔE p=mghW=μmgs′联立以上各式得s′=hμ第一种可能是:物块与弹性挡板碰撞后,在回到N前停止,则物块停止的位置距N的距离为d=2s-s′=2s-hμ第二种可能是:物块与弹性挡板碰撞后,可再一次滑上光滑圆弧轨道,滑下后在水平轨道上停止,则物块停止的位置距N的距离为d=s′-2s=hμ-2s所以物块停止的位置距N的距离可能为2s-hμ或hμ-2s.考点三多体动量守恒问题有时对整体应用动量守恒,有时只选某部分应用动量守恒,有时分过程多次应用动量守恒,恰当选择系统和始、末状态是解题的关键.1.分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体统称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成.2.要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外部物体对系统内部物体作用的外力.在受力分析的基础上根据动量守恒定律的条件判断能否应用动量守恒.3.明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初动量和末动量的量值或表达式.4.确定好正方向,建立动量守恒方程求解.如图6186所示,两块厚度相同的木块A、B,紧靠着放在光滑的桌面上,其质量分别为2.0 kg、0.9 kg,它们的下表面光滑,上表面粗糙,另有质量为0.10 kg的铅块C(大小可以忽略)以10 m/s的速度恰好水平向右滑到A的上表面,由于摩擦,铅块C最后停在木块B上,此时B、C的共同速度v=0.5 m/s.求木块A的最终速度大小和铅块C刚滑到B上时的速度大小.图6186[解析] 铅块C在A上滑行时,两木块一起向右运动,设铅块C刚离开A滑上B时的速度为v′C,A和B的共同速度为v A,在铅块C滑过A的过程中,A、B、C所组成的系统动量守恒,有m C v0=(m A+m B)v A+m C v′C在铅块C滑上B后,由于B继续加速,所以A、B分离,A以v A匀速运动,在铅块C在B上滑行的过程中,B、C组成的系统动量守恒,有m B v A+m C v′C=(m B+m C)v代入数据解得v A=0.25 m/s,v′C=2.75 m/s.1 如图6187所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C碰撞.求A与C发生碰撞后瞬间A的速度大小.图6187答案:2 m/s[解析] 因碰撞时间极短,A与C碰撞过程动量守恒,设碰后瞬间A的速度为v A,C的速度为v C,以向右为正方向,由动量守恒定律得m A v0=m A v A+m C v C①A与B在摩擦力作用下达到共同速度,设共同速度为v AB,由动量守恒定律得m A v A+m B v0=(m A+m B)v AB②A与B达到共同速度后恰好不再与C碰撞,应满足v AB=v C③联立①②③式,代入数据得v A=2 m/s④2 如图6188所示,木块A质量为m A=1 kg,足够长的木板B质量为m B=4 kg,A、B置于水平面上,质量为m C=4 kg的木块C置于木板B上,水平面光滑,B、C之间有摩擦.现使A以v0=12 m/s 的初速度向右运动,A与B碰撞后以4 m/s的速度被弹回.(1)求B运动过程中的最大速度大小;(2)若木板B足够长,求C运动过程中的最大速度.图6188答案:(1)4 m/s (2)2 m/s[解析] (1)A与B碰后瞬间,C的运动状态未变,此时B的速度最大.取向右为正方向,由A、B系统动量守恒,有:m A v0+0=-m A v A+m B v B代入数据得v B=4 m/s.(2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度,二者共速后,C速度最大,由B、C系统动量守恒,有m B v B+0=(m B+m C)v C代入数据得v C=2 m/s.考点四人船模型人船模型是一个很典型的模型,当人在无阻力的船上向某一方向走动时,船向相反方向移动,此时满足动量守恒.若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2,该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.质量为m的人站在质量为M、长为L的静止小船的右端,小船的左端靠在岸边.在忽略水的阻力的情况下,当他从右端走到船的左端时,船左端离岸多远?[解析] 先画出示意图如图所示.人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等.从图中可以看出,人、船的位移大小之和等于L.设人、船位移大小分别为l1、l2,选择向右的方向为正方向,则有:0=Mv2-mv1,两边同乘时间t并整理得:ml1=Ml2而l1+l2=L,解得l2=mM+mL.(多选)如图6189所示,绳长为l,小球质量为m,小车质量为M,将小球向右拉至水平后放手,则(水平面光滑)( )图6189A.系统的动量守恒B.水平方向任意时刻小球与小车的动量等大反向C.小球不能向左摆到原高度D.小车向右移动的最大距离为2mlM+m答案:BD [解析] 系统只是在水平方向所受的合力为零,竖直方向的合力不为零,故水平方向的动量守恒,而总动量不守恒,A错误,B正确;根据水平方向的动量守恒及机械能守恒,小球仍能向左摆到原高度,C错误;小球相对于小车的位移为2l,根据“人船模型”,解得最大距离为2mlM+m,D正确.考点五爆炸和反冲1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.(3)反冲运动中机械能往往不守恒.(4)实例:喷气式飞机、火箭等.甲、乙两小孩各乘一辆小车在光滑的水平面上匀速相向行驶,速度大小均为v 0=6 m/s ,甲乘的小车上有质量为m =1 kg 的小球若干,甲和他的小车及所带小球的总质量为M 1=50 kg ,乙和他的小车的总质量为M 2=30 kg.现为避免相撞,甲不断地将小球以相对地面为v ′=16.5 m/s 的水平速度抛向乙,且均被乙接住.假设某一次甲将小球抛出且被乙接住后,刚好可保证两车不致相撞.则此时:(1)两车的速度大小各为多少?(2)甲总共抛出了多少个小球?[解析] (1)两车刚好不相撞,则两车速度大小相等,方向相同,由动量守恒定律得M 1v 0-M 2v 0=(M 1+M 2)v解得v =1.5 m/s.(2)对甲及从小车上抛出的小球,由动量守恒定律得M 1v 0=(M 1-n ·m )v +n ·mv ′解得n =15.1 斜向上飞出的一个爆竹,到达最高点时(速度水平向东)立即爆炸成质量相等的三块,前面一块速度水平向东,后面一块速度水平向西,前、后两块的水平速度(相对地面)大小相等、方向相反.则以下说法中正确的是( )A .爆炸后的瞬间,中间那块的速度大于爆炸前瞬间爆竹的速度B .爆炸后的瞬间,中间那块的速度可能水平向西C .爆炸后三块将同时落到水平地面上,并且落地时的动量相同D .爆炸后的瞬间,中间那块的动能可能小于爆炸前的瞬间爆竹的总动能答案:A [解析] 设爆竹爆炸前瞬间的速度为v 0,爆炸过程中,因为内力远大于外力,则爆竹爆炸过程中动量守恒,设三块质量均为m ,中间一块的速度为v ,前面一块的速度为v 1,则后面一块的速度为-v 1,由动量守恒定律有3mv 0=mv 1-mv 1+mv ,解得v =3v 0,则中间那块速度方向向东,速度大小比爆炸前的大,则A 正确,B 错误;三块同时落地,但落地时动量不同,C 错误;爆炸后的瞬间,中间那块的动能为12m (3v 0)2,大于爆炸前系统的总动能32mv 20,D 错误.2 如图61810所示,甲、乙两船的总质量(包括船、人和货物)分别为10m 、12m ,两船沿同一直线同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)图61810答案:4v0[解析] 设乙船上的人抛出货物的最小速度大小为v min,抛出货物后船的速度为v1,甲船上的人接到货物后船的速度为v2,由动量守恒定律得货物从乙船抛出过程,12mv0=11mv1-mv min货物落入甲船过程,10m·2v0-mv min=11mv2为避免两船相撞应满足v1=v2解得v min=4v0.【教师备用习题】1.[2015·福建卷] 如图所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是________.(填选项前的字母)A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动[解析] D 根据动量守恒定律,碰撞前的总动量为0,碰撞后的总动量也要为0,碰撞后要么A、B均静止,要么A、B朝反方向运动;由于是弹性碰撞,能量不损失,所以碰后A、B不可能静止,所以A只能向左运动、B只能向右运动.2.将静置在地面上、质量为M(含燃料)的火箭模型点火升空,其在极短时间内以相对地面的速度v0竖直向下喷出质量为m的炽热气体.忽略喷气过程中重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是________.(填选项前的字母)A.mMv0 B.Mmv0C.MM-mv0 D.mM-mv0[解析] D 以向上为正方向,初动量为0,喷气瞬间炽热气体的动量为-mv0,火箭模型的动量为(M-m)v,由动量守恒定律有:0=-mv0+(M-m)v,解得v=mv0M-m,D正确.。
第2讲动量守恒定律及应用考点一动量守恒定律的理解及应用1.动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变,这就是动量守恒定律。
(2)表达式①p=p′,系统相互作用前总动量p等于相互作用后的总动量p′。
②m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。
③Δp1=-Δp2,相互作用的两个物体动量的增量等大反向。
④Δp=0,系统总动量的增量为零。
2.动量守恒的条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
3.动量守恒定律的“五性”(1)动量具有瞬时性。
()(2)物体动量的变化等于某个力的冲量。
()(3)动量守恒定律中的速度是相对于同一参考系的速度。
()(4)系统的总动量不变是指系统总动量的大小保持不变。
()(5)系统的动量守恒时,机械能也一定守恒。
()答案:(1)√(2)×(3)√(4)×(5)×[题组训练]1.[动量守恒的条件]在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在其中,将弹簧压缩到最短。
若将子弹、木块和弹簧合在一起作为系统,则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中()A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒解析:子弹射入木块是瞬间完成的,这个过程相当于子弹与木块发生一次完全非弹性碰撞,动量守恒,机械能不守恒,一部分动能转化为内能,之后木块(连同子弹)压缩弹簧,将其动能转化为弹性势能,这个过程机械能守恒,但动量不守恒。
由于左侧挡板的支持力的冲量作用,使系统的动量不断减少,所以整个过程中,动量和机械能均不守恒。
第2课时动量守恒定律【基础巩固】动量守恒定律的理解1.(2016·山东泰安模拟)现有甲、乙两滑块,质量分别为3m和m,以相同的速率v在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( A )A.弹性碰撞B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定解析:由动量守恒3mv-mv=0+mv′,所以v′=2v.碰前总动能E k=·(3m)v2+mv2=2mv2,碰后总动能E k′=mv′2=2mv2,E k=E k′,所以选项A正确.2.(2016·黑龙江哈尔滨质检)(多选)在光滑的水平面上有质量相等的A,B两球,其动量分别为10 kg·m/s与2 kg·m/s,方向均向东,且规定该方向为正方向,A球在B球后,当A球追上B球时发生正碰,则相碰以后,A,B两球的动量可能分别为( AD )A.6 kg·m/s,6 kg·m/sB.-4 kg·m/s,16 kg·m/sC.6 kg·m/s,12 kg·m/sD.3 kg·m/s,9 kg·m/s解析:根据动量守恒定律可先排除选项C;因为碰撞过程系统的动能不会增加,所以+≥+,满足+≤104(kg·m/s)2,据此可排除选即碰后A,B两球的动量p项B;选项A,D均满足动量守恒、动能不增加的条件,所以选项A,D正确. 两物体单过程的碰撞3.(2016·福建泉州质检)如图所示,位于光滑水平桌面上的小滑块P和Q都可视为质点,质量相等.Q与轻弹簧相连,设Q静止,P以某一初速度向Q运动并与弹簧发生碰撞.在整个过程中,弹簧具有的最大弹性势能等于( B )A.P的初动能B.P的初动能的C.P的初动能的D.P的初动能的解析:整个碰撞过程中,当小滑块P和Q的速度相等时,弹簧的弹性势能最大.设小滑块P的初速度为v0,两滑块的质量均为m.由系统动量守恒,得mv 0=2mv,v=v0,系统能量守恒,弹性势能的值为E p=m-2×m(v 0)2=m=·(m)=E kP,所以选项B正确.·河北衡水期中)(多选)在光滑的水平桌面上有等大的质量分别为M=0.6 kg、m=0.2 kg的两个小球,中间夹着一个被压缩的具有E p=10.8 J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R=0.425 m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是( AD )A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4N·sB.M离开轻弹簧时获得的速度为9 m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s解析:释放弹簧过程中,由动量守恒定律得Mv1=mv2,由机械能守恒定律得E p=M+m,解得v1=3 m/s,v2=9 m/s,故选项B错误;对m,由A运动到B的过程,由机械能守恒定律得m=mv 2′2+mg×2R,得v2′=8 m/s.由A运动到B的过程由动量定理得I合=mv2′-(-mv2)=3.4 N·s,故选项A正确;球m从B点飞出后,由平抛运动可知,水平方向x=v2′t,竖直方向2R=gt2解得x=,故选项C错误;弹簧弹开过程,弹力对m的冲量I=mv2=1.8 N·s,故选项D正确.多物体多过程问题5.(2016·辽宁大连模拟)(多选)如图所示,A,B两木块紧靠在一起且静止于光滑水平面上,物块C以一定的初速度v0从A的左端开始向右滑行,最后停在B木块的右端,对此过程,下列叙述正确的是( BC )A.当C在A上滑行时,A,C组成的系统动量守恒B.当C在B上滑行时,B,C组成的系统动量守恒C.无论C是在A上滑行还是在B上滑行,A,B,C组成的系统动量都守恒D.当C在B上滑行时,A,B,C组成的系统动量不守恒解析:当C在A上滑行时,对A,C组成的系统,B对A的作用力为外力,不等于0,故系统动量不守恒,选项A错误;当C在B上滑行时,A,B已分离,对B,C组成的系统,沿水平方向不受外力作用,故系统动量守恒,选项B 正确;若将A,B,C视为一个系统,则沿水平方向无外力作用,系统动量守恒,选项C正确,D错误.·河北秦皇岛质检)(多选)如图所示,三辆完全相同的平板小车a,b,c成一直线排列,静止在光滑水平面上.c车上有一小孩跳到b车上,接着又立即从b车跳到a车上.小孩跳离c车和b车时对地的水平速度相同.他跳到a车上相对a车保持静止,此后( CD )A.a,b两车运动速率相等B.a,c两车运动速率相等C.三辆车的速率关系v c>v a>v bD.a,c两车运动方向相反解析:若人跳离b,c车时速度为v,由动量守恒定律知,人和c车组成的系统有0=-M车v c+m人v对人和b车有m人v=M车v b+m人v对人和a车m人v=(M车+m人)·v a所以v c=,v b=0,v a=即v c>v a>v b,并且v c与v a方向相反.故选项C,D正确.碰撞中的临界问题7.(2016·陕西西安质检)质量为M=6 kg的木板B静止于光滑水平面上,物块A质量为6 kg,停在B的左端.质量为1 kg的小球用长为0.8 m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2 m,物块与小球可视为质点,不计空气阻力.已知A,B间的动摩擦因数μ=0.1,g取10 m/s2.(1)求小球与A碰撞后瞬间A的速度;(2)为使A,B达到共同速度前A不滑离木板,求木板的最小长度.解析:(1)由mgL=m,解得小球与A碰撞前瞬间的速度v 1=4 m/s由mgh=m,解得小球与A碰撞后瞬间的速度大小为v 2=2 m/s.小球与A碰撞过程中,系统动量守恒,由mv1=-mv2+m A v A,解得v A=1 m/s.(2)物块A相对木板B滑动过程,由动量守恒定律得m A v A=(m A+M)v解得v=0.5 m/s对物块A相对木板B滑动过程,由功能关系得μm A gL=m A-(m A+M)v2解得L=0.25 m.答案:(1)1 m/s (2)0.25 m·山东潍坊质检)如图所示,甲车质量m1=20 kg,车上有质量M=50 kg的人,甲车(连同车上的人)以v=3 m/s的速度向右滑行,此时质量m2=50 kg的乙车正以v0=1.8 m/s的速度迎面滑来,为了避免两车相撞,当两车相距适当距离时,人从甲车跳到乙车上,求人跳出甲车的水平速度(相对地面)应当在什么范围以内才能避免两车相撞?不计地面和小车的摩擦,且乙车足够长.解析:人跳到乙车上后,如果两车同向,甲车的速度小于或等于乙车的速度就可以避免两车相撞.以人、甲车、乙车组成的系统为研究对象,由水平方向动量守恒得(m1+M)v-m2v0=(m1+m2+M)v′,解得v′=1 m/s.以人与甲车为一系统,人跳离甲车过程水平方向动量守恒得(m1+M)v=m1v′+Mu解得u=3.8 m/s.因此,只要人跳离甲车的速度u≥3.8 m/s,就可避免两车相撞.答案:大于等于3.8 m/s弹簧类的慢碰撞问题9.(2016·吉林质检)如图所示,物体A静止在光滑的水平面上,A的左边固定有轻质弹簧,与A质量相等的物体B以速度v向A运动并与弹簧发生碰撞,A,B始终沿同一直线运动,则A,B组成的系统动能损失最大的时刻是( D )A.A开始运动时B.A的速度等于v时C.B的速度等于零时D.A和B的速度相等时解析:在弹簧压缩的过程中,只有弹簧的弹力做功,因此减少的动能完全转化为弹簧的弹性势能.当弹性势能最大时,损失的动能最多.而弹性势能最大就是弹簧压缩量最大,此时两个物体速度恰好相等.在压缩弹簧过程中,水平方向不受外力,因此动量守恒,即mv=2mv′,当两个物体速度v′=时损失的动能最大,选项D正确.·湖北黄冈检测)如图所示,光滑水平面上有一质量为m=1 kg的小车,小车右端固定一水平轻质弹簧,弹簧左端连接一质量为m0=1 kg的物块,物块与上表面光滑的小车一起以v0=5 m/s的速度向右匀速运动,与静止在光滑水平面上、质量为M=4 kg的小球发生弹性正碰,若碰撞时间极短,弹簧始终在弹性限度内.求:(1)碰撞结束时,小车与小球的速度;(2)从碰后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小.解析:(1)设碰撞后瞬间小车的速度大小为v1,小球的速度大小为v,由动量守恒及动能守恒有mv0=mv1+Mvm=m+Mv2解得v1=-3 m/s,小车速度方向向左.v=2 m/s,小球速度方向向右.(2)当弹簧被压缩到最短时,设小车的速度大小为v2,根据动量守恒定律有m0v0+mv1=(m0+m)v2解得v2=1 m/s设碰撞后瞬间到弹簧最短的过程,弹簧弹力对小车的冲量大小为I,根据动量定理有I=mv2-mv1解得I=4 N·s.答案:(1)-3 m/s,速度方向向左 2 m/s,速度方向向右(2)4 N·s【素能提升】11.(2016·山东青岛质检)人的质量m=60 kg,船的质量M=240 kg,若船用缆绳固定,船离岸1.5 m时,人可以跃上岸.若撤去缆绳,如图所示,人要安全跃上岸,船离岸至多为(不计水的阻力,两次人消耗的能量相等)( C )A.1.5 mB.1.2 mC.1.34 mD.1.1 m解析:船用缆绳固定时,设人起跳的速度为v0,则x0=v0t.撤去缆绳,由动量守恒0=mv 1-Mv2,两次人消耗的能量相等,即动能不变,m=m+M,解得v 1=v0,故x1=v1t=x0≈1.34 m,选项C正确.·东北三省四市联考)如图所示,光滑悬空轨道上静止一质量为2m的小车A,用一段不可伸长的轻质细绳悬挂一质量为m的木块B.一质量为m的子弹以水平速度v0射入木块B并留在其中(子弹射入木块时间极短),在以后的运动过程中,摆线离开竖直方向的最大角度小于90°,试求:(1)木块能摆起的最大高度;(2)小车A运动过程的最大速度.解析:(1)子弹射入木块的瞬间,由动量守恒定律得mv0=2mv1对子弹、物块及小车组成的系统由动量守恒定律得mv0=(m+m+2m)v2由能量守恒得·2m=·4m+2mgh得h=.(2)子弹射入木块后,由动量守恒得2mv1=2mv1′+2mv2′由能量守恒得·2m=·2mv 1′2+·2mv2′2得v2′=.答案:(1)(2)kg的女孩骑自行车带30 kg的男孩(如图所示),行驶速度2.5 m/s.自行车行驶时,男孩要从车上下来.(1)他知道如果直接跳下来,他可能会摔跤,为什么?(2)男孩要以最安全的方式下车,计算男孩安全下车的瞬间,女孩和自行车的速度.(3)以自行车和两个孩子为系统,试计算在男孩下车前、后整个系统的动能的值.如有不同,请解释.解析:(1)如果直接跳下来,人具有和自行车相同的速度,脚着地后,脚的速度为零,由于惯性,上身继续向前倾斜,因此他可能会摔跤.所以他下来时用力往前推自行车,这样他下车时可能不摔跤.(2)男孩最安全的下车方式是:下车瞬间相对地的速度为零.男孩下车前后,对整体由动量守恒定律有(m1+m2+m3)v0=(m1+m2)v得v=4 m/s(m1表示女孩质量,m2表示自行车质量,m3表示男孩质量).(3)男孩下车前系统的动能E k=(m1+m2+m3)=×(40+10+30)×2.52J=250 J男孩下车后系统的动能E k=×(m1+m2)v2=×(40+10)×42J=400 J男孩下车时用力向前推自行车,对系统做了正功,使系统的动能增加了150 J.答案:(1)由于惯性(2)4 m/s(3)250 J 400 J 男孩下车时用力向前推自行车,对系统做了正功,使系统的动能增加了150 J【备用题】(2016·陕西西安模拟)如图所示,质量分别为m 1和m 2的两个等半径小球,在光滑的水平面上分别以速度v 1,v 2向右运动,并发生对心正碰,之后m 2与墙碰撞被墙弹回,与墙碰撞过程中无能量损失,m 2返回后又与m 1相向碰撞,碰后两球都静止,求第一次碰后m 1球的速度.解析:设m 1,m 2第一次碰后的速度大小分别为v 1′,v 2′,以向右为正方向,则由动量守恒定律知m 1v 1+m 2v 2=m 1v 1′+m 2v 2′m 1v 1′-m 2v 2′=0解得v 1′=,方向向右. 答案:方向向右。
课时规范训练[基础巩固题组]1.如图所示,在光滑水平面上质量分别为m A =2 kg 、m B =4 kg ,速率分别为v A =5 m/s 、v B =2 m/s 的A 、B 两小球沿同一直线相向运动( )A .它们碰撞前的总动量是18 kg·m/s ,方向水平向右B .它们碰撞后的总动量是18 kg·m/s ,方向水平向左C .它们碰撞前的总动量是2 kg·m/s ,方向水平向右D .它们碰撞后的总动量是2 kg·m/s ,方向水平向左解析:选C.它们碰撞前的总动量是2 kg·m/s ,方向水平向右,A 、B 相碰过程中动量守恒,故它们碰撞后的总动量也是2 kg·m/s ,方向水平向右,选项C 正确.2. 一枚火箭搭载着卫星以速率v 0进入太空预定位置,由控制系统使箭体与卫星分离.已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2D .v 0+m 2m 1(v 0-v 2) 解析:选 D.由动量守恒定律得(m 1+m 2)v 0=m 1v 1+m 2v 2得v 1=v 0+m 2m 1(v 0-v 2).3.甲、乙两球在水平光滑轨道上向同方向运动,已知它们的动量分别是p 1=5 kg·m/s ,p 2=7 kg·m/s ,甲从后面追上乙并发生碰撞,碰后乙球的动量变为10 kg·m/s ,则二球质量m 1与m 2间的关系可能是下面的哪几种( )A .m 1=m 2B .2m 1=m 2C .4m 1=m 2D .6m 1=m 2解析:选C.甲、乙两球在碰撞过程中动量守恒,所以有:p 1+p 2=p 1′+p 2′,即:p 1′=2 kg·m/s.由于在碰撞过程中,不可能有其它形式的能量转化为机械能,只能是系统内物体间机械能相互转化或一部分机械能转化为内能,因此系统的机械能不会增加.所以有p 212m 1+p 222m 2≥p 1′22m 1+p 2′22m 2,所以有:m 1≤2151m 2,因为题目给出物理情景是“甲从后面追上乙”,要符合这一物理情景,就必须有p 1m 1>p 2m 2,即m 1<57m 2;同时还要符合碰撞后乙球的速度必须大于或等于甲球的速度这一物理情景,即p 1′m 1<p 2′m 2,所以m 1>15m 2.因此C 选项正确. 4.(多选) 如图,大小相同的摆球a 和b 的质量分别为m 和3m ,摆长相同,摆动周期相同,并排悬挂,平衡时两球刚好接触,现将摆球a 向左拉开一小角度后释放,若两球的碰撞是弹性的,下列判断正确的是( )A .第一次碰撞后的瞬间,两球的速度大小相等B .第一次碰撞后的瞬间,两球的动量大小相等C .第一次碰撞后,两球的最大摆角不相同D .发生第二次碰撞时,两球在各自的平衡位置解析:选AD.两球在碰撞前后,水平方向不受外力,故水平两球组成的系统动量守恒,由动量守恒定律有:m v 0=m v 1+3m v 2;又两球碰撞是弹性的,故机械能守恒,即12m v 20=12m v 21+123m v 22,解两式得:v 1=-v 02,v 2=v 02,可见第一次碰撞后的瞬间,两球的速度大小相等,选项A 正确;因两球质量不相等,故两球碰后的动量大小不相等,选项B 错;两球碰后上摆过程,机械能守恒,故上升的最大高度相等,因摆长相等,故两球碰后的最大摆角相同,选项C 错;两球摆动周期相同,故经半个周期后,两球在平衡位置处发生第二次碰撞,选项D 正确.5. (多选)在质量为M 的小车中挂有一单摆,摆球的质量为m 0,小车和单摆以恒定的速度v 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞的时间极短,在此碰撞过程中,下列哪些情况说法是可能发生的()A.小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=M v1+m v2+m0v3B.摆球的速度不变,小车和木块的速度变化为v1和v2,满足M v=M v1+m v2C.摆球的速度不变,小车和木块的速度都变为v1,满足M v=(M+m)v1D.小车和摆球的速度都变为v1,木块的速度变为v2,满足(M+m0)v=(M +m0)v1+m v2解析:选BC.在小车M和木块发生碰撞的瞬间,摆球并没有直接与木块发生力的作用,它与小车一起以共同速度v匀速运动时,摆线沿竖直方向,摆线对球的拉力和球的重力都与速度方向垂直,因而摆球未受到水平力作用,球的速度不变,可以判定A、D项错误;小车和木块碰撞过程,水平方向无外力作用,系统动量守恒,而题目对碰撞后,小车与木块是否分开或连在一起,没有加以说明,所以两种情况都可能发生,即B、C选项正确.6.如图所示,光滑水平面上的木板右端,有一根轻质弹簧沿水平方向与木板相连,木板质量M=3.0 kg,质量m=1.0 kg的铁块以水平速度v0=4.0 m/s,从木板的左端沿板面向右滑行,压缩弹簧后又被弹回,最后恰好停在木板的左端,则在上述过程中弹簧具有的最大弹性势能为()A.4.0 J B.6.0 JC.3.0 J D.20 J解析:选C.设铁块与木板速度相同时,共同速度大小为v,铁块相对木板向右运动时,相对滑行的最大路程为L,摩擦力大小为F f,根据能量守恒定律得铁块相对于木板向右运动过程12m v 20=F f L+12(M+m)v2+Ep铁块相对于木板运动的整个过程12m v 20=2F f L+12(M+m)v2又根据系统动量守恒可知,m v0=(M+m)v联立得到:E p=3.0 J,故选C.7.A、B两个物体粘在一起以v0=3 m/s的速度向右运动,物体中间有少量炸药,经过O点时炸药爆炸,假设所有的化学能全部转化为A、B两个物体的动能且两物体仍然在水平面上运动,爆炸后A物体的速度依然向右,大小变为v A =2 m/s,B物体继续向右运动进入半圆轨道且恰好通过最高点D,已知两物体的质量m A=m B=1 kg,O点到半圆最低点C的距离x OC=0.25 m,水平轨道的动摩擦因数μ=0.2,半圆轨道光滑无摩擦,求:(1)炸药的化学能E;(2)半圆弧的轨道半径R.解析:(1)A、B在爆炸前后动量守恒,得2m v0=m v A+m v B,解得v B=4 m/s 根据系统能量守恒有:12(2m)v 2+E=12m v2A+12m v2B,解得E=1 J.(2)由于B物体恰好经过最高点,故有mg=m v2D R对O到D的过程根据动能定理可得:-μmgx OC-mg·2R=12m v2D-12m v2B联立解得R=0.3 m.答案:(1)1 J(2)R=0.3 m[综合应用题组]8.冰球运动员甲的质量为80.0 kg.当他以5.0 m/s的速度向前运动时,与另一质量为100 kg、速度为3.0 m/s的迎面而来的运动员乙相撞.碰后甲恰好静止.假设碰撞时间极短,求:(1)碰后乙的速度的大小;(2)碰撞中总机械能的损失.解析:(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v和v1,碰后乙的速度大小为v1′,由动量守恒定律得m v-M v1=M v1′①代入数据得v1′=1.0 m/s②(2)设碰撞过程中总机械能的损失为ΔE,有12m v 2+12M v21=12M v1′2+ΔE③联立②③式,代入数据得ΔE=1 400 J.答案:(1)1.0 m/s(2)1 400 J9.如图,质量分别为m A、m B的两个弹性小球A、B静止在地面上方,B球距地面的高度h=0.8 m,A球在B球的正上方.先将B球释放,经过一段时间后再将A球释放.当A球下落t=0.3 s时,刚好与B球在地面上方的P点处相碰.碰撞时间极短,碰后瞬间A球的速度恰为零.已知m B=3m A,重力加速度大小g=10 m/s2,忽略空气阻力及碰撞中的动能损失.求:(1)B球第一次到达地面时的速度;(2)P点距离地面的高度.解析:(1)设B球第一次到达地面时的速度大小为v B,由运动学公式有v B=2gh①将h=0.8 m代入上式,得v B=4 m/s②(2)设两球相碰前、后,A球的速度大小分别为v1和v1′(v1′=0),B球的速度分别为v2和v2′.由运动学规律可得v1=gt③由于碰撞时间极短,重力的作用可以忽略,两球相撞前、后的动量守恒,总动能保持不变.规定向下的方向为正,有m A v1+m B v2=m B v2′④12m A v 21+12m B v 22=12m B v ′22⑤ 设B 球与地面相碰后的速度大小为v B ′,由运动学及碰撞的规律可得 v B ′=v B ⑥设P 点距地面的高度为h ′,由运动学规律可得h ′=v B ′2-v 222g⑦ 联立②③④⑤⑥⑦式,并代入已知条件可得h ′=0.75 m ⑧答案:(1)4 m/s (2)0.75 m10.如图所示,固定的圆弧轨道与水平面平滑连接,轨道与水平面均光滑,质量为m 的物块B 与轻质弹簧拴接静止在水平面上,弹簧右端固定.质量为3m 的物块A 从圆弧轨道上距离水平面高h 处由静止释放,与B 碰撞后推着B 一起运动但与B 不粘连.求:(1)弹簧的最大弹性势能;(2)A 与B 第一次分离后,物块A 沿圆弧面上升的最大高度.解析:(1)A 下滑与B 碰撞前,根据机械能守恒得3mgh =12×3m v 21A 与B 碰撞,根据动量守恒得3m v 1=4m v 2弹簧最短时弹性势能最大,系统的动能转化为弹性势能根据能量守恒得E pmax =12×4m v 22=94mgh(2)根据题意,A 与B 分离时A 的速度大小为v 2A 与B 分离后沿圆弧面上升到最高点的过程中,根据机械能守恒得3mgh ′=12×3m v 22解得h ′=916h答案:(1)94mgh (2)916h11. 如图所示,质量为M 的平板车P 高为h ,质量为m 的小物块Q 的大小不计,位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为R ,一端悬于Q 正上方高为R 处,另一端系一质量为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60°角,由静止释放,小球到达最低点时与Q 的碰撞时间极短,且无机械能损失,已知Q 离开平板车时速度大小是平板车速度的两倍,Q 与P 之间的动摩擦因数为μ,已知质量M ∶m =4∶1,重力加速度为g ,求:(1)小物块Q 离开平板车时,二者速度各为多大?(2)平板车P 的长度为多少?(3)小物块Q 落地时与小车的水平距离为多少?解析:(1)设小球与Q 碰前的速度为v 0,小球下摆过程机械能守恒:mgR (1-cos 60°)=12m v 20v 0=gR小球与Q 进行弹性碰撞,质量又相等,二者交换速度.小物块Q 在平板车P 上滑动的过程中,Q 与P 组成的系统动量守恒: m v 0=m v 1+M v 2其中v 2=12v 1,M =4m ,解得:v 1=gR 3,v 2=gR 6.(2)对系统由能量守恒:12m v 20=12m v 21+12M v 22+μmgL ,解得:L =7R 18μ.(3)Q 脱离P 后做平抛运动,由h =12gt 2,解得:t =2h gQ 落地时二者相距:s =(v 1-v 2)t =2Rh 6.gR 3gR6(2)7R18μ(3)2Rh6答案:(1)。