第2章 随机变量及其分布2.4 补充例题
- 格式:ppt
- 大小:712.50 KB
- 文档页数:14
第2章 随机变量及其分布(练习、复习题及答案)一、填空题:1.随机变量ξ的分布列为P(ξ=k )=a /N ,(k =1,2,…,N),则a = 1 .2.射手每次射击击中目标的概率为p ,连续向同一目标射击,直到某一次击中目标为止,则射击次数ξ的分布列为 P(ξ=k )=p (1-p )k -1,k =1,2,….3.随机变量ξ服从参数为(2,p )的二项分布,随机变量η服从参数为(4,p )的二项分布,若P(ξ<1)=4/9,则P(η≥1)=_ 65/81_.4.离散型随机变量ξ的概率分布P(ξ=0)=0.2,P(ξ=1)=0.3,P(ξ=2)=0.5,则P(ξ≤1.5)=__0.5__.5.随机变量ξ的分布列为P(ξ=k )=!k Ckλ,k =0,1,2,…(λ>0),则C = e -λ. *λλλλe =++++!3!2!11326.随机变量ξ的分布列为P(ξ=k )=k a -λ,k =1,2,…,其中λ>1,则a = λ-1 .7.一实习生用同一台机器接连独立地制造三个同种零件,第i 个零件是不合格品的概率3,2,1,11=+=i i p i ,以ξ表示三个零件中合格品的个数,则P{ξ=2}= 11/24 .8.随机变量ξ的分布函数为F(x ),则概率P(ξ≥a )用F(x )表示为__ 1-F(a )__. 9.随机变量ξ的分布函数为F(x )=⎪⎩⎪⎨⎧<≥+--0 0 0)1(1x x ex x ,,,则P(ξ≤1)=_1-2e -1_. 10.随机变量ξ的概率密度函数为f (x )=⎪⎩⎪⎨⎧<-其他,), 0 2A(2x x ,则A=__1/4__.11.连续型随机变量ξ的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤<=1, 110,0,0)(F 2x x x x x ,则ξ的概率密度f (x )=⎩⎨⎧<<其他, 1 10,2x x .12.连续型随机变量ξ的分布函数为)0(00,0B A )(F >⎪⎩⎪⎨⎧≤>+=-λλx x ex x ,, ,则常数A =_1 ,B =_-1;P{-1<ξ<1}= 1-e -λ.13.随机变量ξ的分布函数为⎪⎩⎪⎨⎧<≥+-=-0, 00,)1(1)(x x ex x F x ,则相应的概率密度是⎪⎩⎪⎨⎧<≥=-0, 00,)(x x xex f x .14.随机变量ξ在[1,4]上服从均匀分布,现在对进行3次独立试验,则至少有2次观察值大于2的概率为_20/27_.15.随机变量ξ ~N(70,102),则P(60<ξ<80)=_0.6826_.(已知Φ(1)=0.8413)16.随机变量ξ服从正态分布N(2,σ2),且P(2<ξ<4)=0.3,则P(ξ<0)=_0.2_.17.随机变量服从正态分布N(μ,σ2),已知P(ξ<9)=0.975,P(ξ<2)=0.062,则P(ξ>6)=_0.3228_. 18.若ξ~N(0,1),则η=ξ3的密度函数为+∞<<-∞--y e yy,231322132π.19.统考成绩服从正态分布N(70,102),在参加统考的人中,及格者100人(及格分数为60分),则不及格人数约为_19_.二、选择题1.在下列结果中,构成概率分布的是( D ).{}{}{}{}),,(D.P ),,,(C.P ),,(B.P ),,,(A.P 2 132 2 1 032 2 131 2 1 031============k k ξk k ξk k ξk k ξkkkk2.随机变量ξ的概率分布为P(ξ=k )=b λk (k =1,2,…), b >0,则( C ). A.λ为任意正实数 B.λ=b +1 C.b+=11λ D.11-=b λ3.常数b =( B )时,),,( 2 1)1(=+=k k k b p k 为离散型随机变量的概率分布.A.2B.1C.0.5D.34.设ξ是一个离散型随机变量,则( D )可以成为ξ的分布列.{}{}, , , n n en ξn n en ξx x x x x R p p p nn210!32 1!30.22.0 .303.0 .10 ,1 0 1 3354321======⎪⎪⎭⎫⎝⎛∈⎪⎪⎭⎫⎝⎛---.D.P,,.C.P B.A.5.随机变量ξ~N(0,1),ξ的分布函数为Φ(x ),则P(⎢ξ⎪<1)的值为( B ).A.2[1-Φ(1)]B.2Φ(1)-1C.1-Φ(1)D.1-2Φ(1)6.随机变量ξ~N(0,1),ξ的分布函数为Φ(x ),则P(⎢ξ⎪>2)的值为( A ). A.2[1-Φ(2)] B.2Φ(2)-1 C.2-Φ(2) D.1-2Φ(2)7.设随机变量ξ的分布函数为F (x ),在下列概率中可表示为F (a +0) - F (a )的是( C ). A.P{ξ≤a } B. P{ξ>a } C. P{ξ=a } D. P{ξ≥a }8.下列函数可以作为某一随机变量ξ的密度函数的是( D ).⎪⎩⎪⎨⎧∈=⎪⎩⎪⎨⎧-∈=⎪⎩⎪⎨⎧∈=⎩⎨⎧∈=其他D. 其他C. 其他B.其他A., 0 ]2,0[,sin )(, 0 ]2,2[,sin )(, 0 ]23,0[,sin )( , 0 ],0[,sin )(πππππx x x f x x x f x x x f x x x f9.设ξ的概率密度为⎪⎩⎪⎨⎧≤>+=0 0 0)(1A )(4x x x x x f ,,,则A=( B ).A.3B.6C.2.5D.4 10.设随机变量ξ的密度函数为f (x )=)(21+∞<<-∞-x ex,则其分布函数的是( B ).⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤-<=⎪⎩⎪⎨⎧≥<-=⎪⎪⎩⎪⎪⎨⎧≥-<=⎪⎩⎪⎨⎧≥<=---1, 1 10,2110, 21 )(0, 1 0,211)(0,2110, 21 )( 0, 0 0,21)(x x e x e x F x x e x F x e x e x F x x e x F x xx x xx D. C. B.A.11.设f (x )是一连续型随机变量ξ的密度函数,其表达式为分段函数,则当x ∈( A )时,f (x )=cos x ,其余f (x )=0.]47,23[],0[],2[]2,0[ππππππ D. C. B.A.12.设随机变量ξ服从[0,5]上的均匀分布,则关于t 的方程4t 2+4ξt+ξ+2=0有实根的概率是( B ).A.0.4B.0.6C.1D.1/313.设随机变量ξ~N(μ, 62),η~ N(μ, 82),记p 1=P{ξ≤μ-6},p 2=P{η≥μ+8},则( A ).A. p 1=p 2B. p 1>p 2C. p 1<p 2D. p 1≤p 2 三、解答题:1.下列表格是概率分布吗?为什么?(1) ξ 1 2 3 4 不是 (2) ξ -1 0 1 4 是 P 0.2 0.3 0.3 0.4 P 0.1 0.2 0.3 0.4 2.求常数C ,使下列函数成为概率分布:P(ξ=k )=Ck ,k =1,2,…, n ; )1(2+=n n C3.随机变量ξ~b (n , p ),已知P(ξ=1)=P(ξ=n -1),试求 p 与P(ξ=2)的值.p =0.5,P(ξ=2)=122)1(21+-=⎪⎭⎫ ⎝⎛n nnn n C4.随机试验中事件A 发生的概率为p ,把这个试验独立重复地做两次。
第二章 随机变量及其分布题型归类与解题方法1. 求随机变量的分布1.1 求离散型随机变量分布列或分布函数例 2.1 一盒中装有编号1,2,,5 为的五只球,现从中任取三只球,求被抽取的三只球的中间号码为X 的分布列.解 首先确定X 的取值只能为2,3,4.分析 当X k =时,另两只球中的一只在小于k 的1k -个球中取,余一只球在大于k 的5k -只球中取,故111535{}k kC C P X k C --== (2,3,4)k = 即有例 2. 2 已知X 的概率分布为1{2}{1}{1}{2}4P X P X P X P X =-==-=====,求:(1)2Y X =的分布列; (2)(),X Y 的分布列. 解 (1) 2Y X =的分布列为1{2,4}{2}4P X Y P X =-===-=. 同理1{1,1}{1}4P X Y P X =-=-==-=; 1{1,1}{1}4P X Y P X =====; 1{2,4}{2}4P X Y P X =====.故(),X Y 的联合分布列为评点 对于这一类题,首先确定离散型随机变量的取值,然后求出随机变量取各值的概率,最后写出离散型随机变量的分布律.1.2 求连续型随机变量分布列或分布函数例 2.3 设随机变量X 的概率密度为,01;()2,12;0,x x f x x x ≤≤⎧⎪=-≤<⎨⎪⎩其他,求X 的分布函数()F x .解 分析:利用公式()()xF x f x dx -∞=⎰直接计算分布函数.当0x <时,()0F x =;当01x ≤<时,20()()02xxx F x f x dx dx xdx -∞-∞==+=⎰⎰⎰;当12x ≤<时,01211()()0(2)212xx F x f x dx dx xdx x dx x x -∞-∞==++-=--⎰⎰⎰⎰; 当2x ≥时,220,0;,01;2()112,12;21, 2.x x x F x x x x x <⎧⎪⎪≤<⎪=⎨⎪-+-≤<⎪⎪≥⎩.例 2.4 在(),X Y 区域Θ上服从均匀分布,求(),X Y 的分布函数,其中Θ为x 轴,y 及1y x =+围成的三角形.解 当1x <-或0y <时,(,)0f x y = (,)0F x y =; 当10x -≤<,1y x ≥+时,201(,)22(1)(22)y xy F x y dy dx y x y x y y -==+-=-+⎰⎰;当10x -≤<,1y x ≥+时,121(,)2(1)xx F x y dx dy x +-==+⎰⎰;当0x ≥,01y ≤<时,01(,)2(2)yy F x y dy dx y y -==-⎰⎰;当0x ≥,1y ≥时,(,)1F x y =. 故2010;(22),10,01;(,)(1),10,1;(2),0,01;10, 1.x y x y y x y x F x y x x y x y y x y x y <-<⎧⎪-+-≤<≤<+⎪⎪=+-≤<≥+⎨⎪-≥≤≤⎪≥≥⎪⎩,或, 评点 求一维的和二维的连续型随机变量的分布函数,是对概率密度函数进行积分.若()f x ,(,)f x y 分区域定义时,关键就在于积分的上,下限或区域的确定.1.3 确定分布列或密度函数或分布函数中的参数例 2.5 随机变量(,)X Y 的概率密度为222(;(,)0,A k x y k f x y ⎧⎪+≤=⎨⎪⎩其他,,求:(1) 系数A 的值.(2) 222{(,)}P X Y x y r ∈+≤ ()r k ≤. 解 (1)因为1(,)(f x y dxdy +∞+∞-∞-∞=⎰⎰用极坐标代换得)222(x y k A k dxdy +≤=⎰⎰230()/3kA d k r rdr A k πθπ=-=⎰⎰故33A k π=. (2)222223300332{(,)}()13r r r P X Y x y r d k r rdr k k k πθπ⎛⎫∈+≤=-=- ⎪⎝⎭⎰⎰.例 2.6设二维随机变量(,)X Y 的分布函数(,)arctan arctan 23x y F x y A B C ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭求:(1)A ,B ,C 的值. (2)(,f x y ).解 (1)因为0A ≠,所以由x ,y 的任意性,得0(0,)arctan 022F A B C π⎛⎫⎛⎫-∞=+-= ⎪⎪⎝⎭⎝⎭,2C π=;0(,0)arctan 023F A B C π⎛⎫⎛⎫-∞=-+= ⎪⎪⎝⎭⎝⎭,2B π=;(,)12222F A ππππ⎛⎫⎛⎫+∞+∞=++= ⎪⎪⎝⎭⎝⎭,21A π=,故21(,)arctan arctan 2223y F x y ππππ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭.(2)由2(,)(,)F x y f x y x y∂=∂∂,得222(,)6[(4)(9)]f x y x y π=++ (,)x y -∞<<+∞.评点 (1)有几个参数就要找到几个独立的条件; (3) 这里主要用到()0F -∞=,()1F +∞=或()1kf x dx =⎰, (,)(,)(,)0F y F x F -∞=-∞=-∞-∞=,(,)1F +∞+∞=,或2(,)1k f x y dxdy =⎰⎰.2. 求概率2.1 由分布列或密度函数或分布函数,求随机变量落入某集合的概率例 2.7 设二维随机变量(,)X Y 的概率密度为(23)6,0,0(,)0,x y e x y f x y -+⎧>>=⎨⎩;其他,求:(1)(,)F x y . (2){236}P x y +≤.解 (1)分区域讨论,见图2.1.当0x ≤,0y ≤时,(,)0F x y =; 当0x >,0y >时(23)230(,)6(1)(1)x yx y x y F x y dy e dx e e -+--==--⎰⎰即23(1)(1),0,0(,)0,x y e e x y F x y --⎧-->>=⎨⎩其他.(2) (23)236{236}6x y x y P X Y e dxdy -++≤+≤=⎰⎰32(3)/3(23)0x x y dx e dy --+=⎰⎰6170.9826e -=-≈.例 2.8 随机变量X 的分布函数为20,0(),05251,5,x xF x x x <⎧⎪⎪=≤<⎨⎪≥⎪⎩,求{36}P x <<的概率.解 直接利用公式计算:916{36}(6)(3)12525P x F F <<=-=-=. 评点 (1)对一般连续型随机变量取值的概率,如果已知密度函数求概率可用{(,)}(,)GP x y G f x y dxdy <=⎰⎰公式法.(2)对于已知分布函数求概率,同样也可以用公式法{}{}{}()()P a X b P a X b P a X b F b F a <<=≤≤=<≤=-.2.2 求实际问题的概率例 2.9 某地区18岁的女青年的血压(收缩压,以mmHg计),服从2(110,12)N ,在该地区任选一18岁的女青年,测量她的血压X : (1)求{105}P X ≤,{100120}P X <≤. (2)确定最小的x ,使{}0.05P X x >≤. 解 (1)2(110,12)X N ,则105110{105}(0.417)12P X -⎛⎫≤=Φ=Φ- ⎪⎝⎭1(0.417)10.662=-Φ=-=; 120110100110{100120}1212P X --⎛⎫⎛⎫<≤=Φ-Φ ⎪ ⎪⎝⎭⎝⎭(0.83)(0.83)2(0.8=Φ-Φ-=Φ-= (2)要使{}0.05P X x >≤,必须1{}0.05P X x -≤≤,即{}10.050.95P X x ≤≥-=,亦即1100.9512x -⎛⎫Φ≥⎪⎝⎭,110 1.64512x -≥,129.74x ≥, 故所求x 必须大于等于129.74.例 2.10 一轰炸机带的三枚炸弹向敌方目标投掷,若炸弹落在目标中心40米内,目标将被摧毁,设在使用瞄准器投弹时,弹着点X 的概率密度函数为(100)/10000,1000;()(100)/10000,0100;0,x x f x x x +-<≤⎧⎪=-<≤⎨⎪⎩其他,,求投掷三枚炸弹后,目标被炸毁的概率.解 一枚炸弹落在目标中心40米内的概率为4040404001()(100)(100)10000f x dx x dx x dx --⎡⎤=++-⎢⎥⎣⎦⎰⎰⎰ 4002(100)0.6410000x dx =-=⎰, 则炸弹落在40米外的概率为10.640.36P =-=,所以三枚炸弹都落在目标中心40米外的概率是3(0.36),于是,目标被炸毁的概率是31(0.36)0.953P =-=.评点 (1)对此类题型,一定要根据实际情况,确定所求概率的范围;(2)然后再根据相应的定义,性质,公式求出符合实际的概率.2.3 求服从二项分布的随机变量取值的概率例 2.11 甲地需要与乙地的10个电话用户联系,每一个用户在一分钟内平均占线12秒,并且各个用户是否使用电话是相互独立的,为了在任意时刻,使得电话用户在用电话时能够接通的概率为0.99,至少应有多少电话线路?解 设任意时刻乙地10个用户使用电话的户数为随机变量,记为X ,则每一个电话用户在任意时刻使用电话的概率120.260P ==,即(1,0.2)X b ,又设至少需m 条电话线路,求满足{}0.99P X m ≤=的m .而1010{}(0.2)(0.8)kk k P X k C -== (0,1,,k =,有10100{}{}(0.2)(0.8)mmkk k k k P X m P X k C -==≤===∑∑,于是1010(0.2)(0.8)0.99mkk k k C-==∑ 即 5m =,故至少应有5条电话线路.评点 对于这类问题要注意:(1) X 是n 次试验中事件A 发生的概率; (2) 在每次试验中事件A 和A 有且仅有一个发生;(3) 利用对立事件来求解问题时,注意随机变量的取值为0,1,2,,n ,n 是试验次数;(4) 当n 较大P 较小时,且np λ=,(1)!k k kn kne C p p k λλ---≈.2.4 求服从泊松分布的随机变量取值的概率例 2.12 实验器皿中产生甲,乙两类细菌的机会是相等的,且产生的细菌数X 服从参数为λ的泊松分布,试求产生了甲类细菌但没有乙类细菌的概率. 解 由题意可知,X 的分布律为{}!kP X k e k λλ-==(0,1,2,k = 而这k 个细菌全部是甲类细菌的概率为(1/2)!kke k λλ-,因此产生了甲类细菌而无乙类细菌的概率为21(1)!kk P ee ek λλλλ∞---===-∑.评点 当试验次数n →∞时,若事件A 每次出现的概率0n P nλ=→,此时事件A 出现的次数X 服从泊松分布.服从泊松分布的随机变量很多,例如一个时间间隔内某电话交换台收到的电话的呼唤次数,交叉路口单位时间内过往的汽车辆数,一本书1页中的印刷错误数,纺织厂生产的布匹上一定数量的疵点,铸件的砂眼数等.2.5 求服从均匀分布的随机变量取值的概率例 2.13 测量零件时产生的误差(X 单位:cm )是一个随机变量,它服从(0.1,0.1)-内的均匀分布,求误差的绝对值在0.05cm 之内的概率.解 据均匀分布定义,X 的概率密度为1,0.10.1;0.1(0.1)()0,,x f x ⎧-<<⎪--=⎨⎪⎩其他即5,0.10.1;()0,,x f x -<<⎧=⎨⎩其他 故0.050.05{0.05}50.5P X dx -<==⎰.评点 求此类题型的解法一般有两种方法:(1) 利用概率密度的积分计算,即利用公式{}{}{}{}P a X b P a X b P a X b P a X b <<=≤≤=<≤=≤≤()baf x dx =⎰;(2) 直接利用分布函数计算,即利用公式{}{}{}()()P a X b P a X b P a X b F b F a <<=≤≤=<≤=-.2.6 求服从正态分布的随机变量取值的概率例 2.14 设随机变量X 服从正态分布(108,9)N ,求: (1){101.1117.6}P x <<; (2)常数a ,使{}0.90P X a <=; (3)常数a ,使{||}0.01P X a a ->=.解 (1)117.6108101.1108{101.1117.6}33P x --⎛⎫⎛⎫<<=Φ-Φ⎪ ⎪⎝⎭⎝⎭(3.2)( 2.3)=Φ-Φ-0.9995110.989280.9888=-+=.(2)108{}0.903a P X a -⎛⎫<=Φ=⎪⎝⎭,查表知108 1.293a -≈,即112.17a =. (3){||}{2}{0}P X a a P X a P X ->=>+<10821081081083333X a X P P ----⎧⎫⎧⎫=>+<⎨⎬⎨⎬⎩⎭⎩⎭210810.013a -⎛⎫=-Φ= ⎪⎝⎭,即有21080.993a -⎛⎫Φ= ⎪⎝⎭,故得21082.333a -=,即 57.4a =. 评点 正态分布是一类非常重要的分布.正态分布的概率计算最终都要查标准正态分布表,表里表明()z Φ和Z 的关系,特别地,当0Z <时,()1()z z Φ=-Φ-.2.7判别随机变量是否相互独立例 2.15设随机变量(,)X Y 的分布律如下表示,试判断X ,Y 是否相互独立.解 利用离散型随机变量边缘分布定义,随机变量(,)X Y 关于X 和Y 的边缘分布律分别为{0}{0}0.80.70.56{0,0}P X P Y P X Y ===⨯==== ; {0}{1}0.80.30.24{0,1}P X P Y P X Y ===⨯==== ; {1}{0}0.20.70.14{1,0}P X P Y P X Y ===⨯==== ; {1}{1}0.20.30.06{1,1}P X PY P X Y ===⨯==== .由此可见ij i j p p p = ,故X 和Y 是相互独立的.例 2.16 已知联合分布密度,04,0(,)40,Axy x y f x y ⎧≤≤≤≤⎪=⎨⎪⎩其他,,求:(1)系数A ;(2)边缘概率密度;(3)讨论X 与Y 是否相互独立.解 (1)由概率密度的性质可知14GA xydxdy =⎰⎰即40014A dx xydxdy =⎰,得38A =.从而二维随机变量(,)X Y 的概率密度为 3,(,);(,)320,(,);xy x y G f x y x y G ⎧∈⎪=⎨⎪∉⎩ (2)由2033()3264X f x xydxdy x ==,得 23,04;()320,X x x f x ⎧<<⎪=⎨⎪⎩其他, 同理438,02;()3220,Y y y y f y ⎧⎛⎫-≤≤⎪ ⎪=⎨⎝⎭⎪⎩其他,(3)取点1(,)1,2x y G ⎛⎫=∈ ⎪⎝⎭,由于5133131(1)81,216642642X Y f f f ⎛⎫⎛⎫⎛⎫=⨯-≠= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故X 与Y 并不独立.评点 考察随机变量相互独立的判别,实际上(1) 若(,)X Y 是离散型的随机变量,则X 和Y 相互独立的充要条件是ij i j p p p = ; (2) 若(,)X Y 是连续型的随机变量,则X 和Y 相互独立的充要条件是(,)()()X Y f x y f x f y = .2.8 求连续型随机变量的边缘概率密度例 2.17 设(,)X Y 在区域G 内服从均匀分布,G 由直线12xy +=及x 轴,y 轴围成,求;(1)(,)X Y 的联合密度;(2)关于X 和Y 关于的边缘密度.解 (1)G 的面积1()2112L G =⨯⨯=,故 1,(,)1,(,);()(,)0,.0,x y G x y G L G f x y ⎧∈∈⎧⎪==⎨⎨⎩⎪⎩其他其他 (2)当02x ≤≤时,2012012()(,)01012x x X x f x f x y dy dx dy dy +∞-+∞-∞+∞-==++=-⎰⎰⎰⎰, 当0x <或2x >时,(,)0f x y =,所以(0)0X f =.综上所述1,12;()20,X x x f x ⎧-≤≤⎪=⎨⎪⎩其他,同理可求得2(1),01;()0,Y y y f y -≤≤⎧=⎨⎩其他. 评点 由二维随机变量的概率密度求它的边缘分布是常规题,尤其是要注意 当概率密度是分段函数时,计算时要注意分段函数的段.例如,在求()X f x 时,利用公式()(,)X f x f x y dy +∞-∞=⎰计算,必须分x 取不同区间值讨论.。
滨州学院《概率论与数理统计》(公共课)练习题第二章 随机变量及其分布一、填空题 10.712设一本书的各页的印刷错误个数X 服从泊松分布律.已知有一个和两个印刷错误的页数相同,则随意抽查的4页中无印刷错误的概率p = 0.0003 .3⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=≤=.若,;,若;,若;,若 3 1 324544 21 51 1 0 }{)(x x x x x X x F P 4{}12525.032)05.0()02(25.0=-=---=<≤F F X P . 例2.11设随机变量X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其它06310)(9231x x x f ;若k 使得32)(=≥k X P ,则k 的取值范围是 . 【[1,3]】例2.13 设X 服从二项分布),(p n B ,且已知)2()1(===X P X P ,)3(2)2(===X P X P ,则)4(=X P = . 【24310】 例2.14若随机变量X 服从正态分布)0)(,(2>σσμN ,且二次方程042=++X y y 无实根的概率是21,则=μ . 【4】2.22 (1)24310;(2)4;(3)2922;(4)649;(5))0(2)1(ln 221)(+∞<<--=y y Y I e y y f π〖选择题〗1 [ C ]2 [ C ]3 [ C ]例2.1 【C 】例2.2 【A 】 例2.3 【B 】例2.5 【A 】例2.16设随机变量X ,Y 相互独立均服从正态分布)4,1(N , 若概率21)1(=<-bY aX P ,则(A)1,2==b a(B) 2,1==b a(C) 1,2=-=b a(D) 2,1-==b a 【A 】例2.18 设X 为随机变量, 若矩阵⎪⎪⎪⎭⎫ ⎝⎛--=01020232X A 的特征根全为实数的概率为0.5, 则(A)X 服从区间[0,2]上的均匀分布 (B) X 服从二项分布B(2, 0.5) (C) X 服从参数为1的指数分布 (D) X 服从标准正态分布 【A 】2.23 (1)A ;(2)B ;(3)C ;(4)C ;(5)B 解答题〗 〖解答题〗例2.30解 不妨假设正立方体容器的边长为1.引进事件:{}0==X A ,即事件A 表示“小孔出现在容器的下底面”.由于小孔出现在正立方体的6个侧面是等可能的,易见 61)(=A P .从而,{}61===)(0A X P P.对于任意x <0,显然()=x F 0;而()610=F .由于小孔出现的部位是随机性,可见对于任意)75.0,0(∈x ,有(){}{}.641646100xx x X X x F +=+=≤<+≤=P P 该式中4x 表示容器的四个侧面x 以下的总面积,而容器6个侧面的总面积为6.对于任意x ≥0.75,显然()1=x F.于是,最后得()⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.若若若 75.0 , 1 , 75.00 , 641, 0 , 0 x x x x x F例2.31(分布函数)解 因X 服从指数分布,且21==λX E (百小时),故分布参数λ=0.5,故X的分布函数为()⎩⎨⎧≤>-=-.,若;,若0 0 0 e 15.0x x x G x 易见,{}1.0min ,X Y=.设)(y F 是Y 的分布函数,则对于y <0,)(y F =0;对于y >0.1,)(y F =1;对于1.00≤≤y ,有{}{}.,y y G y X y X y Y y F 5.0e 1)(}1.0 min{}{)(--==≤=≤=≤=P P P 于是,{}.10 min ,X Y=的分布函数为()⎪⎩⎪⎨⎧≥<≤-<=-.,若,若,,若 1.0 1 , 1.00 e 1 0 0 5.0y y y y F y例2.33解 试验次数X 是一随机变量.为求X 的概率分布,引进事件:j B ={第j 次试验成功}(j =1,2,…,n ).显然P(j B ) = p .而由于试验的独立性,知事件n B B B ,,,21 …相互独立.设试验进行到成功或n 次为止,则X 的可能值为1,2,…,n 且1}1{B X==;对于2≤k ≤n-1,.;;;,111111112111)(}{ )(}1{)12()(}{}{ }{------======-≤≤=======k n k k k n k k q B B n X p B X n k pq B B B k X B B B n X B B B k X P P P P P P于是,X 的概率分布为有限几何分布:⎪⎪⎭⎫ ⎝⎛---1121321~n n q pq pq pq pn n X . 例2.35解 以ν表示抽到的30件产品中不合格品的件数,则ν服从参数为(30,0.02)的二项分布:.;;4545.0}0{1}1{3340.002.098.030}1{5455.098.0}0{2930==-=≥=⨯⨯=====ννννP P P P1) 不合格品不少于两件的概率.1205.002.098.03098.01}1{}0{1}2{2930=⨯⨯--==-=-=≥=ννναP P P2) 在已经发现一件不合格品的条件下,不合格品不少于两件的条件概率{}.2652.0}1{}2{}1{}2,1{12≈≥≥=≥≥≥=≥≥=νννννννβP P P P P 例2.36解 由条件知每台设备出现故障的概率为0.08.以ν表示10台设备中同时出现故障的台数,则ν服从参数为(10,0.08)的二项分布.需要安排的值班人数k 应满足条件:95.0}{≥≤k νP .需要对不同的k 进行试算.首先,设k =1和k =2,相应得{}{}{}{}{}{}.,95.09599.008.092.008.092.01092.021281.008.092.01092.010128210910910≥≈⨯⨯+⨯⨯+==+≤=≤≈⨯⨯+==+==≤C ννννννP P P P P P因此,至少需要安排2个人值班.例2.37解 设X ——一周5个工作日停用的天数;Y ——一周所创利润.X 服从参数为(5,0.2)的二项分布.因此,有.,,,057.0205.0410.0328.01}3{205.08.02.010}2{410.08.02.05}1{328.08.0}0{3245=---=≥=⨯⨯===⨯⨯=====X X X X P P P P一周所创利润Y 是X 的函数:⎪⎪⎩⎪⎪⎨⎧≥-====3.,若2,,若1,,若,,若X X X X Y 2 2 7 0 10 ⎪⎪⎭⎫ ⎝⎛-328.0410.0205.0057.010722~Y . 例2.38(二项分布)解 设n ——至少出现一件不合格品所要生产产品的件数,则n 件产品中不合格品的件数n ν服从参数为(n ,0.01)的二项分布;按题意,n 应满足条件., 0729.29899.0ln 05.0ln 95.099.01}0{1}1{≈≥≥-==-=≥n nn n ννP P 于是,为至少出现一件不合格品的概率超过95%,最少需要298.0729×3≈895分,将近14小时55分.例3.41解 由条件知X +Y 是一日内到过该商店的顾客的人数,服从参数为λ的泊松分布.设X ——一日内到过该商店的顾客中购货的人数.由条件知,在一日内有n 个顾客到过该商店的条件下,购货人数的条件概率分布为{}().;),2,1,0(1m n m p p C n Y X m X mn m m n ≥=-==+=- P由全概率公式可见,对于m =0,1,2,…,有{}{}{}()[]()()()()[]()()[]()()().p mp mk km m n mn m mn nmn mm nmn n mn mm nmn m p m p p k m p p m n m p n p p C n p p Cn Y X n Y X m Xm X λλλλλλλλλλλλλλλ---∞=-∞=--∞=--∞=--∞===-=--=-=⎥⎦⎤⎢⎣⎡-==+=+===∑∑∑∑∑e ! e e ! 1!1e!1!1e!!1ee ! 110P P P于是,一日内到过该商店的顾客中购货的人数X 服从参数为p λ的泊松分布.同理,Y 服从参数为)1(p -λ的泊松分布.例2.44 解 以()t ν表示t =90天内售出的电冰箱台数.可以假设()t ν服从参数为t λ的泊松分布.由条件知()λν77E ==56,从而λ=8(台).这样,()t ν服从参数为t λ=8t 的泊松分布: (){}()() ,2,1,0 e !88===-k k t k t tkνP .随机变量X 的可能值为自然数m =0,1,2,….记t a λ=.由全概率公式,有{}(){}(){}()()()()()()()(), pa m pa a a m k k a m m n mn ammn a n m n m m nmn m pa m pa k qa m pa m n qa m pan a q p C n a n a m X m X ---∞=-∞=--∞=--∞====-=======∑∑∑∑e !e e ! ! e!! e ! e ! 0ννP P P 其中6.390805.0=⨯⨯==t p pa λ.因此返修件数X 服从参数为3.6的泊松分布:{}() ,2,1,0 e !6.36.3===-m m m X m P .例2.47解 由条件知{}{}{}{},⎪⎭⎫ ⎝⎛--≈⎥⎦⎤⎢⎣⎡--⎪⎭⎫ ⎝⎛--=⎭⎬⎫⎩⎨⎧-≤-≤--=≤≤-=≤-≤--=≤--=>-=310821)36(310821310823108310812011 1 025.0a a a X a X a a X a a a X a a X ΦΦΦP P P P P其中()x Φ是标准正态分布函数.由熟知的事实()975.096.1=Φ,可见.;;94.5696.131082 0.975031082≈≈-≈⎪⎭⎫⎝⎛-a a a Φ 例2.48 解 由条件知()210,0~N X.设ν为100次独立重复测量中事件{}6.19 >X 出现的次数,则{}05.096.1106.19 =⎭⎬⎫⎩⎨⎧>=>=X X p P P .易见ν服从参数为(100 , 0.05)的二项分布,近似服从参数为5的泊松分布.因此{}{}{}{}{}().87.05.125115.125105.095.0299100 05.095.010095.012101313555529899100≈++-=---≈⨯⨯⨯-⨯⨯--==-=-=-=<-=≥=----e e e e ννννναP P P P P 〖证明题〗例2.52(分布函数)证明 只需验证)()()(21x bF x aF x F +=满足分布函数的三条基本性质.由条件知a 和b 非负且a +b =1.由于)(1x F 和)(2x F 都是分布函数,可见对于任意,有1)()()(021=+≤+=≤b a x bF x aF x F对于任意实数21x x <,由于)2,1)(()(21=≤i x F x F i i ,可见,)()()()()()(2222112111x F x bF x aF x bF x aF x F =+≤+=即)(x F 单调不减.由)(1x F 和)(2x F 的右连续性,可见)(x F 也右连续.最后,.;1)(lim )(lim )(lim 0)(lim )(lim )(lim 2121=+==+=+∞→+∞→+∞→-∞→-∞→-∞→x F b x F a x F x F b x F a x F x x x x x x于是)()()(21x bF x aF x F +=也是分布函数.例2.53(分布函数) 证明 指数分布函数为)0(e 1)(≥-=-x x F x λ设}{P )(y Y y G ≤=为Y=)(X F 的分布函数.由于分布函数)(x F 的值域为(0,1),可见当0≤y时0)(=y G ;当1≥y 时1)(=y G .设10<<y ,有.y y F y X y y Y y G X =⎪⎭⎫⎝⎛--=⎭⎬⎫⎩⎨⎧--≤=≤-=≤=-)1ln(1)1ln(1}e 1{}{)(λλλP P P 于是,)(y G 是区间(0,1)上的均匀分布函数,从而Y=例2.4 【π2=C ;5)arctan 2(πe】例2.6 连续型随机变量X 的分布函数为:x B A x F arctan )(+=,∞<<∞-x试求:(1)常数A 、B ;(2))11(<<-X P ;(3)随机变量X 的概率密度.【(1)π1,21==B A ;(2)21;(3))1(12x +π】 例2.7 设随机变量X 具有对称的密度函数,即)()(x f x f =-,证明对任意的0>a ,有(1)⎰-=-=-adx x f a F a F 0)(21)(1)((2)1)(2)|(|-=<a F a X P (3) ))(1(2)|(|a F a X P -=>问题3: 已知实际背景, 求随机变量的分布律与分布函数(或密度函数)例2.8 一袋中装有4个球,球上分别记有号码1,2,3,4。