20200404初三综合 教师版
- 格式:docx
- 大小:9.34 MB
- 文档页数:17
2024年浙教版数学九年级上册4.3《相似三角形》教学设计一. 教材分析《相似三角形》是2024年浙教版数学九年级上册4.3节的内容,本节内容是在学生已经掌握了相似多边形的性质和判定方法的基础上进行教学的。
相似三角形是数学中的重要概念,它不仅在理论上占有重要地位,而且在实际生活中也有着广泛的应用。
本节内容主要让学生了解相似三角形的性质和判定方法,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对相似多边形的性质和判定方法已经有了一定的了解。
但是,对于相似三角形的性质和判定方法的理解和应用还需要加强。
因此,在教学过程中,教师需要根据学生的实际情况,采取适当的教学方法,引导学生理解和掌握相似三角形的性质和判定方法。
三. 教学目标1.知识与技能:使学生理解和掌握相似三角形的性质和判定方法,能够运用相似三角形的知识解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.重点:相似三角形的性质和判定方法。
2.难点:相似三角形的性质和判定方法在实际问题中的应用。
五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生理解和掌握相似三角形的性质和判定方法。
2.互动教学法:通过教师与学生、学生与学生之间的互动,激发学生的学习兴趣,提高学生的参与度。
3.案例教学法:通过分析实际问题,引导学生运用相似三角形的性质和判定方法解决问题。
六. 教学准备1.教学课件:制作精美的教学课件,帮助学生直观地理解相似三角形的性质和判定方法。
2.教学素材:准备一些实际的例子,用于引导学生运用相似三角形的性质和判定方法解决问题。
3.教学工具:准备黑板、粉笔等教学工具,用于板书和讲解。
七. 教学过程1.导入(5分钟)教师通过设置一个实际问题,引导学生思考相似三角形的性质和判定方法。
部编版九年级语文上册第四单元综合素质评价[时间:150分钟满分:150分(其中卷面书写占5分)]一、语文积累与运用(35 分)1. 默写。
(10 分)(1)__________________,山雨欲来风满楼。
(许浑《咸阳城东楼》)(2)停杯投箸不能食,__________________。
[李白《行路难》(其一)](3)小园几许,__________________。
有桃花红,李花白,菜花黄。
(秦观《行香子》)(4) __________________,到乡翻似烂柯人。
(刘禹锡《酬乐天扬州初逢席上见赠》)(5)张岱的《湖心亭看雪》中,与“湖中焉得更有此人”一句相互映衬的句子是:“_____________________,_____________________。
”(6)李商隐的《无题》中,经常被人们用来赞美无私奉献精神的诗句是:“_____________________,_____________________。
”(7)欧阳修的《醉翁亭记》中,写朝暮明暗变化之景的句子是:“__________________,__________________,晦明变化者,山间之朝暮也。
”2. 请运用所积累的知识,完成下面小题。
(13 分)【甲】话说当时薛霸双手举起棍来,望A脑袋上便劈下来。
说时迟,那时快,薛霸的棍恰举起来,只见松树背后雷鸣也似一声,那条铁禅.杖飞将来,把这水火棍一隔,丢去九xiāo云外,______一个胖大和尚来,喝道:“洒家在林子里听你多时!”两个公人看那和尚时,______一领皂布直裰,______一口戒刀,________禅杖,轮起来打两个公人。
A方才闪开眼看时,认得是鲁智深。
A连忙叫道:“师兄,不可下手!我有话说。
”智深听得,收住禅杖。
两个公人呆了半晌,动掸不得。
A道:“非干他两个事,尽是高太尉使陆虞候分付他两个公人,要害我性命。
他两个怎不依他。
你若打杀他两个,也是冤屈。
统编版语文九年级上册第四单元综合素质评价(限时:150分钟满分:120分)一、积累和运用(共5 小题,计17 分)1. 经典诗文默写。
[在(1)~(6)题中,任选四题;在(7)(8)题中,任选一题](6 分)(1)露从今夜白,___________________。
(杜甫《月夜忆舍弟》)(2)汉文有道恩犹薄,___________________?(刘长卿《长沙过贾谊宅》)(3)相见时难别亦难,___________________。
(李商隐《无题》)(4) ___________________,蝉鸣黄叶汉宫秋。
(许浑《咸阳城东楼》)(5) ___________________,引无数英雄竞折腰。
(毛泽东《沁园春·雪》)(6)大雪三日,___________________。
(张岱《湖心亭看雪》)(7)范仲淹的《岳阳楼记》中“_______________,________________”用比喻的修辞手法形象地描绘出湖光泛金、月影如玉的美景。
(8)乘着温和的春风,你兴趣正浓,信步漫游村庄,欣赏着春天的风光,不由得想起了秦观《行香子》中的词句:“___________________,___________________。
”<陕西人文信息题>阅读语段,完成2、3 题。
当传世名画遇见三秦大地,将开启怎样的奇妙旅程?“盛世中华,何以中国”网上主题宣传在陕西西安启动,并举行《新千里江山图·壮美陕西》展卷发布入藏仪式。
气壮山河的兵马俑,繁华典雅的长安古都,配上豪放激昂的秦腔,展开一幅恢宏画卷。
汉唐文化源远流长,西安国家版本馆馆藏丰富,古今结合、情景交融.,带你màn游中华文化之美,奇险峻秀的华山、波lán壮阔的秦岭、气势磅礴的壶口瀑布,陕西美景,一屏.尽览。
2. 请根据语境,选出加点字正确的读音。
(只填序号)(2 分)(1)汉唐文化源远流长,西安国家版本馆馆藏丰富,古今结合、情景交融.(A. róng B. yóng)。
2024年初三中考模拟考试教师总结尊敬的同事们:大家好!在经历了连续的模拟考试后,我们终于迎来了____年初三中考模拟考试的总结会议。
通过这次模拟考试,我们对学生的学习情况有了更深入的了解,也发现了一些问题和不足之处。
在这次总结会上,我将对模拟考试的表现以及问题进行总结,并提出一些建议,希望能够帮助同事们更好地指导学生,提高他们的学习水平。
首先,我要对同学们在模拟考试中的表现表示赞赏。
虽然我们的学生面临了各种考试压力和困难,但他们仍然努力学习,全力以赴地参加了这次模拟考试。
他们大部分人保持了良好的学习状态,认真完成了考试内容。
这表明我们的学生具备了一定的学习能力和应试能力,这样的表现值得肯定和鼓励。
然而,在这次模拟考试中,我们也发现了一些问题和不足。
首先,部分学生在应试能力上还有待提高。
虽然他们在平时的学习中表现出了一定的潜力,但在考试时却没有充分发挥出来。
这可能是由于一些学习方法和策略的问题,需要我们在后续的教学中加以引导和辅导。
此外,还有一些学生存在考试焦虑情绪,导致他们不能够发挥出自己的正常水平。
对于这些学生,我们需要做好心理辅导工作,帮助他们缓解压力,提高应对考试的能力。
其次,在考试内容和命题方面,我们也需要进行一些调整和改进。
在这次模拟考试中,我们发现一些题目的难度相对较大,与我们的教学内容存在一定的脱节。
这给学生的学习带来了一定的困扰,也需要我们进一步优化和完善教学计划。
另外,一些题目的表述和命题方式也需要我们进一步完善,确保题目的准确性和清晰度,避免给学生带来不必要的困惑和误解。
针对以上问题和不足,我提出以下建议:一、加强学习方法和策略的指导。
我们要注重培养学生的自主学习能力,引导他们掌握科学的学习方法和策略。
我们可以通过开展学习方法讲座、学习小组等形式,进行学习方法的指导和分享,帮助学生提高学习效果和应试能力。
二、加强心理辅导工作。
面对考试焦虑的学生,我们要及时发现并进行正确的引导和教育。
第四章综合素质评价一、选择题(每题3分,共30分)1.【2023·泰安校级期中】下列几何体从正面、左面、上面看到的几何体的形状图完全相同的是()2.【2022·山东济宁二模】下列投影中,是平行投影的是()A.路灯下行人的影子B.太阳光下楼房的影子C.台灯下书本的影子D.在手电筒照射下纸片的影子3.【2023·烟台莱阳期中】用3个大小相同的小正方体搭成的几何体,从三个方向看到的形状图如图所示,则这个几何体是()4.【2023·山东烟台期末】如图是某学校操场上单杠(图中实线部分)及在地面上的影子(图中虚线部分),根据图中所示,可判断形成该影子的光线为( )A.太阳光线B.灯光光线C.可能为太阳光线或灯光光线D.该影子实际不可能存在5.北京冬奥会吉祥物“冰墩墩”“雪容融”深受人们的喜爱,体现了“瑞雪兆丰年”的寓意及包容、交流、拼搏的理念.一名艺术爱好者雕刻制作了“冰墩墩”“雪容融”,并在中午12点观测到高为165 cm的“冰墩墩”的影长为55 cm,此时在同一地点的“雪容融”的影长为60 cm,那么“雪容融”的高为( )A.160 cm B.170 cmC.180 cm D.185 cm6.如图,该机器零件的三视图中,既是轴对称图形,又是中心对称图形的是( ) A.主视图B.左视图C.俯视图D.不存在7.如图是由一些相同的正方体搭成的几何体的三视图,搭成该几何体的正方体的数量是( )A.2个B.3个C.4个D.6个8.如图是一个几何体的三视图,根据图中所标数据计算这个几何体的体积为( ) A.12π B.18π C.24π D.30π9.如图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是( )A.①②③④B.④①③②C.④②③①D.④③②①10.【2022·山东聊城一模】如图,竖直放置的杆AB,在某一时刻形成的影子恰好落在斜坡CD的D处,而此时1米长的杆影长恰好为1米,现量得BC为10米,CD为8米,斜坡CD与地面成30°角,则杆AB的高度为( )A.(6+43)米B.(10+43)米C.8米D.10米二、填空题(每题4分,共24分)11.在桌面上放置以下几何体:①圆柱;②正方体;③球.其中,主视图与左视图可能不同的是_______(填序号).12.某学校操场上立着高度不同的甲、乙两种篮球架,那么在某一时刻的太阳光的照射下,甲种篮球架的高度与其影长的比_______ (填“大于”“小于”或“等于”)乙种篮球架的高度与其影长的比.13.一个长方体的主视图和俯视图如图所示,则这个长方体左视图的面积为_______cm2.14.如图是由几个相同的小正方体搭成的几何体,在保持主视图和左视图不变的情况下,最多可以拿掉_______个小正方体.15.【2023·山东东营期末】如图,小莉用灯泡O照射一张矩形硬纸片ABCD,在墙上形成一个矩形影子A′B′C′D′,现测得OA=2 cm,OA′=5 cm,纸片ABCD的面积为8 cm2,则影子A′B′C′D′的面积为_______cm2.16.【2023·山东东营期末】小明家的客厅有一张直径为1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系(如图),其中点D的坐标为(2,0),则点E的坐标是_______.三、解答题(17题8分,18,19题每题10分,20,21题每题12分,22题14分,共66分)17.小杰与小明身高相同.一天晚上,两人站在路灯下交流学习内容,小明恰好站在小杰头顶影子的位置.请在图中分别画出此时小杰、小明的影子.(用线段表示)18.由一些相同的小正方体搭成的几何体的左视图和俯视图如图所示,请在网格中画出一种该几何体的主视图,且使该主视图是轴对称图形.19.如图①是一个组合几何体,图②是它的两种视图.(1)在图②的横线上填写出两种视图的名称;(2)根据两种视图中的数据(单位:cm),计算这个组合几何体的表面积.(结果保留一位小数,π取3.14)20.如图,已知线段AB=2 cm,投影面为P.(1)当AB垂直于投影面P时(如图①),请画出线段AB的正投影;(2)当AB平行于投影面P时(如图②),请画出它的正投影,并求出正投影的长;(3)在(2)的基础上,点A不动,线段AB绕点A在垂直于投影面P的平面内逆时针旋转30°(如图③),请在图③中画出线段AB的正投影,并求出其正投影的长.21.如图,九(1)班的小明与小艳两名同学去操场测量旗杆DE的高度,已知直立在地面上的竹竿AB的长为3 m.某一时刻,测得竹竿AB在阳光下的投影BC的长为2 m.(1)请你在图中画出此时旗杆DE在阳光下的投影,并写出画法;(2)在测量竹竿AB的影长时,同时测得旗杆DE在阳光下的影长为6 m,请你计算旗杆DE的高度.22.【2022·广州】某数学活动小组利用太阳光线下物体的影子和标杆测量旗杆的高度.如图,在某一时刻,旗杆AB的影子为BC,与此同时在C处立一根标杆CD,标杆CD的影子为CE,CD=1.6 m,BC=5CD.(1)求BC的长;(2)从条件①、条件②这两个条件中选择一个作为已知,求旗杆AB的高度.条件①:CE=1.0 m;条件②:从D处看旗杆顶部A的仰角α为54.46°.注:如果选择条件①和条件②分别作答,按第一个解答计分.参考数据:sin 54.46°≈0.81,cos 54.46°≈0.58,tan 54.46°≈1.40.答案一、1.B 【点拨】球的三视图均是圆,故选B.2.B 【点拨】A .路灯下行人的影子为中心投影,故此选项不合题意;B .太阳光下楼房的影子为平行投影,符合题意;C .台灯下书本的影子为中心投影,故此选项不合题意;D .在手电筒照射下纸片的影子为中心投影,故此选项不合题意.故选B.3.B 【点拨】在俯视图上标出相应位置摆放小正方体的个数,得这个几何体是选项B.4.B 【点拨】单杠的两根支柱互相平行,但其在地面上形成的影子不平行,所以可判断形成该影子的光线为灯光光线.故选B .5.C 【点拨】∵“冰墩墩”的高“冰墩墩”的影长=“雪容融”的高“雪容融”的影长,∴“雪容融”的高=“冰墩墩”的高“冰墩墩”的影长ד雪容融”的影长=16555×60=180(cm),故选C.6.C 【点拨】该零件的俯视图是,满足既是轴对称图形,又是中心对称图形的条件,故选C.7.C 【点拨】从俯视图观察,所有的正方体排列为一行,从左视图观察正方体排列为上下两层,从主视图观察上层有一个正方体,下层有3个正方体,共4个正方体,故选C.8.B 【点拨】从三视图观察,这是一个圆筒,其内径为2,外径为4,高为6,故其体积为π×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫422-⎝ ⎛⎭⎪⎫222×6=18π,故选B. 9.B 【点拨】在北半球,一天中,影子先由长变短,然后由短变长,并且影子的朝向由西逐渐转向北,再转向东,故选B.10.A 【点拨】如图,延长AB 交DT 的延长线于E .易得四边形BCTE 是矩形,∴BC =ET =10米,BE =CT .∵1米长的杆影长恰好为1米,∴AE =DE .在Rt △CDT 中,∵∠CTD =90°,CD =8米,∠CDT =30°,∴DT =CD ·cos 30°=8×32=43(米),CT=12CD=4米,∴AE=DE=ET+DT=(10+43)米,BE=CT=4米,∴AB=AE-BE=(10+43)-4=6+43(米),故选A.二、11.①【点拨】圆柱的三视图分别是圆、矩形、矩形,故主视图与左视图可能不同的是圆柱.12.等于【点拨】同一时刻的阳光下物体的高度与其影长成正比例.13.6【点拨】观察主视图可知该长方体的高为2 cm,观察俯视图可知该长方体的宽为3 cm,所以其左视图的面积为2×3=6(cm2).14.1【点拨】可以拿掉第一层中间一列两个小正方体中的一个.15.50【点拨】∵OA∶OA′=2∶5,∴OB∶OB′=2∶5.∵∠AOB=∠A′OB′,∴△AOB∽△A′OB′,∴AB∶A′B′=2∶5,∴矩形ABCD的面积∶矩形A′B′C′D′的面积=4∶25.∵矩形ABCD的面积为8 cm2,∴矩形A′B′C′D′的面积为50 cm2. 16.(3.6,0)【点拨】过点B作BF⊥x轴,垂足为F.由题意得OA=2米,BF=0.75米,BC=1米.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ABAD=OA-BFOA,即1DE=2-0.752,解得DE=1.6米,∴OE=2+1.6=3.6(米),∴E点的坐标为(3.6,0).三、17.解:如图,小杰、小明的影子分别为线段EF、线段DF. 18.解:如图所示.19.解:(1)主;俯(2)这个组合几何体的表面积为2×(8×5+8×2+5×2)+4×π×6≈132+4×3.14×6≈207.4(cm2).20.解:(1)画图略.(2)画图略.线段AB 的正投影的长为2 cm. (3)画图略.线段AB 的正投影的长为2cos 30°=2×32=3(cm). 21.解:(1)如图,线段EF 就是此时旗杆DE 在阳光下的投影.画法:连接AC ,过点D 作DF ∥AC ,交直线BE 于点F ,则线段EF 即为所求.(2)∵AC ∥DF ,∴∠ACB =∠DFE . 又∵∠ABC =∠DEF =90°, ∴△ABC ∽△DEF . ∴AB DE =BC EF .∵AB =3 m ,BC =2 m ,EF =6 m , ∴3DE =26.∴DE =9 m ,即旗杆DE 的高度为9 m. 22.解:(1)∵BC =5CD ,CD =1.6 m ,∴BC =5×1.6=8(m), ∴BC 的长为8 m.(2)若选择条件①:由题意得AB BC =DC CE , ∴AB 8=1.61, ∴AB =12.8 m.∴旗杆AB 的高度为12.8 m. 若选择条件②:如图,过点D 作DF ⊥AB ,垂足为F , 则DC =BF =1.6 m ,DF =BC =8 m. 在Rt △ADF 中,∠ADF =54.46°,∴AF=DF·tan 54.46°≈8×1.40=11.2(m),∴AB=AF+BF≈11.2+1.6=12.8(m),∴旗杆AB的高度约为12.8 m.。
湘教版九年级数学上册第3单元测试题(时间:90分钟分值:120分)一、选择题(共4小题)1.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米2.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m3.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A. B.C. D.4.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个二、填空题(共14小题)5.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是米.6.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD ⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是米(平面镜的厚度忽略不计).7.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为.8.如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为米.9.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为cm.10.在某一时刻,测得一根高为 1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为m.11.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为m.12.如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为m.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A 处,则小明的影子AM长为米.15.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为m.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH= 里.17.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD 和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是米.18.同一时刻,物体的高与影子的长成比例,某一时刻,高 1.6m的人影长为 1.2m,一电线杆影长为9m,则电线杆的高为 m.三、解答题(共12小题)19.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.20.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)21.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.22.(1)如图,M、N为山两侧的两个村庄,为了两村交通方便,根据国家的惠民政策,政府决定打一直线涵洞.工程人员为了计算工程量,必须计算M、N两点之间的直线距离,选择测量点A、B、C,点B、C分别在AM、AN上,现测得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N两点之间的直线距离.(2)列方程(组)或不等式(组)解应用题:2015年的5月20日是第15个中国学生营养日,我市某校社会实践小组在这天开展活动,信息1、快餐成分:蛋白质、脂肪、碳水化合物和其他2、快餐总质量为400克3、碳水化合物质量是蛋白质质量的4倍若这份快餐中所含的蛋白质与碳水化合物的质量之和不高于这份快餐总质量的70%,求这份快餐最多含有多少克的蛋白质?23.一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?24.某一天,小明和小亮来到一河边,想用遮阳帽和皮尺测量这条河的大致宽度,两人在确保无安全隐患的情况下,先在河岸边选择了一点B(点B与河对岸岸边上的一棵树的底部点D所确定的直线垂直于河岸).①小明在B点面向树的方向站好,调整帽檐,使视线通过帽檐正好落在树的底部点D处,如图所示,这时小亮测得小明眼睛距地面的距离AB=1.7米;②小明站在原地转动180°后蹲下,并保持原来的观察姿态(除身体重心下移外,其他姿态均不变),这时视线通过帽檐落在了DB延长线上的点E处,此时小亮测得BE=9.6米,小明的眼睛距地面的距离CB=1.2米.根据以上测量过程及测量数据,请你求出河宽BD是多少米?25.一天晚上,李明和张龙利用灯光下的影子长来测量一路灯CD的高度.如图,当李明走到点A处时,张龙测得李明直立时身高AM与影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子恰好是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m,求路灯的高CD的长.(结果精确到0.1m).26.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?27.某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为 1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明原来的速度.28.如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置.(1)求证:△BEF∽△CDF;(2)求CF的长.29.课本中有一道作业题:有一块三角形余料ABC,它的边BC=120mm,高AD=80mm.要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.问加工成的正方形零件的边长是多少mm?小颖解得此题的答案为48mm,小颖善于反思,她又提出了如下的问题.(1)如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图1,此时,这个矩形零件的两条边长又分别为多少mm?请你计算.(2)如果原题中所要加工的零件只是一个矩形,如图2,这样,此矩形零件的两条边长就不能确定,但这个矩形面积有最大值,求达到这个最大值时矩形零件的两条边长.30.为了测量旗杆AB的高度.甲同学画出了示意图1,并把测量结果记录如下,BA⊥EA于A,DC⊥EA于C,CD=a,CA=b,CE=c;乙同学画出了示意图2,并把测量结果记录如下,DE ⊥AE于E,BA⊥AE于A,BA⊥CD于C,DE=m,AE=n,∠BDC=α.(1)请你帮助甲同学计算旗杆AB的高度(用含a、b、c的式子表示);(2)请你帮助乙同学计算旗杆AB的高度(用含m、n、α的式子表示).参考答案:一、选择题(共4小题)1.小明在测量楼高时,先测出楼房落在地面上的影长BA为15米(如图),然后在A处树立一根高2米的标杆,测得标杆的影长AC为3米,则楼高为()A.10米B.12米C.15米D.22.5米【考点】相似三角形的应用.【专题】应用题.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵=即=,∴楼高=10米.故选A.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.2.如图,为估算某河的宽度,在河对岸选定一个目标点A,在近岸取点B,C,D,使得AB ⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,CE=10m,CD=20m,则河的宽度AB等于()A.60m B.40m C.30m D.20m【考点】相似三角形的应用.【分析】由两角对应相等可得△BAE∽△CDE,利用对应边成比例可得两岸间的大致距离AB.【解答】解:∵AB⊥BC,CD⊥BC,∴△BAE∽△CDE,∴∵BE=20m,CE=10m,CD=20m,∴解得:AB=40,故选B.【点评】考查相似三角形的应用;用到的知识点为:两角对应相等的两三角形相似;相似三角形的对应边成比例.3.如图,正方形ABCD是一块绿化带,其中阴影部分EOFB,GHMN都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为()A. B.C. D.【考点】相似三角形的应用;正方形的性质;几何概率.【专题】压轴题.【分析】求得阴影部分的面积与正方形ABCD的面积的比即可求得小鸟在花圃上的概率;【解答】解:设正方形的ABCD的边长为a,则BF=BC=,AN=NM=MC=a,∴阴影部分的面积为()2+(a)2=a2,∴小鸟在花圃上的概率为=故选C.【点评】本题考查了正方形的性质及几何概率,关键是表示出大正方形的边长,从而表示出两个阴影正方形的边长,最后表示出面积.4.如图,以点O为支点的杠杆,在A端用竖直向上的拉力将重为G的物体匀速拉起,当杠杆OA水平时,拉力为F;当杠杆被拉至OA1时,拉力为F1,过点B1作B1C⊥OA,过点A1作A1D⊥OA,垂足分别为点C、D.①△OB1C∽△OA1D;②OA•OC=OB•OD;③OC•G=OD•F1;④F=F1.其中正确的说法有()A.1个B.2个C.3个D.4个【考点】相似三角形的应用.【专题】跨学科.【分析】根据在同一平面内,垂直于同一直线的两直线互相平行判断出B1C∥A1D,然后求出△OB1C∽△OA1D,判断出①正确;根据相似三角形对应边成比例列式求解即可得到②正确;根据杠杆平衡原理:动力×动力臂=阻力×阻力臂列式判断出③正确;求出F的大小不变,判断出④正确.【解答】解:∵B1C⊥OA,A1D⊥OA,∴B1C∥A1D,∴△OB1C∽△OA1D,故①正确;∴=,由旋转的性质得,OB=OB1,OA=OA1,∴OA•OC=OB•OD,故②正确;由杠杆平衡原理,OC•G=OD•F1,故③正确;∴===是定值,∴F1的大小不变,∴F=F1,故④正确.综上所述,说法正确的是①②③④.故选:D.【点评】本题考查了相似三角形的判定与性质,杠杆平衡原理,熟练掌握相似三角形的判定方法和性质并准确识图是解题的关键.二、填空题(共14小题)5.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是8 米.【考点】相似三角形的应用.【分析】首先证明△ABP∽△CDP,可得=,再代入相应数据可得答案.【解答】解:由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=12米,∴=,CD=8米,故答案为:8.【点评】此题主要考查了相似三角形的应用,关键是掌握相似三角形对应边成比例.6.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD ⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是8 米(平面镜的厚度忽略不计).【考点】相似三角形的应用.【分析】由已知得△ABP∽△CDP,根据相似三角形的性质可得,解答即可.【解答】解:由题意知:光线AP与光线PC,∠APB=∠CPD,∴Rt△ABP∽Rt△CDP,∴,∴CD==8(米).故答案为:8.【点评】本题综合考查了平面镜反射和相似形的知识,关键是根据相似三角形在测量中的应用分析.7.如图,李明打网球时,球恰好打过网,且落在离网4m的位置上,则网球的击球的高度h为 1.4 .【考点】相似三角形的应用.【分析】判断出△ABC和△AED相似,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:由题意得,DE∥BC,所以,△ABC∽△AED,所以,=,即=,解得h=1.4m.故答案为:1.4.【点评】本题考查了相似三角形的应用,主要利用了相似三角形对应边成比例,熟记性质并列出比例式是解题的关键.8.如图,为了测量一水塔的高度,小强用2米的竹竿做测量工具,移动竹竿,使竹竿、水塔的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8米,与水塔相距32米,则水塔的高度为10 米.【考点】相似三角形的应用.【分析】由已知可得BC∥DE,因此△ABC∽△ADE,利用相似三角形的性质可求得水塔的高度.【解答】解:∵BC⊥AD,ED⊥AD,∴BC∥DE,∴△ABC∽△ADE,∴,即,∴DE=10,即水塔的高度是10米.故答案为:10.【点评】本题考查了考查了相似三角形的判定和性质,解题的关键是能利用比例式求解线段长.9.如图,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为18 cm.【考点】相似三角形的应用.【分析】根据题意可画出图形,再根据相似三角形的性质对应边成比例解答.【解答】解:∵DE∥BC,∴△AED∽△ABC∴=设屏幕上的小树高是x,则=解得x=18cm.故答案为:18.【点评】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.10.在某一时刻,测得一根高为 1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为15 m.【考点】相似三角形的应用.【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得x=15.故答案为:15.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.11.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.6m,木竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木竿PQ的长度为2.3 m.【考点】相似三角形的应用.【专题】几何图形问题.【分析】先根据同一时刻物高与影长成正比求出QD的影长,再根据此影长列出比例式即可.【解答】解:过N点作ND⊥PQ于D,∴,又∵AB=2,BC=1.6,PM=1.2,NM=0.8,∴QD==1.5,∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m).故答案为:2.3.【点评】在运用相似三角形的知识解决实际问题时,要能够从实际问题中抽象出简单的数学模型,然后列出相关数据的比例关系式,从而求出结论.12.如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为 1.5米.【考点】相似三角形的应用.【分析】根据球网和击球时球拍的垂直线段平行即DE∥BC可知,△ADE∽△ACB,根据其相似比即可求解.【解答】解:∵DE∥BC,∴△ADE∽△ACB,即=,则=,∴h=1.5m.故答案为:1.5米.【点评】本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.13.如图,小明用长为3m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12m,则旗杆AB的高为9 m.【考点】相似三角形的应用.【专题】几何图形问题.【分析】根据△OCD和△OAB相似,利用相似三角形对应边成比例列式求解即可.【解答】解:由题意得,CD∥AB,∴△OCD∽△OAB,∴=,即=,解得AB=9.故答案为:9.【点评】本题考查了相似三角形的应用,是基础题,熟记相似三角形对应边成比例是解题的关键.14.如图,路灯距离地面8米,身高1.6米的小明站在距离灯的底部(点O)20米的A 处,则小明的影子AM长为 5 米.【考点】相似三角形的应用.【专题】压轴题.【分析】易得:△ABM∽△OCM,利用相似三角形的相似比可得出小明的影长.【解答】解:根据题意,易得△MBA∽△MCO,根据相似三角形的性质可知=,即=,解得AM=5m.则小明的影长为5米.【点评】本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比可得出小明的影长.15.如图,利用标杆BE测量建筑物的高度,标杆BE高1.5m,测得AB=2m,BC=14cm,则楼高CD为12 m.【考点】相似三角形的应用.【专题】应用题.【分析】先根据题意得出△ABE∽△ACD,再根据相似三角形的对应边成比例即可求出CD的值.【解答】解:∵EB⊥AC,DC⊥AC,∴EB∥DC,∴△ABE∽△ACD,∴=,∵BE=1.5,AB=2,BC=14,∴AC=16,∴=,∴CD=12.故答案为:12.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例的性质是解答此题的关键.16.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过A点,则FH= 1.05 里.【考点】相似三角形的应用.【专题】几何图形问题.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:EG⊥AB,FH⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.【点评】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形,难度不大.17.如图,某水平地面上建筑物的高度为AB,在点D和点F处分别竖立高是2米的标杆CD 和EF,两标杆相隔52米,并且建筑物AB、标杆CD和EF在同一竖直平面内,从标杆CD后退2米到点G处,在G处测得建筑物顶端A和标杆顶端C在同一条直线上;从标杆FE后退4米到点H处,在H处测得建筑物顶端A和标杆顶端E在同一条直线上,则建筑物的高是54 米.【考点】相似三角形的应用.【专题】几何图形问题;压轴题.【分析】根据题意可得出△CDG∽△ABG,△EFH∽△ABH,再根据相似三角形的对应边成比例即可得出结论.【解答】解:∵AB⊥BH,CD⊥BH,EF⊥BH,∴AB∥CD∥EF,∴△CDG∽△ABG,△EFH∽△ABH,∴=,=,∵CD=DG=EF=2m,DF=52m,FH=4m,∴=,=,∴=,解得BD=52m,∴=,解得AB=54m.故答案为:54.【点评】本题考查的是相似三角形的应用,熟知相似三角形的对应边成比例是解答此题的关键.18.同一时刻,物体的高与影子的长成比例,某一时刻,高 1.6m的人影长为 1.2m,一电线杆影长为9m,则电线杆的高为12 m.【考点】相似三角形的应用.【分析】根据在同一地点,物体的实际高度与它的影子的长度的比值一定,由此判断物体的实际高度与它的影子的长度成正比例,设出未知数,列出比例解答即可.【解答】解:设这根电线杆的高度是x米,1.6:1.2=x:9,解得:x=12.故答案为:12.【点评】考查了相似三角形的应用,解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.三、解答题(共12小题)19.如图,某校数学兴趣小组利用自制的直角三角形硬纸板DEF来测量操场旗杆AB的高度,他们通过调整测量位置,使斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上,已知DE=0.5米,EF=0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米,求旗杆的高度.【考点】相似三角形的应用.【分析】根据题意可得:△DEF∽△DCA,进而利用相似三角形的性质得出AC的长,即可得出答案.【解答】解:由题意可得:△DEF∽△DCA,则=,∵DE=0.5米,EF=0.25米,DG=1.5m,DC=20m,∴=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(m),答:旗杆的高度为11.5m.【点评】此题主要考查了相似三角形的应用,得出△DEF∽△DCA是解题关键.20.晚饭后,小聪和小军在社区广场散步,小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC 为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)【考点】相似三角形的应用.【分析】先证明△CAD~△MND,利用相似三角形的性质求得MN=9.6,再证明△EFB~△MFN,即可解答.【解答】解:由题意得:∠CAD=∠MND=90°,∠CDA=∠MDN,∴△CAD~△MND,∴,∴,∴MN=9.6,又∵∠EBF=∠MNF=90°,∠EFB=∠MFN,∴△EFB~△MFN,∴,∴∴EB≈1.75,∴小军身高约为1.75米.【点评】本题考查的是相似三角形的判定及性质,解答此题的关键是相似三角形的判定.21.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.【考点】相似三角形的应用;平行投影.【分析】(1)这是利用了平行投影的有关知识;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.利用矩形的性质和平行投影的知识可以得到比例式:=,即=,由此求得CD即电线杆的高度即可.【解答】解:(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;故答案是:平行;(2)过点E作EM⊥AB于M,过点G作GN⊥CD于N.则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.所以AM=10﹣2=8,由平行投影可知,=,即=,解得CD=7,即电线杆的高度为7米.【点评】本题考查了平行投影,相似三角形的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.。
2020年秋华东师大版九年级数学上册期末模拟走综合测试卷一、选择题(每题3分,共30分)1.若a是最简二次根式,则a的值可能是()A.-2 B.2 C.32D.82.下列说法中,正确的是() A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次3.如图,一个正六边形转盘被分成六个全等的正三角形,任意转动这个转盘一次,指针指向阴影区域的概率是()A.13 B.23 C.19 D.294.下列计算正确的是()A. 5-3= 2B.33=1C.(2 3)2=24 D.3 5×2 3=6 155.已知tanα=512,α是锐角,则sinα的值是()A.135 B.1213 C.513 D.1256.若一元二次方程x2+bx+5=0配方后为(x-3)2=k,则b,k的值分别为()A.0,4 B.0,5C.-6,5 D.-6,47.将点A(-2,3)平移到点B(1,-2)处,正确的移法是()A.向右平移3个单位长度,向上平移5个单位长度B.向左平移3个单位长度,向下平移5个单位长度C.向右平移3个单位长度,向下平移5个单位长度D.向左平移3个单位长度,向上平移5个单位长度8.关于一元二次方程2 018(x-2)2=2 019的两个根判断正确的是() A.一根小于1,另一根大于3 B.一根小于-2,另一根大于2C.两根都小于0 D.两根都小于29.如图,已知AD⊥BD,AC⊥BC,D,C分别是垂足,E为AB的中点,则△CDE 一定是()A.等腰三角形B.等腰直角三角形C.直角三角形D.等边三角形10.如图,Rt△ABC中,∠C=90°,AC=12,BC=5,等腰直角三角形DEF的顶点D,E分别在边AC,AB上,且ED⊥AC于点D,连结AF并延长交BC 于点G.已知DE=EF=2,则BG的长为()A.2517 B.3017 C.1712 D.1912二、填空题(每题3分,共15分)11.化简:(-2 019)2=________.12.如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC,若DB=4,DA =2,DE=3,则AC=________.13.若方程(m-2)xm2-2+mx=8是关于x的一元二次方程,则m的值为________.14.从1、2、3这三个数字中,任意抽取两个不同数字组成一个两位数,则这个两位数能被3整除的概率是________.15.在△ABC 中,AB =AC ,若BD ⊥AC 于D ,若cos ∠BAD =23,BD = 5,则CD 为________.三、解答题(16~18题每题8分,19~20题每题9分,21~22题每题10分,23题13分,共75分) 16. 计算: (1)⎝ ⎛⎭⎪⎫2 12-6 13+3 48÷2 3;(2)(2 5+5 2)(2 5-5 2)-( 5-2)2.17.如图,△ABC 中,D 是BC 上的一点,E ,F ,G ,H 分别是BD ,BC ,AC ,AD 的中点,求证:EG ,HF 互相平分.18.已知关于x 的一元二次方程x 2+2(m +1)x +m 2-2=0. (1)若方程有实数根,求实数m 的取值范围; (2)若m 为负整数,求该一元二次方程的解.19.如图,在边长为1个单位长度的小正方形网格中:(1)画出△ABC向上平移6个单位长度,再向右平移5个单位长度后的△A1B1C1.(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)求△CC1C2的面积.20.小明和小亮做扑克游戏,桌面上放有两堆不透明纸牌,分别是红桃和黑桃的1,2,3,4,背面向上.小明建议:“我从红桃中抽取一张,你从黑桃中抽取一张,当两张牌数字之积为奇数时,你得1分,为偶数时我得1分,先得到10分的获胜”.这个游戏对小亮和小明公平吗?为什么?21.A地区2016年公民出境旅游总人数约600万人,2018年公民出境旅游总人数约864万人,若2017年、2018年公民出境旅游总人数逐年递增,请解答下列问题:(1)求A地区公民出境旅游总人数的年平均增长率;(2)如果2019年仍保持相同的年平均增长率,请你预测2019年A地区公民出境旅游总人数约多少万人.22.如图所示,某体育场内一看台AB=10 3米,高BC=5 3米,A,B两点正前方有垂直于底面的旗杆DE,在A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°.(1)求旗杆DE的高度;(2)已知旗杆上有一面旗在离地1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒.23.如图①,在四边形ABCD的边AB上任取一点E(点E不与A,B重合),分别连结ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的“相似点”;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的“强相似点”.(1)如图①,∠A=∠B=∠DEC=45°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;(2)如图②,在矩形ABCD中,A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图②中画出矩形ABCD的边AB上的强相似点;(3)如图③,将矩形ABCD沿CM折叠,使点D落在AB边上的点E处,若点E恰好是四边形ABCM的边AB上的一个强相似点,试探究AB与BC的数量关系.答案一、1.B 2.A 3.A 4.D 5.C 6.D 7.C8.A 点拨:∵2 018(x -2)2=2 019,∴(x -2)2=2 0192 018,∴x -2= 2 0192 018或x-2=-2 0192 018,∴x 1=2+2 0192 018,x 2=2-2 0192 018.∵2 0192 018>1,∴方程的一个根大于3,一个根小于1,故选:A .9.A 点拨:∵AD ⊥BD ,AC ⊥BC ,D ,E 为AB 的中点,∴DE =12AB ,CE =12AB ,∴DE =CE ,∴△CDE 一定是等腰三角形.10.A 点拨:∵ED ⊥AC ,BC ⊥AC ,∴ED ∥BC ,∴△EDA ∽△BCA ,∴ED BC =AD AC ,∴25=AD 12,∴AD =245.∵△EFD 是等腰直角三角形,EF =ED =2,∴∠FED =90°,∴EF ∥AD ,设ED 和AF 交于点O ,则△EFO ∽△DAO ,∴EFAD =EO OD =2245=512,设EO =5x ,OD =12x ,∴5x +12x =2,x =217,∴EO =5x =1017.∵EO ∥BG ,∴EO BG =25,∴1017BG=25,∴BG =2517,故选:A .二、11.2 019 12.92 13.-2 14.1315. 1或5 点拨:(1)如图①,若△ABC 为锐角三角形,∵BD ⊥AC ,∴∠ADB =90°.∵cos ∠BAD =AD AB =23,∴设AD =2x ,则AB =3x .∵AB 2=AD 2+BD 2,∴9x 2=4x 2+(5)2,解得:x =1或x =-1(舍),∴AB =AC =3x =3,AD =2x =2,∴CD =AC -AD =1.(2)如图②,若△ABC 为钝角三角形,由(1)知,AD =2x =2,AB =AC =3x =3,∴CD =AC +AD =5.三、16.解:(1) (2 12-613+348)÷2 3=(4 3-2 3+12 3)÷2 3 =14 3÷2 3 =7.(2) (2 5+5 2)(2 5-5 2)-(5-2)2 =(2 5)2-(5 2)2-(5-2 10+2) =20-50-(7-2 10) =-37+2 10.17.证明:连结EH ,GH ,GF ,∵E ,F ,G ,H 分别是BD ,BC ,AC ,AD 的中点, ∴AB ∥EH ∥GF ,GH ∥EF . ∴四边形EHGF 为平行四边形.∵GE ,HF 分别为其对角线,∴EG ,HF 互相平分.18. 解:(1)∵方程x 2+2(m +1)x +m 2-2=0有实数根, ∴Δ=[2(m +1)]2-4(m 2-2)=8m +12≥0,解得:m ≥-32. (2)∵m ≥-32且m 为负整数, ∴m =-1,∴原方程为x 2-1=0,解得:x 1=-1,x 2=1. 19.解:(1)如图所示. (2)如图所示. (3)如图所示.△CC 1C 2的面积为12×3×6=9.20.解:游戏不公平,理由:从上表可知,共有16种情况,每种情况发生的可能性相同,而两张牌数字之积为奇数的情况共出现4次,两张牌数字之积为偶数的情况共出现12次,因此数字之积为奇数的概率为416=14,数字之积为偶数的概率为1216=34,∴这个游戏对小亮和小明不公平.21.解:(1)设A地区公民出境旅游总人数的年平均增长率为x,根据题意得:600(1+x)2=864,解得:x1=0.2=20%,x2=-2.2(不合题意,舍去).答:A地区公民出境旅游总人数的年平均增长率为20%.(2)864×(1+20%)=1 036.8(万人).答:预计2019年A地区公民出境旅游总人数约1 036.8万人.22.解:(1)∵AB=10 3,BC=5 3,∴∠CAB=30°.∵BG∥CD,∴∠GBA=∠BAC=30°.又∵∠GBE=15°,∴∠ABE=45°.∵∠EAD=60°,∴∠BAE=90°,∴∠AEB=45°,∴AB=AE=10 3.则DE=AE sin∠DAE=10 3×32=15(米).答:旗杆DE的高度为15米.(2)∵DF=1,∴EF=DE-DF=15-1=14(米),则t=140.5=28(秒).答:这面旗到达旗杆顶端需要28秒.23.解:(1)∵∠A=∠B=∠DEC=45°,∴∠AED+∠ADE=135°,∠AED+∠CEB=135°,∴∠ADE=∠CEB,在△ADE和△BEC中,∠A=∠B,∠ADE=∠BEC,∴△ADE∽△BEC,∴点E是四边形ABCD的边AB上的相似点.(2)如图所示,点E1和E2是四边形ABCD的边AB上的强相似点.(3)∵点E是四边形ABCM的边AB上的一个强相似点,∴△AEM∽△BCE∽△ECM.∴∠BCE=∠ECM=∠AEM.由折叠可知:△ECM≌△DCM,∴∠ECM=∠DCM=∠BCE,CE=CD=AB,∴∠BCE=13∠BCD=13×90°=30°,∴在Rt△BCE中,cos∠BCE=BCCE=cos30°=32,∴BCAB=32.。