高中数学经典易错题会诊与试题预测15
- 格式:doc
- 大小:553.50 KB
- 文档页数:23
高中数学总复习经典易错题会诊与试题预测(上)目录考点1集合与简易逻辑经典易错题会诊命题角度1 集合的概念与性质命题角度2 集合与不等式命题角度3 集合的应用命题角度4 简易逻辑命题角度5 充要条件探究开放题预测预测角度1 集合的运算预测角度2 逻辑在集合中的运用预测角度3 集合的工具性预测角度4 真假命题的判断预测角度5 充要条件的应用考点2 函数(一) 经典易错题会诊命题角度1 函数的定义域和值域命题角度2 函数单调性的应用命题角度3 函数的奇偶性和周期性的应用命题角度4 反函数的概念和性质的应用探究开放题预测预测角度1 借助函数单调性求函数最值或证明不等式预测角度2 综合运用函数奇偶性、周期性、单调进行命题预测角度3 反函数与函数性质的综合考点3 函数(二)经典易错题会诊命题角度1 二次函数的图象和性质的应用命题角度2 指数函数与对数函数的图象和性质的应用命题角度3 函数的应用探究开放题预测预测角度1 二次函数闭区间上的最值的问题预测角度2 三个“二次”的综合问题预测角度3 含参数的对数函数与不等式的综合问题考点4 数列经典易错题会诊命题角度1 数列的概念命题角度2 等差数列命题角度3 等比数列命题角度4 等差与等比数列的综合命题角度5 数列与解析几何、函数、不等式的综合命题角度6 数列的应用探究开放题预测预测角度1 数列的概念预测角度2 等差数列与等比数列预测角度3 数列的通项与前n项和预测角度4 递推数列与不等式的证明预测角度5 有关数列的综合性问题预测角度6 数列的实际应用预测角度7 数列与图形考点5 三角函数经典易错题会诊命题角度1 三角函数的图象和性质命题角度2 三角函数的恒等变形命题角度3 三角函数的综合应用探究开放题预测预测角度1 三角函数的图象和性质预测角度2 运用三角恒等变形求值预测角度3 向量与三角函数的综合考点6 平面向量经典易错题会诊命题角度1 向量及其运算命题角度2 平面向量与三角、数列命题角度3 平面向量与平面解析几何命题角度4 解斜三角形探究开放题预测预测角度1 向量与轨迹、直线、圆锥曲线等知识点结合预测角度2 平面向量为背景的综合题考点7 不等式经典易错题会诊命题角度1 不等式的概念与性质命题角度2 均值不等式的应用命题角度3 不等式的证明命题角度4 不等式的解法命题角度5 不等式的综合应用探究开放题预测预测角度1 不等式的概念与性质预测角度2 不等式的解法预测角度3 不等式的证明预测角度4 不等式的工具性预测角度5 不等式的实际应用考点8 直线和圆经典易错题会诊命题角度1 直线的方程命题角度2 两直线的位置关系命题角度3 简单线性规划命题角度4 圆的方程命题角度5 直线与圆探究开放题预测预测角度1 直线的方程预测角度2 两直线的位置关系预测角度3 线性规划预测角度4 直线与圆预测角度5 有关圆的综合问题考点9 圆锥曲线经典易错题会诊命题角度1 对椭圆相关知识的考查命题角度2 对双曲线相关知识的考查命题角度3 对抛物线相关知识的考查命题角度4 对直线与圆锥曲线相关知识的考查命题角度5 对轨迹问题的考查命题角度6 考察圆锥曲线中的定值与最值问题探究开放题预测预测角度1 椭圆预测角度2 双曲线预测角度3 抛物线预测角度4 直线与圆锥曲线预测角度5 轨迹问题预测角度6 圆锥曲线中的定值与最值问题考点10 空间直线与平面经典易错题会诊命题角度1 空间直线与平面的位置关系命题角度2 空间角命题角度3 空间距离命题角度4 简单几何体探究开放题预测预测角度1 利用三垂线定理作二面角的平面角预测角度2 求点到面的距离预测角度3 折叠问题考点11 空间向量经典易错题会诊命题角度1 求异面直线所成的角命题角度2 求直线与平面所成的角命题角度3 求二面角的大小命题角度4 求距离探究开放题预测预测角度1 利用空间向量解立体几何中的探索问题预测角度2 利用空间向量求角和距离考点12 排列、组合、二项式定理经典易错题会诊命题角度1 正确运用两个基本原理命题角度2 排列组合命题角度3 二项式定理探究开放题预测预测角度1 在等可能性事件的概率中考查排列、组合预测角度2 利用二项式定理解决三项以上的展开式问题预测角度3 利用二项式定理证明不等式考点13 概率与统计经典易错题会诊命题角度1 求某事件的概率命题角度2 离散型随机变量的分布列、期望与方差命题角度3 统计探究开放题预测预测角度1 与比赛有关的概率问题预测角度2 以概率与统计为背景的数列题预测角度3 利用期望与方差解决实际问题考点14 极限经典易错题会诊命题角度1 数学归纳法命题角度2 数列的极限命题角度3 函数的极限命题角度4 函数的连续性探究开放题预测预测角度1 数学归纳法在数列中的应用预测角度2 数列的极限预测角度3 函数的极限预测角度4 函数的连续性考点15 导数及其应用经典易错题会诊命题角度1 导数的概念与运算命题角度2 导数几何意义的运用命题角度3 导数的应用探究开放题预测预测角度1 利用导数的几何意义预测角度2 利用导数探讨函数的单调性预测角度3 利用导数求函数的极值和最考点16 复数经典易错题会诊命题角度1 复数的概念命题角度2 复数的代数形式及运算探究开放题预测预测角度1 复数概念的应用预测角度2 复数的代数形式及运算答案与解析答案与解析考点-1集合与简易逻辑YT CUO TI TAN JIU TI KAI FANG TI集合的概念与性质集合与不等式集合的应用简易逻辑充要条件集合的运算逻辑在集合中的运用集合的工具性真假命题的判断充要条件的应用经典易错题会诊命题角度1 集合的概念与性质1.(典型例题)设全集U=R,集合M={x|x>1},P={x|x2>1},则下列关系中正确的是 ( )=P B.P⊂M⊂ D.C U IM P=ø[考场错解] D[专家把脉] 忽视集合P中,x<-1部分.[对症下药] C ∵x2>1 ∴x>1或x<-1.故M⊂P.2.(典型例题)设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P{0,2,5},Q={1,2,6},则P+Q中元素的个数是()A.9 B.8C.7 D.6[考场错解] A P中元素与Q中元素之和共有9个.[专家把脉]忽视元素的互异性,即和相等的只能算一个.[对症下药] B P中元素分别与Q中元素相加和分别为1,2,3,4,6,7,8,11共8个.3.(典型例题)设f(n)=2n+1(n∈N),P={l,2,3,4,5},Q={3,4,5,6,7},记Pˆ={n∈N|f(n) ∈P},Qˆ={n∈N|f(n) ∈则(PˆI C N Qˆ) Y(QˆI C N Pˆ)等于 ( )A.{0,3} B.{1,7}C.{3,4,5} D.{1,2,6,7}[考场错解] D P I C N Q={6,7}.Q I C N P={1,2}.故选D.[专家把脉]未理解集合Pˆ的意义.[对症下药] B ∵Pˆ ={1,3,5}.Qˆ={3,5,7}.∴PˆI C N Qˆ={1}. PˆI C N Qˆ={7}.故选B.4.(典型例题)设A、B为两个集合,下列四个命题:①A B⇔对任意x∈A,有x ∉B;②A B⇔ A I B=ø;③A B ⇔ A B;④A B⇔存在x∈A, 使得x∉B.其中真命题的序号是_____.[考场错解]∵A B,即A不是B的子集,对于x ∈A,有x∉ B;A I B=ø,故①②④正确.[专家把脉]对集合的概念理解不清.∵A B,即A不是B的子集,但是A,B可以有公共部分,即存在x∈ A,使得x∉ B.不是对任意x ∈A,有x ∉B,故④正确.“A B”是“任意x ∈A,有x∉B”的必要非充分条件.②同①.[对症下药]画出集合A,B的文氏图或举例A={1,2},B={2,3,4},故①、②均不成立,③A{1,2,3},B={1,2},∴A B但B⊆A,故也错.只有④正确,符合集合定义.故填④5.(典型例题Ⅰ)设A、B、I均为非空集合,且满足A⊆B⊆I,则下列各式中错误的是 ( )A.(C I A)Y B=IB.(C I A) Y(C I B)=IC.A I(C I B)=øD.(C I A)I(C I B)= C I B[考场错解]因为集合A与B的补集的交集为A,B的交集的补集.故选D.[专家把脉]对集合A,B,I满足A⊆B⊆I的条件,即集合之间包含关系理解不清.[对症下药]如图是符合题意的韦恩图.从图中可观察A、C、D均正确,只有B不成立.或运用特例法,如A={1,2,3},B={1,2,},I={1,2,3,4,5}.逐个检验只有B错误.专家会诊1.解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x ∈P},要紧紧抓住竖线前面的代表元素x 以及它所具有的性质P ;要重视发挥图示法的作用,充分运用数形结合(数轴,坐标系,文氏图)或特例法解集合与集合的包含关系以及集合的运算问题,直观地解决问题.2.注意空集ø的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A ⊆B ,则有A=ø或A ≠ø 两种可能,此时应分类讨论.考场思维训练1 全集U=R ,集合M={1,2,3,4},集合N=⎭⎬⎫⎩⎨⎧-≤121|x x ,则M I (C U N)等于 ( ) A .{4} B .{3,4}C .{2,3,4}D . {1,2,3,4}答案:B 解析:由N={},12|,121|+≤=⎭⎬⎫⎩⎨⎧-≤x x N x x 得C U N={}{}4,3)(,12|=⋂∴+N C M x x U φ 2 设集合M={x|x=3m+1,m ∈Z},N=y|y{=3n+2,n ∈Z},若x 0∈M,y 0∈N ,则x 0y 0与集合M,N 的关系是( )∈M B .x 0y 0∉M MM∈N D .x 0y 0∉N答案: C 解析:∵x o ..2)23(32369)23)(13(,23,,130C N n m mn n m mn n m y x n y N y m x M o o o o 故选∈+++=+++=++=∴+=∴∈+=∴∈3 设M={x|x4a ,a ∈R},N={y|y=3x ,x ∈R},则 ( )A .M ∩N=Ø B.M=NC. M ⊃ND. M ⊂N答案:B 解析:M={}{}{}B N y y x x M R a x x a 选.0|0|,4|=>=>==∈=4 已知集合A={0,2,3},B={x|x=ab,a 、b ∈A 且a ≠b},则B 的子集的个数是 ( )A .4B .8C .16D .15答案:解析:{},6,0=B Θ它的子集的个数为22=4。
高中数学易错题100道数学是一门需要逻辑思维和严密推理的学科,对于很多学生来说,高中数学是一门难以逾越的学科。
在学习过程中,我们常常会遇到一些易错题,这些题目看似简单,但却容易让我们犯错。
下面是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。
1. 2的平方根是多少?2. 一个等边三角形的内角是多少?3. 一个圆的直径是5cm,那么它的半径是多少?4. 一个矩形的长是3cm,宽是4cm,那么它的面积是多少?5. 一个正方形的边长是2cm,那么它的面积是多少?6. 一个长方体的长是3cm,宽是4cm,高是5cm,那么它的体积是多少?7. 一个圆的半径是3cm,那么它的周长是多少?8. 一个圆的半径是3cm,那么它的面积是多少?9. 一个圆的直径是6cm,那么它的周长是多少?10. 一个圆的直径是6cm,那么它的面积是多少?11. 一个等边三角形的外角是多少?12. 一个正方形的对角线长是多少?13. 一个长方形的对角线长是多少?14. 一个长方体的表面积是多少?15. 一个圆的周长是多少?16. 一个圆的面积是多少?17. 一个圆的直径是4cm,那么它的半径是多少?18. 一个圆的半径是4cm,那么它的直径是多少?19. 一个圆的周长是12cm,那么它的半径是多少?20. 一个圆的面积是12cm²,那么它的半径是多少?21. 一个圆的面积是12cm²,那么它的直径是多少?22. 一个圆的周长是12cm,那么它的直径是多少?23. 一个圆的周长是12cm,那么它的面积是多少?24. 一个圆的半径是12cm,那么它的周长是多少?25. 一个圆的半径是12cm,那么它的面积是多少?26. 一个圆的直径是12cm,那么它的周长是多少?27. 一个圆的直径是12cm,那么它的面积是多少?28. 一个正方形的面积是16cm²,那么它的边长是多少?29. 一个长方形的面积是16cm²,长是4cm,那么它的宽是多少?30. 一个长方形的面积是16cm²,宽是4cm,那么它的长是多少?31. 一个长方体的体积是16cm³,长是2cm,宽是4cm,那么它的高是多少?32. 一个长方体的体积是16cm³,长是2cm,高是4cm,那么它的宽是多少?33. 一个长方体的体积是16cm³,宽是2cm,高是4cm,那么它的长是多少?34. 一个等边三角形的面积是多少?35. 一个等腰三角形的面积是多少?36. 一个直角三角形的斜边长是多少?37. 一个直角三角形的直角边长是多少?38. 一个直角三角形的斜边长是5cm,直角边长是3cm,那么另一直角边长是多少?39. 一个直角三角形的斜边长是5cm,另一直角边长是4cm,那么直角边长是多少?40. 一个直角三角形的直角边长是3cm,另一直角边长是4cm,那么斜边长是多少?41. 一个等边三角形的边长是4cm,那么它的高是多少?42. 一个等边三角形的边长是4cm,那么它的面积是多少?43. 一个等腰三角形的底边长是4cm,高是3cm,那么它的面积是多少?44. 一个等腰三角形的底边长是4cm,面积是6cm²,那么它的高是多少?45. 一个等腰三角形的高是3cm,面积是6cm²,那么它的底边长是多少?46. 一个等腰三角形的高是3cm,底边长是4cm,那么它的面积是多少?47. 一个直角三角形的斜边长是5cm,那么它的面积是多少?48. 一个直角三角形的斜边长是5cm,那么它的高是多少?49. 一个直角三角形的斜边长是5cm,那么它的底边长是多少?50. 一个直角三角形的高是3cm,那么它的面积是多少?51. 一个直角三角形的高是3cm,那么它的斜边长是多少?52. 一个直角三角形的高是3cm,那么它的底边长是多少?53. 一个直角三角形的底边长是4cm,那么它的面积是多少?54. 一个直角三角形的底边长是4cm,那么它的斜边长是多少?55. 一个直角三角形的底边长是4cm,那么它的高是多少?56. 一个等边三角形的高是多少?57. 一个等边三角形的面积是多少?58. 一个等腰三角形的面积是多少?59. 一个直角三角形的面积是多少?60. 一个长方形的周长是16cm,长是4cm,那么它的宽是多少?61. 一个长方形的周长是16cm,宽是4cm,那么它的长是多少?62. 一个长方体的表面积是24cm²,长是2cm,宽是3cm,那么它的高是多少?63. 一个长方体的表面积是24cm²,长是2cm,高是3cm,那么它的宽是多少?64. 一个长方体的表面积是24cm²,宽是2cm,高是3cm,那么它的长是多少?65. 一个长方体的体积是24cm³,长是2cm,宽是3cm,那么它的高是多少?66. 一个长方体的体积是24cm³,长是2cm,高是3cm,那么它的宽是多少?67. 一个长方体的体积是24cm³,宽是2cm,高是3cm,那么它的长是多少?68. 一个等边三角形的边长是6cm,那么它的高是多少?69. 一个等边三角形的边长是6cm,那么它的面积是多少?70. 一个等腰三角形的底边长是6cm,高是4cm,那么它的面积是多少?71. 一个等腰三角形的底边长是6cm,面积是12cm²,那么它的高是多少?72. 一个等腰三角形的高是4cm,面积是12cm²,那么它的底边长是多少?73. 一个等腰三角形的高是4cm,底边长是6cm,那么它的面积是多少?74. 一个直角三角形的斜边长是10cm,那么它的面积是多少?75. 一个直角三角形的斜边长是10cm,那么它的高是多少?76. 一个直角三角形的斜边长是10cm,那么它的底边长是多少?77. 一个直角三角形的高是4cm,那么它的面积是多少?78. 一个直角三角形的高是4cm,那么它的斜边长是多少?79. 一个直角三角形的高是4cm,那么它的底边长是多少?80. 一个直角三角形的底边长是6cm,那么它的面积是多少?81. 一个直角三角形的底边长是6cm,那么它的斜边长是多少?82. 一个直角三角形的底边长是6cm,那么它的高是多少?83. 一个等边三角形的高是多少?84. 一个等边三角形的面积是多少?85. 一个等腰三角形的面积是多少?86. 一个直角三角形的面积是多少?87. 一个长方形的周长是20cm,长是5cm,那么它的宽是多少?88. 一个长方形的周长是20cm,宽是5cm,那么它的长是多少?89. 一个长方体的表面积是30cm²,长是3cm,宽是5cm,那么它的高是多少?90. 一个长方体的表面积是30cm²,长是3cm,高是5cm,那么它的宽是多少?91. 一个长方体的表面积是30cm²,宽是3cm,高是5cm,那么它的长是多少?92. 一个长方体的体积是30cm³,长是3cm,宽是5cm,那么它的高是多少?93. 一个长方体的体积是30cm³,长是3cm,高是5cm,那么它的宽是多少?94. 一个长方体的体积是30cm³,宽是3cm,高是5cm,那么它的长是多少?95. 一个等边三角形的边长是8cm,那么它的高是多少?96. 一个等边三角形的边长是8cm,那么它的面积是多少?97. 一个等腰三角形的底边长是8cm,高是6cm,那么它的面积是多少?98. 一个等腰三角形的底边长是8cm,面积是24cm²,那么它的高是多少?99. 一个等腰三角形的高是6cm,面积是24cm²,那么它的底边长是多少?100. 一个等腰三角形的高是6cm,底边长是8cm,那么它的面积是多少?以上是100道高中数学易错题,希望能帮助大家更好地理解和掌握数学知识。
高考数学典型易错题会诊(下)命题角度 3空间距离1.(典型例题)在空间中,与一个△ABC 三边所在直线距离都相等的点的集合是 ( )A .一条直线B .两条直线C .三条直线D .四条直线[考场错解]设该点为P ,且P 在平面ABC 上的射影为O ,因为P 到△ABC 三边所在直线距离都相等,所以O 到△ABC 的三边直线的距离都相等,即O 为△ABC 的内心,所以本题中符合条件的点在过0且与平面ABC 垂直的直线上,所以选A 。
[专家把脉] 在平面上与一个三角形三边所在直线等距离的点不只内心一个,实际任意两个角的外角平分线的交点(我们称其为傍心)也符合到三角形三边所在直线等距离[对症下药] 设该点为P ,且P 在平面ABC 上的射影为O ,因为P 到△ABC三边所在直线距离都相等,所以O 到△ABC 的三边所在直线的距离都相等,即O 为△ABC 的内心或傍心,所以本题中符合题意的点在过内心或傍心且与平面ABC 垂直的直线上,这样的直线有4条,所以选D 。
2. (典型例题)如图10-15,在棱长为4的正方体ABCD —A 1B 1C 1D 1中,O 是正方形A 1B 1C 1D 1的中心,点P 在棱CC 1上,且CC 1=4CP 。
(1)求直线AP 与平面BCC 1B 1所成角的大小(结果用反三角表示);(2)设O 点在平面D 1AP 上的射影为H ,求证:D 1H ⊥AP ;(3)求点P 到平面ABD 1的距离。
[考场错解] 第(3)问:∵ABCD —A 1B 1C 1D 1为正方体,∴AB ⊥面BCC 1B 1,∴BP ⊥AB ,∴BP 即为P 到平面ABD 1的距离,在Rt △BCP 中,BP=17[专家把脉] 线面垂直的判定有误,错解中BP ⊥AB ,但BP 与平面ABD 1不垂直,所以P 到平面ABD 1的距离不是BP 。
正解一:(1)如图10-16,连接BP ,∵AB ⊥平面BCC 1B 1,∴AP 与平面BCC 1B 1所成的角就是∠APB 。
一、填空题(共12题,每题5分)1、若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1)上递减,则a 的取值范围是 .2、已知平面向量a ,b ,c 两两所成角相等,且|a |=1,|b |=2,|c |=3,则|a +b +c |的值的集合为 . 3、若函数()f x 是定义在(0,)+∞上的增函数,且对一切0,0x y >>满足()()()f xy f x f y =+,则不等式(6)()2(4)f x f x f ++<的解集为 .4、光线从点A (1,1)出发,经y 轴反射到圆C 4)7()5(22=-+-y x ,上的最短路程为 .5、实系数方程220x ax b ++=的两根为12,x x ,且12012x x <<<<,则21b a --的取值范围是 .6、 已知2()2a i i -=,其中i 是虚数单位,那么实数a = .7、已知椭圆22143x y +=内的一点(1,1)P -,F 为椭圆的右焦点,在椭圆上有一点M ,使 MP MF +取得最小值为 .8、三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,1PA AB ==,BC =,若三棱锥P ABC -的四个顶点在同一球面上,则这个球的表面积为 .9、已知条件{}2:|10p A x x ax =++≤,条件{}2:|320q B x x x =-+≤,若p 是q 的充分不必要条件,则实数a 的取值范围是 .10、若钝角三角形三个内角的度数成等差数列,且最大边与最小边长度的比为m ,则m 的取值范围是 .11、定义一种运算""*对于正整数满足以下运算性质:(1)220061*=(2) (22)20063[(2)2006],n n +*=⋅*则的20082006*值是 .12、函数()f x =的值域为 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、已知表中的对数值有且只有两个是错误的.假设上表中lg3=2a-b与lg5=a+c都是正确的,试判断lg6=1+a-b-c是否正确?给出判断过程.Read xIf x >0 Then1y x ←+Else1y x ←-End If Print y一、填空题(共12题,每题5分)1、已知2lg(2)y x x a =+-的值域为R ,那么a 的取值范围是 .2、方程()0x y y +-=表示的曲线是 . 3、一元二次不等式a 2x +bx+c>0的解集为(α,β))0(>α,则不等式c 2x +bx+a>0的解集为4、已知函数2()f x x kx =-在x N *∈上是单调增函数,则实数k 的取值范围是 . 5、若直线l 经过点P (2,3)且与两坐标轴围成一个等腰三角形,则直线l 的方程为.6、已知动点P (x ,y )满足x 2+y 2-|x |-|y |=0,O 为坐标原点, 则PO 的取值范围是 .7、在平行四边形ABCD 中,,E F 分别是,BC CD 的中点,DE 交AF 于H ,记,AB BC 分别为,a b ,则AH = .(用含,a b的式子表示).8、已知椭圆E 的离心率为e ,两焦点为12,F F ,抛物线C 以1F 为顶点,2F 为焦点,P 为两曲线的一个交点,若12PF e PF =,则e 的值为 . 9、如果直线y =kx +1与圆x 2+y 2+kx +my -4=0交于M ,N 两点,且M ,N 关于直线x -y =0对称,动点P (a ,b )在不等式组20,0,0kx y kx my y -+⎧⎪-⎨⎪⎩≥≤≥表示的平面区域内部及边界上运动,则ω=b -2a -1的取值范围是 .10、右边是根据所输入的x 值计算y 值的一个算法程序, 若x 依次取数列1100n ⎧⎫-⎨⎬⎩⎭()n N +∈中的前200项, 则所得y 值中的最小值为 .11、 在正三棱锥S -ABC 中,SA =1,∠ASB =30°,过点A 作三棱锥的截面AMN ,则截面AMN 的周长的最小值为 .12、 已知函数f (x )=log 3x +2,x ∈[1,9],则函数y =[f (x )]2+f (x 2)的最大值是 .班级姓名分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、5、 6 7、 8、9 、10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、为了研究某高校大学新生学生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图,如图.已知前4组的频数从左到右依次是等比数列{}n a的前四项,后6组的频数从左到右依次是等差数列{}n b的前六项.(Ⅰ)求等比数列{}n a的通项公式;(Ⅱ)求等差数列{}n b的通项公式;(Ⅲ)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率μ的大小.一、填空题(共12题,每题5分)1、在算式"4130"⨯+⨯= 的两个 中,分别填入两个自然数,使它们的倒数之和最小,则这两个数应分别为 和 .2、平面区域22:12()P x y x y ++≤+的面积为 .3、已知223sin 2sin 2sin 0αβα+-=,则22cos cos αβ+的取值范围是 .4、有两个等差数列{}{},n n a b ,若1212723n n a a a n b b b n ++++=++++ ,则77ab = . 5、(08山东高考)若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围为________.6、在ABC ∆中,角A 、B 、C 所对的边分别为a,b,c 且43b a ==cosA cosB ,则ABC ∆的形状.二进制即是“逢二进一”,如2(1101)表示二进制数,将它转换成十进制形式是3211212021213⨯+⨯+⨯+⨯=,那么将二进制数()2161111转换成十进制形式是 .8、已知函数()22x x f x -=-,若函数()y h x =与函数(2)y f x =-的图像关于直线1y =对称,则函数()y h x =的解析式为 .9、设,m n 是两条不同的直线,,αβ是两个不同的平面,下面给出四个命题: ⑴若//,//m n αβ且//αβ,则//m n ⑵若,m n αβ⊥⊥且αβ⊥,则m n ⊥ ⑶若,//m n αβ⊥且//αβ,则m n ⊥ ⑷若,m βααβ⊥= 且m n ⊥,则n β⊥ 其中真命题的序号是 .10、从直线30x y -+=上的点向圆22(2)(2)1x y +++=引切线,则切线长的最小值是 . 11、 若数列{}na 的通项公式为2()156n na n N n *=∈+,则{}na 的最大项为第 .项.12、 A 、B 是双曲线x 24-y 25=1右支上的两点,若弦AB 的中点到y 轴距离为4,则AB 的最大值是 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,已知圆心坐标为)1,3(M 的圆M 与x 轴及直线x y 3=均相切,切点分别 为A 、B ,另一圆N 与圆M 、x 轴及直线x y 3=均相切,切点分别为C 、D .求圆M 和圆N 的方程..一、填空题(共12题,每题5分)1、已知椭圆221102x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 . 2、定义在R 上的函数f(x),给出下列四个命题:(1)若f(x)是偶函数,则f(x+3)的图像关于直线x=-3对称; (2)若f(x+3)=-f(3-x),则f(x)的图像关于点(3,0)对称; (3)若f(x+3) 是偶函数,则f(x)的图像关于直线x=3对称; (4)函数y=f(x+3)与y= f(3-x)的图像关于直线x=3对称. 其中正确命题的序号为 .(填写正确的序号即可)3、已知a 是实数,函数223f x x x a =+--(),如果函数y f x =()在区间[]1,1- 上有零点,则a 的取值范围是 .4、设2()2f x x =-,若a<b<0,且f a f b =()(),则ab 的取值范围是 .5、方程1sin 4x x π=的解的个数是 . 6、在ABC ∆中,若45sin cos 513A B ==,,则cos C = . 7、锐角三角形ABC 中,a,b,c 分别为A ,B ,C 的对边,设B=2A ,则ba的取值范围为 .8、已知集合{}20A x x a =-≤,{}40B x x b =->,N b a ∈,,且{}()2,3A B N ⋂⋂=,由整数对()b a ,组成的集合记为M,则集合M 中元素的个数为________.9、已知函数2f x x =(),[]22x ∈-,和函数1f x a x =-(),[]22x ∈-,,若对于任意[]122x ∈-,,总存在[]022x ∈-,,使得01g x f x =()()成立 ,则实数a 的取值范围为 .10、在下表中,每格填上一个数字后,使每一横行成等差数列,每一纵列成等比数列,则a b c ++的值为 .11、已知关于x 的方程2(1lg )10(0,1)x xa m a a a +++=>≠有解,则m 的取值范围是 .12、在圆225x y x +=内,过点53,22⎛⎫ ⎪⎝⎭有n 条弦的长度成等差数列,最小弦长1a 为数列的首项,最大弦长为n a ,若公差11,63d ⎡⎤∈⎢⎥⎣⎦,那么n 的取值集合为 .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13 、设函数()11sin 24f x x x x =--. (1)试判定函数()f x 的单调性,并说明理由.(2)已知函数()f x 的图象在点()()00,A x f x 处的切线斜率为12,求20002sin sin 21tan x x x ++的值.一、填空题(共12题,每题5分)1、设集合{}{}2/60,/10A x x x B x mx =+-==+=,若B A ⊆,则实数m 的取值集合为 . 2、正方体1111ABCD A BC D -中,M,N 分别是11AA BB ,的中点,G 为BC 上一点,若1C N MG ⊥,则1D NG ∠= .3、 已知直线y=ax+1与双曲线2231x y -=相交M ,N 与两点,若以MN 为直径的圆恰好过原点,则实数a 的值等干 .4、设函数f (x )=sin θ+)(0θπ<<),如果f (x )+1()f x 为偶函数,则θ= .5、若函数f (x )=241xx +在区间(m ,2m+1)上是单调增函数,则实数m 的取值范围是 . 6、已知拋物线的焦点在x 上,直线y=2x+1,则此拋物线的标准方程为 .7、(08浙江高考)已知t 为常数,函数t x x y --=22在区间[0,3]上的最大值为2,则t=__________.8、已知集合{(,)1}A x y x y =+=,映射f:A →B 在作用下,点(x,y)的象为(2,2)x y ,则集合B 为 .9、将杨辉三角中的奇数换成1,偶数换成0,得到如图1所示的0-1三角数表.从上往下数,第1次全行的数都为1的是第1行,第2次全行的数都为1的是第3行,…,第n 次全行的数都为1的是第 行.第61行中1的个数是 . 第1行 1 1 第2行 1 0 1 第3行 1 1 1 1 第4行 1 0 0 0 1 第5行 1 1 0 0 1 110、已知函数2sin f x x =(),若对任意x R ∈,都有1f x f x ≤≤2()(x )f (),则12x x -的最小值为 .11、一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为 . 12、若数列{}n a 的通项公式为221225()4()()55n n n a n N --+=⨯-∈,的最大值为M ,最小值为N ,则M N += .班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、如图,以长方体ABCD-A 1B 1C 1D 1的顶点A 、C 及另两个顶点为顶点构造四面体. (1)若该四面体的四个面都是直角三角形,试写出一个这样的四面体(不要求证明). (2)我们将四面体中两条无公共端点的棱叫做对棱,若该四面体的任一对对棱垂直,试写出一个这样的四面体(不要求证明).(3)若该四面体的任一对对棱相等,试写出一个这样的四面体(不要求证明),并计算它的体积与长方体的体积的比.A B CD D 1A 1C 1B 1高中数学 易错题6一、填空题(共12题,每题5分)1、(08湖北高考)过点A (11,2)作圆22241640x y x y ++--=的弦,其中弦长为整数的共有 .2、有一个公用电话亭,在某一时刻t ,有n 个人正使用电话或等待使用电话的概率为()P n ,且()P n 与时刻t 无关,统计得到1()(0),15,()20,6.nP n P n n ⎧⋅≤≤⎪=⎨⎪≥⎩那么在某一时刻,这个公用电话亭里一个人也没有正使用电话或等待使用电话的概率为(0)P 的值是 . 3、以椭圆22221(0)x y a b a b+=>>的右焦点F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是 .4、双曲线22221(0,0)x y a b a b-=>>的焦距为c ,直线与双曲线的一个交点的横坐标恰为c ,则该双曲线的离心率为 .5、数列{}n a 的构成法则如下:11a =,如果2n a -为自然数且之前未出现过,则用递推公式12n n a a +=-.否则用递推公式13n n a a +=,则6a = .6、已知函数()f x =*()2()n n nf x a n N x -=∈,若12310x x x -≤<<<,则将123,,a a a 从小到大排列为 .7、函数()y f x =是圆心在原点的单位圆的两段圆弧,则不等式 函数()()f x f x x <-+的解集为 .8、设1,2,3x x x 依次是方程log 12x +2=x, log 22x+x=2的实根,则1,2,3x x x 的大小关系是 .9、 从盛满20升纯酒精的容器中倒出1升,然后用水填满,再倒1升混合溶液,又用水填满,这样继续进行,如果倒第k 次(k ≥1)时共倒出纯酒精x 升,倒第k +1次时共倒出纯酒精f (x ),则函数f (x )的表达式是 .10、已知函数y =log 12(235x ax -+)在)1,-+∞⎡⎣上是减函数,则实数a 的取值范围为.11、cos400)= .12、关于x 的不等式kx x x x ≥-++3922在]5,1[上恒成立,则实数a 的范围为 .高中数学 易错题6答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、△ABC中,2C π∠=,1,2AC BC ==,求()|2(1)|f CA CB λλλ=⋅+-⋅的最小值.DA /BAC高中数学 易错题7一、填空题(共12题,每题5分)1、设集合{|1M x =-≤x ≤7},{|1N x k =+≤x ≤21}k -,若M N =∅ ,则实数k的的取值范围是 . 2、若点P (m ,n )在直线2a cy x b b=--上移动,其中a ,b ,c 为某一直角三角形的三条边长,c 为斜边,则m 2+n 2的最小值为 .3、已知20a b =≠ ,且关于x 的方程20x a x a b ++⋅= 有相异实根,则a 与b 的夹角的取值范围是 .4、若圆222x y k +=至少覆盖函数()xf x kπ=的图像的一个最大值点与一个最小值点,则k 的取值范围是 .5、在长为12cm 的线段AB 上任取一点M ,并以线段AM 为边作正方形,其面积介于236cm 和281cm 之间的概率是 .6、.(08四川高考)已知正四棱柱的对角线的长为,则该正四棱柱的体积等于 . 7、设命题p :不等式1()43x +>m >22x x -对一切实数x 恒成立,命题q :函数()(72)x f x m =--是R 上的减函数.若p ,q 都是真命题,则实数m 的取值范围是 . 8、已知ABC ∆的外接圆圆心为O ,且3450OA OB OC ++=,则C ∠的度数为.9、【08山东理13】执行右边的程序框图, 若p =0.8,则输出的n = .10、已知()f x 是定义在R 上的偶函数,()g x 是定义在R 上的奇函数,且()(1)g x f x =-,则(2006)(2008)f f +的值为 .11、已知双曲线22221x y a b-=(a >0,b >0)离心率e ∈,令双曲线两条渐近线构成的角中,以虚轴..为角平分线的角为θ,则θ的取值范围是 . 12、若不等式(1)na -<1(1)2n n+-+对于任意的正整数n 恒成立,则实数a 的取值范围是 .高中数学 易错题7 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)1. 13、已知F 1、F 2为椭圆的焦点,P 为椭圆上的任意一点,椭圆的离心率为31.以P 为圆心PF 2长为半径作圆P ,当圆P 与x 轴相切时,截y 轴所得弦长为95512. (Ⅰ)求圆P 方程和椭圆方程. (Ⅱ)求证:无论点P 在椭圆上如何运动,一定存在一个定圆与圆P 相切,试求出这个定圆方程.x高中数学 易错题8一、填空题(共12题,每题5分)1、 函数2()ln(1)f x x x=+-的零点所在的大致区间是(,1)k k +,k= . 2、化简:=---)()( .3、若双曲线22221x y a b-=-的离心率为54,则两条渐近线的方程为 .4、 △ABC 中,︒=∠==30,1,3B AC AB ,则△ABC 的面积等于_____ __.5、数列}{n a 满足121,12210,2{1<≤-<≤=+n n n n n a a a a a ,若761=a ,则2004a 的值为 __. 6、 (08上海高考)已知总体的各个体的值由小到大依次为2,3,3,7,a ,b ,12,13.7,18.3,20,且总体的中位数为10.5,若要使该总体的方差最小,则a 、b 的取值分别是 . 7、已知数列{}n a 为等差数列,且17134a a a π++=,则212tan()a a +=________. 8、二次函数()x f 满足()()22+-=+x f x f ,又()30=f ,()12=f ,若在[0,m ]上有最大值3,最小值1,则m 的取值范围是 .9、(08江西高考)已知1F 、2F 是椭圆的两个焦点,满足120MF MF ⋅=的点M 总在椭圆内部,则椭圆离心率的取值范围是 .10、函数)(x f 是定义在R 上的偶函数,当x <0时,0)(')(<+x xf x f ,且0)4(=-f ,则不等式0)(>x xf 的解集为 .11、一只蚂蚁在边长分别为都大于1的地方的概率为 . .12、 定义在),0(+∞上的函数)(x f 的导函数0)('<x f 恒成立,且1)4(=f ,若()1f x y +≤,则y x y x 2222+++的最小值是 . .0.01频率组距高中数学 易错题8 答题纸班级 姓名 分数一、填空题:(共12小题,每小题5分)1、 2、 3 4、 5、 6 7、 8、 9 、 10、 11、 12 、二、解答题(共20分,要求写出主要的证明、解答过程)13、某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后(Ⅰ)求第四小组的频率,并补全这个画出如下部分频率分布直方图. (Ⅱ)频率分布直方图观察图形的信息,回答下列问题:. 估计这次考试的及格率(60分及以上为及格)和平均分.答案 易错题11.1≤a <2;2.{6,3};3.(0,2);4. 226-;5.1,14⎛⎫⎪⎝⎭;6.-1;7. 4-提示:1224MP MF MP a MF a +=+-≥= 8. 4π提示:P ABC -视作一个长方体中的部分. 9. [2,2)-提示:A 是B 的真子集,但仅有A 是空集或单元素集符合条,.10.2提示:最小角0(,),6πθ∈sin()132;sin 2m πθθ+==+>11. 10033提示:22006n a n =*是首项为1,公比为3的等比数列,10031004200820063;a *==12.[1,2]m n ==22312,0,0,m n m n +=≥≥2cos ,,0,,()2cos 4sin()26m n f x ππθθθθθθ⎡⎤==∈=+=+⎢⎥⎣⎦, 值域[1,2].13,解:由lg5=a +c ,得lg2=1-a -c . ∴lg6=lg2+lg3=1-a -c +2a -b =1+a -b -c , 满足表中数值,也就是lg6在假设下是正确的.易错题2答案:1.[1,)-+∞ 2.一条线段和一半圆 3. )1,1(αβ; 4. 3k < 5. x-y+1=0,x+y-5=06. 提示:图形关于x,y 轴对称,另有原点,[1,2]∪{0};7.提示可将问题特殊化,把,a b视作互相垂直的单位向量,易求出 2455a b + ;8. 提示:抛物线的准线与椭圆左准线重合,椭圆左焦点平分右焦点与左准线间线段; 9. (][),22,-∞-+∞ 提示:k=m=-1,作可行域,目标函数为斜率;10.1提示:100,12,100nn y x ≤=-=-时最小值为1;100,1,100n n y x >=+=时最小值为101,100因此最小值为1.11. 2提示:将侧面展开,利用AMN 三点共线时周长最小,.12.13提示:目标函数定义域是 [1,3],令log 3x=t ∈[0,1],换元后配方可得13.13.解:(I )由题意知:10.10.11001a =⨯⨯=,20.30.1100 3.a =⨯⨯= ∵数列{}n a 是等比数列,∴公比213,a q a ==∴1113n n n a a q --== . (II) ∵123a a a ++=13,∴126123100()87b b b a a a +++=-++= , ∵数列{}n b 是等差数列,∴设数列{}n b 公差为d ,则得1261615b b b b d +++=+ ,∴1615b d +=87, 2741==a b ,∴5-=d ,∴n b n 532-= (III)μ=12312340.91100a a ab b b b ++++++=, 答:估计该校新生近视率为91%.易错题31、5,102、4π3、14,29⎡⎤⎢⎥⎣⎦4、93165、提示:-4444,01,34,573333b b b b x b -+-+<<≤<<≤<<则; 6、直角 ;7.提示:21516122221+++⋅⋅⋅+=-;8. 提示:先求(2)f x -,然后将(x,2-y)代入即得22222x x a y -+=-+;9. (2),(3); 10.2提示:过圆心向直线作垂线,垂足为A,过A 作切线长最小2.11. 12,13提示:21156n n a n n n==≤++,1213a a =最大.12.8提示: A.B 到右准线距离分别为12128162433d d d d +=⨯-=、,,设右焦点F,由第二定义,12316()23AF BF e d d +=+=⨯=8,在△ABF 中AB AF BF ≤+=8,当AB 过焦点F 时取最大值8.13.由于⊙M 与∠BOA 的两边均相切,故M 到OA 及OB 的距离均为⊙M 的半径,则M 在∠BOA 的平分线上, 同理,N 也在∠BOA 的平分线上,即O ,M ,N 三点共线,且OMN 为∠BOA 的平分线,∵M 的坐标为)1,3(,∴M 到x 轴的距离为1,即⊙M 的半径为1,则⊙M 的方程为1)1()3(22=-+-y x , 设⊙N 的半径为r ,其与x 轴的的切点为C ,连接MA 、MC , 由Rt △OAM ∽Rt △OCN 可知,OM :ON=MA :NC , 即313=⇒=+r rr r ,则OC=33,则⊙N 的方程为9)3()33(22=-+-y x易错题41. 8.2.(1)(2)(3) 3. []4,0- 4. (0,2) 5. 7 6.33657. 8. 8对提示:20x a -≤2a x ⇒≤.40x b ->4b x ⇒>.要使{}2,3A B N ⋂⋂=,则124342b a ⎧≤<⎪⎪⎨⎪≤<⎪⎩,即4868b a ≤<⎧⎨≤<⎩.所以数对()b a ,共有248⨯=. 9. 5522a a ≥≤-,或提示:[][]1122,(),x f x ∈-∈,0,4,使[]0,g x ∃∈()0,4 0,21,210,a a ⎧⎪-⎨⎪--⎩a >≥4≤0,210,21,a a ⎧⎪-⎨⎪--⎩a <≤≥4成立.10.1提示:153,,21616a b c === . 11. 3010m -<≤提示:2(1lg )40,1lg 0m m ∆=+-≥+> 12. {}4,5,6,7提示:11114,5,(1)1,613na a n d==-=≤≤. 13解:(1)()1111cos sin 024262f x x x x π⎛⎫'=-=-+≥ ⎪⎝⎭,∴()f x 定义域内单调递增. (2)由()00111sin 2622f x x π⎛⎫'=-+= ⎪⎝⎭,得:0sin 06x π⎛⎫-= ⎪⎝⎭.()06x k k Z ππ∴-=∈,得()06x k k Z ππ=+∈,()20000000002sin cos sin cos 2sin sin 21tan cos sin x x x x x x x x x ++∴=++0sin 2sin 23x k ππ⎛⎫==+= ⎪⎝⎭.易错题51. 110,,23⎧⎫-⎨⎬⎩⎭. 2.2π.3. ±1 . 4. 6π. 5. [-1,0] . 6. 2y =12x 或2y =-4x .7. 1提示:由f (1)=f(3)=2,得t 取-3,1,2,5, 再验证知t 取 1 . 8. B=}{(,)2,0,0x y xy x y =>> 或22{(,)log log 1}B x y x y =+=,9.提示:逐个列举后进行归纳,21n -,32 . 10.π 提示:1f x f 2()、(x )分别为最小、最大值,因此12x x -的最小值为半周期π.11.提示:设直角边长x,由224),x +=(斜边;.12. 15提示: ]2212424545(),()(0,1,1,,5555n n a t t t t M N -=⨯-=--=∈==-M+N=15 .13、(1)如四面体A 1-ABC 或四面体C 1-ABC 或四面体A 1-ACD 或四面体C 1-ACD. (2)如四面体B 1-ABC 或四面体D 1-ACD. (3)如四面体A-B 1CD 1,设长方体的长、宽、高分别为,,a b c ,则14163abc abcabc -⨯= .易错题6:1.5 2.3263 3.⎫⎪⎪⎝⎭41 5.15 6.231,,a a a 7.|0,1x x x ⎧⎫⎪⎪<<<≤⎨⎬⎪⎪⎩⎭8.231x x x 9.f (x )=19120x +10.86a -≤- 11.1 12. 6k ≤.提示: 两边同除以x ,则39-++≤x x x k ,69≥+x x ,03≥-x ,当且仅当3=x ,两等式同时成立,所以3=x 时,右边取最小值6.解析二:可分3x 1≤≤和5x 3≤<讨论.求分段函数的最小值.13.解法一:延长CA至'A,使/2CA CA=,则//2(1)(1)CA CB CA CB CB BA λλλλλ⋅+-⋅=⋅+-⋅=+⋅ ,令/BA BD λ⋅= ,则()||f CD λ= ,当λ变化时,点D 在直线AB 上移动,可见,当/CD A B ⊥时,()||f CD λ=解法二:因为CA CB ⊥,所以2222222()4||(1)||44(1)f CA CB λλλλλ=⋅+-⋅=+-2218848()22λλλ=-+=-+,当12λ=时,()f λ易错题7:1.k <2或k >6 2.4 3.(,]3ππ 4.K ≤-2或k ≥2 5.146.2; 7.1<m <3提示:p:1<m ≤4,q:m<3,则1<m <3 ; 8.45提示:345,OA OB OC +=- 两边平方得0OA OB = 借图判定出. 9. 4提示: 10.0提示:()(1)()(1),(1)(1),(20071)(20071)0;g x f x g x f x f x f x f f -=--=-=--∴+=--∴++-=11.提示:11cos(),[,];22232e πθππθ⎡-=∈∈⎢⎣⎦ 12.3[2,)2-提示:n 分奇偶数分别讨论,然后取交集;13.解:(Ⅰ)∵31=e ,∴a =3c ,b =c 22,椭圆方程设为1892222=+cy c x ,当圆P 与x 轴相切时,PF 2⊥x 轴,故求得P (c ,c 38±),圆半径r =c 38,由295512222=-c r 得,c =2,∴椭圆方程设为1323622=+y x ,此时圆P 方程为9256)316()2(22=±+-y x . (Ⅱ)以F 1为圆心,作圆M ,使得圆P 内切于圆M ,公切点设为Q ,则点F 1、P 、Q 在一直线上,从而F 1Q =F 1P +PQ =F 1P +PF 2=2a =6,∴存在圆M :36)2(22=++y x 满足题设要求.易错题81. 1;2.;3.034=±y x ;4. 4323或;5.73;6. 10.5和10.5;7.提示2121137823a a a a a π+=+==;8. [2,4] 提示:画图象分析,对称轴x=2;9. 提示:垂足的轨迹为以焦距为直径的圆,则2222212c b c b a c e <⇒<=-⇒<;10. )4,0()4,(⋃--∞提示: ()0)(')()(<+='x xf x f x xf ,即),在(0)(∞-x xf 上是减函数,结合偶函数对称可得.;11提示:画示意图,在ABC ∆中用余弦定理得4cos 5B =, 则3sin 5B =,1356925ABC S ∆=⋅⋅⋅=,图中阴影部分的 面积为三角形ABC 的面积减去半径为1的半圆的面积即为92π-,则本题中蚂蚁恰在离三个顶点距离都大于1的地方的概率为921918P ππ-==-. 12.16提示:由)(x f 在),0(+∞0)('<x f 恒成立,得到)(x f 在),0(+∞单调递减,因为1)(≤+y x f ,1)4(=f ,则),4()(f y x f ≤+所以y x ,满足x+y ≥4且 x+y >0,又因为2)1()1(222222-+++=+++y x y x y x ,22)1()1(+++y x 可以看作是),(y x 到)1,1(--的距离的平方,所以由线性规划知识可得y x y x 2222+++的最小值是16.13解:(Ⅰ)因为各组的频率和等于1,故第四组的频率:41(0.0250.01520.010.005)100.3f =-+*++*= 直方图如右所示…(Ⅱ)依题意,60及以上的分数所在的第三、四、五、六组,频率和为 (0.0150.030.0250.005)100.75+++*=所以,抽样学生成绩的合格率是75%.. --利用组中值估算抽样学生的平均分 123456455565758595f f f f f f ⋅+⋅+⋅+⋅+⋅+⋅=450.1550.15650.15750.3850.25950.05⨯+⨯+⨯+⨯+⨯+⨯=71估计这次考试的平均分是71分 .。
高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。
高中数学各章节关注点1.4 否定形式命题可考虑用逆否命题来研究.例1.4 已知R b a ∈,,则条件"21≠≠b a 或"是"2≠ab "的 条件.1.5 “且”与“或”的区分.例1.5.1 判断真假:(1) 10232≠⇔≠+-x x x 或2≠x ;(2)33≥.例1.5.2 已知 013:1=+-y ax l ,01)21(:2=---ay x a l ,根据下列条件分别求a 的取值范围.(1) 21l l 与相交;(2) 21l l ⊥.2、函数2.1求函数关系式时必须包含定义域;对数问题也应注意定义域.例2.1 (1)在ABC ∆中,BC AC BC x AB ,3,4,===边上的中线长y AM =,求y 关于x 的函数关系式;(2)函数x x y ln 22-=的单调递增区间是 .2.2 函数的零点问题通常利用函数图像.例2.2 (1)若函数m x x x y -+-=4423在区间),(251-有且只有一个零点,则实数m 的取值范围是 ;(2) 若函数m x x x y -+-=4423在区间),(251-至少有一个零点,则实数m 的取值范围是 .例2.5.2 已知函数)(x f 是周期为2的周期函数,当20≤<x 时,13)(2+-=x x x f ,求当75<<x 时,函数)(x f 的表达式.2.6 关注二次函数二次项系数是否为零,注意∆、开口、对称轴与特殊值四要素.例2.6 (1)已知方程0)3(42=++-a x ax 有两个大于1的不等实根,求实数a 的取值范围; (2) 已知方程0)3(42=++-a x ax 至少有一个大于1的实根,求实数a 的取值范围.2.7 指对数的运算法则.例2.7 (1)已知02ln =+x ,求x ;(2)已知)00(02≠>=-a a a x且,求x ; (3)解不等式)10(2log <<->a x a ;(4)已知()1,12log 2log >>>b a b a ,求b a , 的大小关系.3、数列3.1 注意题中n 取值,如:⎩⎨⎧≥-==-2n ,S S 1,n ,S a 1n n1n 的公式应用.例3.1 (1)已知数列{}n a 的前n 项的和为)(+∈+-=N n n n S n 1322,求数列{}n a 的通项公式;(2) 已知数列{}n a 的前n 项的和为n S ,若),2(0321+-∈≥=+N n n a S S n n n ,又31=a ,求n a ;(3) 已知数列{}n a 的前n 项的和为n S ,若,)(31++∈=N n a S n n 又31=a ,求n a .3.2 等比数列求和注意对q=1与q ≠1的分类;等比数列证明注意首项0a 1≠的说明.例3.2 (1) 若等比数列{}n a 的前n 项和为n S ,公比1-≠q .求证:n n n n n S S S S S 232,,--也成等比;(2) 若数列{}n a 中,)(23,411++∈-==N n a a a n n .求证数列{}1-n a 是等比数列.3.3 求和:观察通项、 注意首项、 点清项数,并注意结果的验证.例3.3 求和nn S )2(8421-++-+-= .3.4 应用性问题:逐步列式,保留原始数据,便于观察规律.例3.4 小王2012年5月向银行借款100万元用于购房,年利率7.8%,2013年5月开始偿还,每年还a 万元,2032年5月全部还清,求每年还款额a (其中2078.110≈).3.5 等差数列、等比数列常用定义、公式或性质解决.例3.5.1 已知数列{}n a 的前n 项的和为n S ,42,293==S S .(1)若数列{}n a 成等差,求12S ; (2) 若数列{}n a 成等比,求12S .例3.5.2 已知等差数列{}n a 与{}n b 的前n 项的和分别为n n T S , , 若1423--=n n T S n n , 求2020b a .3.6 数列与函数的单调性、最值研究的方法“区别”.例3.6 (1) 已知数列{}n a 的通项公式是nnn C a )31(2012⋅=,求数列{}n a 的最大项;(2)已知函数xex x f 2012)(-=,求函数)(x f 在区间),0(∞+上的最大值.3.7 熟练掌握利用错位相减法或裂项法进行数列求和. 例3.7 (1) 求和:n n n S )21)(12()21(7)21(5)21(321432--++-+-+-+-= ;(2) 求和:)12(753197531753153131++++++++++++++++=n S n .(3) 求数列⎭⎬⎫⎩⎨⎧+++)23(3522n n n n 的前n 项的和n T .3.8 通常递推关系转化为“新数列”的思想运用. 例3.8 已知数列{}n a 中,311=a ,根据下列各递推公式,求数列的通项公式: (1) 131-=+n n a a ;(2)131+=+n nn a a a ;(3)()112++-=n n n n a a a a ;(4)nn n a a 331=+-.5.4 三角形问题应注意内角的判断一个或两个解.例5.4 (1) 在ABC ∆中,若32cos ,36sin ==B A , 求C sin ;(2) 在ABC ∆中,若3,31cos ,33sin ===a B A , 求边c 的长.5.5 熟练掌握正弦、余弦定理,面积公式.例5.5.1 在ABC ∆中, 面积32=S ,,6,600=+=c b A (1)求边a 的长; (2)求)(sin C B -.例5.5.2 在ABC ∆中, 三内角C B A ,,成等差数列 , 角C B A ,,所对应的边分别为c b a ,,, 外接圆半径为2 , 求22c a +的取值范围.6.5 熟练掌握不等式应用的两种题型.例6.5 (1) 已知+∈R y x ,,212=+yx ,求y x +的最小值;(2)已知c ax x f +=2)(,1)1(2≤≤-f ,4)2(0≤≤f ,求)3(f 的取值范围.7、直线和圆7.1 求直线问题注意斜率存在与不存在,掌握斜率变化与倾斜角变化的规律.例7.1 (1) 已知过点(0,1)的直线l 与圆)0()1(222>=++R R y x 交于B A ,两点,O 为坐标原点,若52<⋅<-OB OA ,求半径R 的取值范围;(2) 已知过点(-2,0)的直线l 与圆16)1(22=++y x 交于B A ,两点,O 为坐标原点,若1213-<⋅<-OB OA ,求直线l 的倾斜角取值范围.高中数学各章节关注点答案3.1解:(1) ⎩⎨⎧≥== 2.n ,5-4n ,1n ,0a n (2) ,0)(3211=-+--n n n n S S S S 32111=--n n S S , 数列⎭⎬⎫⎩⎨⎧n S 1是首项为31,公差为32的等差数列,所以3121-=n S n ,即123-=n S n ,从而得⎪⎩⎪⎨⎧≥---==.2,)32)(12(61,3n n n n a n , (3) ,43111n n n n n n S S S S a S =⇒-==+++数列{}n S 是公比为4 , 首相为3的等比数列 ,所以143-⋅=n n S , 从而⎩⎨⎧≥⋅==-.2,49,1,32n n a n n 3.2解:(1)当公比1=q 时,,,,0123121na S S na S S na S n n n n n =-=-≠=结论成立;当公比1≠q 时,222212131123)1()1()1)1(1)1((1)1()(q q q a q q a q q a q q a S S S nn n n n n n n --=-----⋅--=-, 22221212122)1()1(1)1(1)1()(q q q a q q a q q a S S n n n n n n--=⎥⎦⎤⎢⎣⎡-----=-, 1,0,01±≠≠≠q q a ,0)()(2322≠-=-∴n n n n n S S S S S ,结论成立.(2),)1(311-=-+n n a a 又0311≠=-a ,所以数列{}1-n a 是以3为首项,以3为公比的等比数列.3.3解: []11)2(131)2(1)2(1++--=----=n n n S . 3.4解:201819%)8.71(100%)8.71(%)8.71(%)8.71(+=+++++++a a a a ,2020%)8.71(100%)8.71(1%)8.71(1+=+-+-⋅a , 4.103078.0400=⨯≈a (万元).3.5.1解:(1)由91269363,,,S S S S S S S ---成等差,得,)42(2)2(266S S -+=-166=S ,所以38912=-S S ,8012=∴S .(2) 由91269363,,,S S S S S S S ---成等比,得,)42(2)2(626S S -=-86-=S 或106=S ,从而128912=-S S 或250912-=-S S ,所以17012=S 或20812-=S .3.5.2解:利用等差数列求和公式n n a n S )12(12-=-得312315511539392020===T S b a . 3.6解:(1)1)1(3201231!)2011(!)1(!2012!)2012(!!2012312012120121≥+-=⋅-+-=⋅=++n nn n n n C C a a n n n n ,得25.502≤n ,即12502503a a a a >>>> , >>>505504503a a a ,所以数列{}n a 的最大项为5035032012503)31(C a =.(2)2013,02013)('==-=x exx f x得,函数↑∞+↑),(,),)在((201320130x f . 所以函数)(x f 在区间),0(∞+上的最大值是2013)2013-=ef (.3.7解:(1) 运用错位相减法,15432)21)(12()21)(32()21(7)21(5)21(3)21(21+--+--++-+-+-+-=-n n n n n S15432)21)(12(])21()21()21()21()21[(22123+----++-+-+-+-+-=n n n n S 1111)(12()21(13121)21)(12()21(1)21(141221+-+---⎥⎦⎤⎢⎣⎡--+-=---⎥⎦⎤⎢⎣⎡----⋅+-=n n n n n n n n )21(61661-++-=, nn n S )21(91691-++-=∴.(2) )211(21)2(1)12(7531+-=+=+++++n n n n n,⎥⎦⎤⎢⎣⎡+-++--++-+-+-+-=∴)211()1111()6141()5131()4121()311(21n n n n S n )2)(1(23243211121121+++-=⎥⎦⎤⎢⎣⎡+-+-+=n n n n n . (3) )2(31)1(31)23(35212+-+=+++-n n n n n n n n,))2(31)1(31()531431()431331()33121(1322+-+++⨯-⨯+⨯-⨯+⨯-=∴-n n T n n n)2(3121+-=n n .4.9解:y x y x 32cos 2sin -=+,22)32()2(1y y -≥+,031252≤+-y y ,52165216+≤≤-y , ∴值域为⎥⎦⎤⎢⎣⎡+-5216,5216. 4.10解:321sin 121,21sin 23,1sin 21,326<+≤≤+<≤<∴≤<x x x x ππ, 所以1sin 43+-=x y 的值域为⎥⎦⎤ ⎝⎛1,31.4.11解: 2tan 11tan )4tan(=-+=+x x x π, 得31tan =x . (1)原式671tan 32tan =++=x x .(2)原式7201tan tan )1(tan 2)cos (sin cos sin )cos (sin 2222222-=--+=+-+=x x x x x x x x x . 5.1 (1)51- 解析:CB AB AC AB CB BC AB CB AM ⋅-+=⋅+=⋅)](32[)32( 51)2716236(31231)()2(3122-=--=⎥⎦⎤⎢⎣⎡⋅+-=-⋅+=AC AB AC AB AC AB AC AB .(2)42- 解析:以A 为原点,分别以AB ,AC 所在直线为x ,y 轴,建立直角坐标系,A (0,0),B (6,0),C (0,9),M (2,6),425412),9,6(,)6,2(-=-=⋅-==CB AM CB AM .5.2解:(1)213,0372)2(1)1)(23(2-=-==++⇒-⋅=++x x x x x x x 或得. (2) 26,03201)23()1)(2(2±==-⇒=⋅+++-x x x x x 得. 5.3解:(1)错 解析:0应该为0.(2)错 解析:c b a )(⋅与向量c 共线 , )(c b a ⋅与向量a 共线. (3)错 解析:正确形式为AC BC AB =+;(4) 错 解析:正确形式为CB AC AB =-.5.4解:(1),,sin 35sin A B A B <∴<=33cos ±=∴A , B A B A B A C sin cos cos sin )(sin sin +=+= 9156235)33(3236±=±+⋅=. (2) 36cos ,,sin 322sin =∴>∴>=A A AB A B ,必为锐角角 ,935322363133sin cos cos sin )(sin sin =+⋅=+=+=B A B A B A C ; 由正弦定理得539353sin sin =⋅⋅==A C a c .5.5.1解:(1) 83260sin 210=⇒==bc bc S , 又,或22,4,6===∴=+b c b c b 4=c ,32,12cos 2222==-+=a A bc c b a . (2) 当4,2==c b 时,由正弦定理,C B sin 4sin 260sin 320==,得1sin ,21sin ==C B ,23)sin(,90,3000-=-==C B C B ,同理当2,4==c b 时,23)sin(=-C B . 5.5.2解:三角C B A ,,成等差060=⇔B , 由正弦定理42sin sin ===R CcA a , 所以[][])2240cos(2cos 28)120(sin sin 1602222A A A A c a ---=-+=+)602cos(8160+-=A , 由于001200<<A , 00030060260<+<A ,所以21)602cos(10<+≤-A , 从而241222≤+<c a . 5.6.1 解: (1)真. (2)假.(3)假. 解析:正确的应是等腰三角形或直角三角形. 例5.6.2 (1) 若角A 为锐角, 则A A cos sin +的取值范围是 ; (2)若角A 为钝角, 则A A cos sin +的取值范围是 .5.6.2 (1)(]2,1 解析:)45sin(2cos sin +=+A A A ,A 为锐角,900<<∴A , 1354545<+<∴A ,1)45sin(22≤+<∴A ,即有2cos sin 1≤+<A A .. (2)()1,1- 解析: A 为钝角,即18090<<A ,22545135<+<∴A ,22)45sin(22<+<-∴ A ,即有1cos sin 1<+<-A A . 6.1解:(1)027322132≥--=---x x x x x , 由此得解集[)⎪⎭⎫⎢⎣⎡∞+,372,0 .6.4 1024或 解析:)52()(1+=-⋅x x x ,得0=x 或3-=x ,44224)42(222++=++=-x x x x ,40=-=x ;1023=--=x .6.5 解:(1))223(21)2(321)12)((21+≥⎥⎦⎤⎢⎣⎡++=++=+y x x y y x y x y x , 即y x +的最小值为)223(21+. (2))1(35)2(389)3(,4)2(,)1(f f c a f c a f c a f -=+=+=+=;332)2(380≤≤f ,310)1(3535≤-≤-f ,14)3(35≤≤-∴f .则当1=t 时,1=k ,当1≠t 时,0)3)(1(44,0)3(2)1(2≥---=∆=-+--t t t k k t ,得;2222+≤≤-t ,所以24322-<<-R .综上所述,半径R 的取值范围是⎪⎭⎫ ⎝⎛-24,0.(2) 当x l ⊥轴时,)15,2(-A ,)15,2(--B ,11-=⋅OB OA ,不合, 当l 与x 轴不垂直时,设直线)2(:+=x k y l 代入圆方程,得0154)12(2)1(2222=-++++k x k x k ,由韦达定理,222122211154,1)12(2kk x x k k x x +-=++-=+, 2212212212214)(2)1()2)(2(k x x k x x k x x k x x OB OA ++++=+++=⋅)12,13(1151141)12(41542222222--∈++-=+++--=kk k k k k k ,得312<<k , 13-<<-k 或31<<k ,所以直线l 倾斜角的范围是⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛43,323,4ππππ .7.2解:圆心(-1,0)到直线的距离53=d ,所以5109235322=⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=R . 8.1.1解:(1)513解析:因为02=+FQ PF ,所以点Q 为线段PF 的中点, O 为原点,椭圆另一焦点为'F ,则OQ PF //', 4'=PF , 由椭圆定义:42-=a PF ,'PF PF PF OQ ⊥⇒⊥,由勾股定理;52)42(162=-+a , 得5=a , 所以椭圆的离心率513=e . (2) 228- 解析:如图,椭圆左焦点)0,2(-F , 右焦点即为B ,如图,由椭圆的定义得2288)(8-=-≥--=+AF PA PF PB PA .8.1.2解: (1) 1622=+y x 解析:不妨设点P 在双曲线的右支上,设直线1与2PF 交于点Q ,O 为坐标原点,4221)(21)(21212122==⋅=-=-==a a PF PF PF PQ Q F OM , 所以点M 的轨迹方程是1622=+y x .(2) 2 解析:抛物线的焦点()1,0F ,准线1:-=y l ,连AF 、BF ,设A 、B 、M 到准线l 的距离分别为1d 、2d 、d 则322221=≥+=+=AB BF AF d d d , ∴点M 到x 轴的最近距离为2.8.2解:(1)9或964解析:当焦点在x轴上时,3181=-m ,得9=m ;当焦点在y轴上时,3181=-m ,得964=m . (2) 3171--或 解析:当焦点在x 轴上时,7)28(2=+++n n ,得1-=n ;当焦点在y 轴上时,7)2()82(=--+--n n ,得317-=n .(3) )161,0(a 解析:抛物线方程的标准式为y ax 412=.8.3解:(1)(基本轨迹法) 设)0,5(,)0,5(21F F -,动圆半径为R ,则31+=R PF ,12+=R PF ,221=-PF PF ,由双曲线定义,点P 的轨迹是以1F 、2F 为焦点的双曲线的一支,1=a ,24,52==b c ,它的轨迹方程是)1(12422≥=-y x y . (2) (转移法) 设),(),,(00y x C y x G ,则3,300yy x x ==,即y y x x 3,300==,代入椭圆得1144)3(324)3(22=+y x ,又三角形中三点不共线,0≠∴x , 所以重心G 的轨迹方程是)0(1163622≠=+x y x .8.4 解: )0,2()0,2(21F F -,当x PQ ⊥轴时, )3,2(,)3,2(-Q P ,12=S ; 当AB 与x 轴不垂直时, 设直线)0)(2(:≠-=k x k y PQ ,代入椭圆方程得0481616)43(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则22212221434816,4316kk x x k k x x +-=+=+, 2222243)1(24431241k k k k k PQ ++=+++= , 点1F 到直线PQ 的距离 214kk d +=,由此得222222)43()1(484314821k k k k k k d PQ S ++=++== , 设t k =+243,其中3>t ,则232112t t S --=随t 的增大而增大,120<<S , 所以PQ F 1∆面积S 的取值范围是(]12,0.(2)设直线2)1(:+-=x k y l , 代入双曲线方程4422=-y x 得[]01)2(4)2(8)41(222=+-----k x k k x k ,[]0)543(161)2()41(16)2(6422222=+--=+--+-=∆k k k k k k ,得3192±-=k , 双曲线的渐近线斜率为21±,如图,可知直线l 的斜率范围是)21,3192(---. 8.6解:)0,2(-F ,当x l ⊥轴时,)214,1(P ,)214,1(-Q ,不合. 设直线)1(:-=x k y l ,代入椭圆得0824)21(2222=-+-+k x k x k ,设),(11y x P ,),(22y x Q , 则 ,2142221kk x x +=+22212182k k x x +-=, 2212212212214))(1()1()1)(2()2)(2(k x x k x x k x x k x x FQ FP +++-++=--+++=⋅=2222222421)2(421)82)(1(k k k k k k k +++-++-+=02141122=+-k k ,得112±=k , 所以直线的方程为)1(112-±=x y .9.1解:(1) 373)4242(433122=⋅⨯++=V . (2)表面积ππππ425)41(4122=⋅++⋅+⋅=S ,体积ππ284)4161(31=⋅++=V . 9.2解:(1)取AB 中点O ,连OC ,则AB PO ⊥,ABC PAB 面面⊥ ,ABC PO 面⊥∴, ABC PC PCO 与面就是∠∴所成的角,103010232tan 10232==∠==PCO OC PO ,,, 所以所求角的正切值为1030.。
高中高考数学易错易混易忘题分类汇总及解析高中高考数学易错易混易忘题分类汇总及解析第一部分高考函数考点易错题【易错点1】忽视空集是任何非空集合的子集导致思维不全面。
例1.设,,若,求实数a组成的集合的子集有多少个?【易错点分析】此题由条件易知,由于空集是任何非空集合的子集,但在解题中极易忽略这种特殊情况而造成求解满足条件的a值产生漏解现象。
【知识点归类点拔】(1)在应用条件A∪B=BA∩B=AAB时,要树立起分类讨论的数学思想,将集合A是空集Φ的情况优先进行讨论.(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。
有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语言)和自然语言之间的转化如:,,其中,若求r的取值范围。
将集合所表达的数学语言向自然语言进行转化就是:集合A表示以原点为圆心以2的半径的圆,集合B表示以(3,4)为圆心,以r 为半径的圆,当两圆无公共点即两圆相离或内含时,求半径r的取值范围。
思维马上就可利用两圆的位置关系来解答。
此外如不等式的解集等也要注意集合语言的应用。
【练1】已知集合、,若,则实数a的取值范围是。
【易错点2】求解函数值域或单调区间易忽视定义域优先的原则。
例2、已知,求的取值范围【易错点分析】此题学生很容易只是利用消元的思路将问题转化为关于x的函数最值求解,但极易忽略x、y满足这个条件中的两个变量的约束关系而造成定义域范围的扩大。
【知识点归类点拔】事实上我们可以从解析几何的角度来理解条件对x、y的限制,显然方程表示以(-2,0)为中心的椭圆,则易知-3≤x≤-1,。
此外本题还可通过三角换元转化为三角最值求解。
【练2】(05高考重庆卷)若动点(x,y)在曲线上变化,则的最大值为()(A)(B)(C)(D)【易错点3】求解函数的反函数易漏掉确定原函数的值域即反函数的定义域。
例3. 是R上的奇函数,(1)求a的值(2)求的反函数【易错点分析】求解已知函数的反函数时,易忽略求解反函数的定义域即原函数的值域而出错。
高中数学总复习经典易错题会诊与试题预测(下)目录考点7 不等式经典易错题会诊命题角度1 不等式的概念与性质命题角度2 均值不等式的应用命题角度3 不等式的证明命题角度4 不等式的解法命题角度5 不等式的综合应用探究开放题预测预测角度1 不等式的概念与性质预测角度2 不等式的解法预测角度3 不等式的证明预测角度4 不等式的工具性预测角度5 不等式的实际应用考点8 直线和圆经典易错题会诊命题角度1 直线的方程命题角度2 两直线的位置关系命题角度3 简单线性规划命题角度4 圆的方程命题角度5 直线与圆探究开放题预测预测角度1 直线的方程预测角度2 两直线的位置关系预测角度3 线性规划预测角度4 直线与圆预测角度5 有关圆的综合问题考点9 圆锥曲线经典易错题会诊命题角度1 对椭圆相关知识的考查命题角度2 对双曲线相关知识的考查命题角度3 对抛物线相关知识的考查命题角度4 对直线与圆锥曲线相关知识的考查命题角度5 对轨迹问题的考查命题角度6 考察圆锥曲线中的定值与最值问题探究开放题预测预测角度1 椭圆预测角度2 双曲线预测角度3 抛物线预测角度4 直线与圆锥曲线预测角度5 轨迹问题预测角度6 圆锥曲线中的定值与最值问题考点10 空间直线与平面经典易错题会诊命题角度1 空间直线与平面的位置关系命题角度2 空间角命题角度3 空间距离命题角度4 简单几何体探究开放题预测预测角度1 利用三垂线定理作二面角的平面角预测角度2 求点到面的距离预测角度3 折叠问题考点11 空间向量经典易错题会诊命题角度1 求异面直线所成的角命题角度2 求直线与平面所成的角命题角度3 求二面角的大小命题角度4 求距离探究开放题预测预测角度1 利用空间向量解立体几何中的探索问题预测角度2 利用空间向量求角和距离考点12 排列、组合、二项式定理经典易错题会诊命题角度1 正确运用两个基本原理命题角度2 排列组合命题角度3 二项式定理探究开放题预测预测角度1 在等可能性事件的概率中考查排列、组合预测角度2 利用二项式定理解决三项以上的展开式问题预测角度3 利用二项式定理证明不等式考点13 概率与统计经典易错题会诊命题角度1 求某事件的概率命题角度2 离散型随机变量的分布列、期望与方差命题角度3 统计探究开放题预测预测角度1 与比赛有关的概率问题预测角度2 以概率与统计为背景的数列题预测角度3 利用期望与方差解决实际问题考点14 极限经典易错题会诊命题角度1 数学归纳法命题角度2 数列的极限命题角度3 函数的极限命题角度4 函数的连续性探究开放题预测预测角度1 数学归纳法在数列中的应用预测角度2 数列的极限预测角度3 函数的极限预测角度4 函数的连续性考点15 导数及其应用经典易错题会诊命题角度1 导数的概念与运算命题角度2 导数几何意义的运用命题角度3 导数的应用探究开放题预测预测角度1 利用导数的几何意义预测角度2 利用导数探讨函数的单调性预测角度3 利用导数求函数的极值和最考点16 复数经典易错题会诊命题角度1 复数的概念命题角度2 复数的代数形式及运算探究开放题预测预测角度1 复数概念的应用预测角度2 复数的代数形式及运算考点7不等式不等式的概念与性质均值不等式的应用不等式的证明不等式的解法不等式的综合应用不等式的概念与性质不等式的解法不等式的证明不等式的工具性不等式的实际应用经典易错题会诊命题角度1不等式的概念与性质1.(典型例题)如果a、b、c满足c<b<a,且ac<0,那么下列选项中不一定成立的是 ( )A .ab>acB .c(b-a)>0C .cb 2<ab 2D .dc(a-c)<0[考场错解] A ∵b>c ,而ab ,ao 不一定成立,原因是不知a 的符号.[专家把脉] 由d>b>c ,且ac<0.则。
高中数学经典易错题会诊与试题预测(五)考点5 三角函数 经典易错题会诊命题角度1 三角函数的图象和性质 命题角度2 三角函数的恒等变形命题角度3 三角函数的综合应用探究开放题预测 预测角度1 三角函数的图象和性质 预测角度2 运用三角恒等变形求值 预测角度3 向量与三角函数的综合命题角度1 三角函数的图象和性质 1.(典型例题)函数f(x)=sinx+2|sinx|,x ∈(0,2π)的图像与直线y=k 有且仅有两个不同的交点,则众的取值范围是 . [考场错解] 填[0,3] ∵f(x)=⎩⎨⎧∈-∈]2,(,sin ],0[,sin 3πππx x x x∴f(x)的值域为(0,3),∵f(x)与y=k 有交点,∴k ∈[0,3].[专家把脉] 上面解答求出k 的范围只能保证y= f(x)的图像与y=k 有交点,但不能保证y=f(x)的图像与y=k 有两个交点,如k=1,两图像有三个交点.因此,正确的解答要作出了y=f(x)的图像,运用数形结合的思想求解.[对症下药] 填(1,3) ∵f(x)⎩⎨⎧∈--∈]2,(,sin ],0(,sin 3πππx x x x 作出其图像如图从图5-1中可看出:当1<k<3时,直线y=k 与 yf(x)有两个交点. 2.(典型例题)要得到函数y=2cosx 的图像,只需将函数y=2sin(2x+4π)的图像上所有的点的 ( )A.横坐标缩短到原来的21 倍(纵坐标不变),再向左平行移动8π个单位长度 B .横坐标缩短到原来的21倍(纵坐标不变),再向右平行移动4π个单位长度 C .横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动4π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动8π个单位长度[考场错解] B 或D∵将函数y=2sin(2x+4π)的所有点的横坐标缩短到原来的21倍,得函数y=2sin(x+4π)的图像,再向右平行移动子个单位长度后得函数y=2sin(x+2π)=2 cosx 的图像. 故选B .将函数y=2sin(2x+4π)变形为y=2sin2(x+4π).若将其图像横坐标伸长到原来的2倍(纵坐标不变)后得函数y=2sin(x+8π)的图像.再向右平行移动8π个单位长度后得y=2cosx 的图像,选D . [专家把脉] 选B 有两处错误,一是若将函数y f(x)=2sin(2x+4π)横坐标缩短到原来的21倍,(纵坐标标不变)所得函数y=f(x)= sin(4x+4π),而不是f(x)=2sin(x+4π),二是将函数y=f(x)=2sin(x+4π)向右平行移动4π得函数y=f(x)=2sinx 的图像,而不是y= f(x)=2cosx 的图像.因为函数图像变换是针对自变量而言,应该是x 变为x-4π选D 同样是两处错误.一是横坐标伸长到原来的 倍(纵坐标不变)得函数y=2sin(x+4π)而不是y=2sin(x+4π).由y=2sin(x+8π)的图像向右平移81个单位长度得了y=2sinx 的图像,而不是y=2cosx 的图像. [对症下药] 选C 将函数y=2sin(2x+4π)图像上所有的点的横坐标伸长到原来的2倍(纵坐标不变),得函数y=2sin(x+4π)的图像;再向左平行移动子个单位长度后便得y=2sin(x+4π+4π)=2 cosx 的图像.故选C .3.(典型例题Ⅰ)设函数f(x)=sin(2x+ϕ)(-π<ϕ<0),y=f(x)图像的一条对称轴是直线x=8π. (1)求ϕ;(2)求函数y=f(x)的单调增区间;(3)画出函数y=f(x)在区间[0,π]上的图像. [考场错解] (1)∵x=8π是函数y=f(x)的图像的对称轴,∴sin(2³8π+ϕ)=±1,∴ 4π+ϕ =k π+2πk Z .∴ ϕ=k π+4π ,∵-π<ϕ<0,∴ ϕ=-43π. (2)由(1)知ϕ =43π,因此y=sin(2³-43π). ∵最小正周期为T=42π=π.由题意得k π-2π≤2x-43π≤k π+2π,k ∈Z . 解得 k π+8π≤x ≤21k π85+π,k ∈Z . 所以函数y=sin(2x-π43)的单调查递增区间为.,8521,821Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ [专家把脉] 以上解答错在第(2)小题求函数单调区间时,令⎥⎦⎤⎢⎣⎡+-∈-2,2432πππππk k x 处,因若把432π-x 看成一个整体u ,则y=sinu 的周期为2π。
高中数学80道易错题高中数学80道易错题(正文):高中数学是一门非常重要的学科,它对于学生未来的学习和职业发展有着深远的影响。
然而,即使是对于数学功底非常扎实的学生而言,考试中也会出现不少易错题。
本文将列举高中数学中的80道易错题,并提供相关的解题方法和技巧,帮助学生更好地掌握数学知识,提高解题能力。
正文:1. 等差数列求和公式的推导2. 等比数列求和公式的推导3. 斐波那契数列的求和公式4. 等比数列的极限5. 等差数列的极限6. 等差数列的通项公式7. 如何求解等差数列的最大值和最小值8. 等比数列的通项公式9. 如何求解等比数列的极限10. 等比数列的最大值和最小值11. 数列的斐波那契数列和12. 如何求解斐波那契数列的极限13. 数列的前n项和公式14. 如何求解数列的前n项和15. 等差数列的和差公式16. 如何求解等差数列的和差公式17. 等比数列的和比公式18. 如何求解等比数列的和比公式19. 数列的极限20. 如何求解数列的极限21. 等差数列的通项公式和极限22. 如何求解等比数列的极限23. 等比数列的通项公式和极限24. 数列的极限应用25. 如何求解数列的无穷大极限26. 如何求解数列的无穷小极限27. 等差数列的无穷大极限28. 如何求解等比数列的无穷大极限29. 如何求解等比数列的无穷小极限30. 数列的泰勒级数31. 如何求解数列的泰勒级数32. 等差数列的泰勒级数33. 如何求解等比数列的泰勒级数34. 泰勒公式在数学中的应用35. 如何求解等比数列的泰勒级数36. 等比数列的泰勒公式37. 泰勒公式在数学中的应用38. 数列的极限和微积分39. 如何求解等差数列的极限40. 如何求解等比数列的极限41. 等比数列的极限应用42. 如何求解等差数列的极限43. 等差数列的微积分44. 如何求解等差数列的微积分45. 等比数列的微积分46. 如何求解等比数列的微积分47. 微积分在数学中的应用48. 如何求解等比数列的微积分49. 等比数列的积分50. 如何求解等比数列的积分51. 等差数列的积分52. 如何求解等差数列的积分53. 等比数列的积分54. 如何求解等比数列的积分55. 极限和微积分的应用56. 如何求解等差数列的极限57. 如何求解等比数列的极限58. 等比数列的泰勒级数和微积分59. 如何求解等比数列的泰勒级数60. 如何求解等比数列的泰勒公式61. 泰勒公式在数学中的应用62. 如何求解等比数列的泰勒公式63. 等比数列的极值和最值64. 如何求解等差数列的极限和极值65. 如何求解等比数列的极限和极值66. 等比数列的通项公式和极值67. 如何求解等比数列的通项公式和极值68. 极值问题在数学中的应用69. 如何求解等比数列的极值70. 等比数列的最值和微积分71. 如何求解等差数列的极限和最值72. 如何求解等比数列的极限和最值73. 极限和微积分的应用74. 如何求解等差数列的极限75. 如何求解等比数列的极限76. 等比数列的微分77. 如何求解等比数列的微分78. 等差数列的微分79. 如何求解等差数列的微分80. 微积分在数学中的应用拓展:1. 更多关于等差数列和等比数列的性质和应用,可以参考《数学分析基础教程》中的相关内容。
高中数学经典易错题会诊与试题预测(十五)考点15导数及其应用 ►导数的概念与运算 ►导数几何意义的运用 ►导数的应用 ►利用导数的几何意义 ►利用导数探讨函数的单调性 ►利用导数求函数的极值勤最值 经典易错题会诊 命题角度 1导数的概念与运算 1.(典型例题)设f 0(x)=sinx,f 1(x)=f’0(x),f 2(x)=f’1(x),…,f n+1(x)=f’n (x),n ∈N,则f 2005(x) ( ) A.sinx B.-sinx C.cosx D.-cosx [考场错解] 选A [专家把脉] 由f’1(x)=f’0(x)=(sinx)’=cosx,f2(x)=(cosx)’=-sinx,f3(x)=(-sinx)’=-cosx,f4(x)=(-cosx)’=sinx,…,f2005(x)=f’2004(x)=…=f0(x0=sinx 前面解答思路是正确的,但在归纳时发生了错误。
因f4(x)=f0(x)=f8(x0=…=f2004(x),所以f2005(x)=f1(x)=cosx. [对症下药] 选C 2.(典型例题)已知函数f(x)在x=1处的导数为3,f (x )的解析式可能为 ( )A .f (x )=(x-1)3+32(x-1)B .f(x)=2x+1C .f()=2(x-1)2D .f(x)-x+3 [考场错解] 选B ∵f(x)=2x+1,∴f ’(x)=(2x+1)’=2x+1|x=1=3.[专家把脉] 上面解答错误原因是导数公式不熟悉,认为(2x+1)’=2x+1.正确的是(2x+1)’=2,所以x=1时的导数是2,不是3。
[对症下药] 选A ∵f(x)=(x-1)3+3(x-1)f ’(x)=3(x-1)2+3,当 x=1时,f ’(1)=3 3.(典型例题) 已知f(3)=2f ’(3)=-2,则3)(32lim3--→x x f x x 的值为 ( )A .-4B .0C .8D .不存在 [考场错解] 选D ∵x →3,x-3→0 ∴3)(32lim3--→x x f x x 不存在。
[专家把脉] 限不存在是错误的,事实上,求0型的极限要通过将式子变形的可求的。
[对诊下药] 选C3)(32lim3--→x x f x x =326)]3()([3lim 3-+---→x xf x f x=32]3)3()(32[lim 3-=---→x f x f x .8)2(32)3('32]3)3()([lim 3=-⨯-=-=--→f x f x f x4.(05,全国卷)已知函数f(x)=e -x(cosx+sinx),将满足f ’(x)=0的所有正数x 从小到大排成数列;(2)记S n 是数列{x n f(x n )}的前项和。
求∞→n limnS S S n+++ 21[考场错解] ∵f ’(x)=e-x(cosx+sinx)’+(e-x)’(cosx+sinx)=e-x(-sinx+cosx)+e-x(cosx+sinx)=2e -xcosx令f ’(x)=0,x=n π+2π(n=1,2,3,…)从而x n =n π+2π。
f(x n )=e-( n π+2π)(-1)n²)()(1n n x f x f +=-e 2π-. ∴数列{f(x n )}是公比为q=-e -π的等比数列。
[专家把脉] 上面解答求导过程中出现了错误,即(e-x )’=e-x 是错误的,由复合函数的求导法则知(e-x )’=e -x (-x)’=-e -x才是正确的。
[对诊下药](1)证明:f ’(x)=(e-x)’(cos+sinx)+e -x (cosx+sinx)’=-e -x (cosx+sinx)+e -x (-sinx+cos)=-2e -xsinx. 令f ’(x)=0得-2e -xsinx=0,解出x=n π,(n 为整数,从而x n =n π(n=1,2,3,…),f(x n )=(-1)ne-n ππ-+-=e x f x f n n )()(1,所以数列|f(xn)|是公比q=-e -π的等比数列,且首项f(x 1)=-e -π(2)S n =x 1f(x 1)+x 2f(x 2)+…+x n f(x n )=nq(1+2q+…+nq n-1)aS n =πq(q+2q 2+…+nq n)=πq(q q n --11-nq n )从而S n =q q -1π(qq n --11-nq n)2232221)1()1()1(2)1(q q q q n q q q n S S S n nn -+----=++++πππ∵|q|=e -π<1 ∴∞→n lim q n =0,∴∞→n lim 21)1()1(πππe e q q n Sn S S +--=+++专家会诊1.理解导数的概念时应注意导数定义的另一种形式:设函数f(x)在x=a 处可导,则)(')()(lima f ax a f x f n =--∞→ 的运用。
2.复合函数的求导,关键是搞清复合关系,求导应从外层到内层进行,注意不要遗漏3.求导数时,先化简再求导是运算的基本方法,一般地,分式函数求导,先看是否化为整式函数或较简单的分式函数;对数函数求导先化为和或差形式;多项式的积的求导,先展开再求导等等。
考场思维训练1 函数f(x)=x3+ax2+3x-9.已在f(x)在x=-3时取得极值,则a= ( ) A.2 B.3 C.4 D.5答案: D 解析:∵f ′(x)=3x 2+2ax+3.令f ′(x)=0.即3x 2+2ax+3=0有一根x=-3, ∴3(-3)2-6a+3=0,得a=5. 2 函数f(x)=x3-8x,则函数f(x)在点x=2处的变化率是 ( ) A .2 B .-2 C .4 D .-4答案: C 解析:∵f ′(x)=3x 2-8. ∴x=2时的变化率是f ′(2)=3³22-8=4. 3 满足f(x)=f’(x)的函数是 ( ) A .f(x)=1-x B .f(x)=x C .f(x)=0 D .f(x)=1答案: C 解析:f(x)=0,0′=0, ∴f(x)=f ′(x). 4 已知f(x)=ln|2x|, 则f’(x)= ( ) A.x 1 B. x21 C.||1x D. |2|1x 答案: A 解析:当x>0时,f(x)=ln(2x), ∴f ′(x)=c ∴f ′(x)= xx 1)2(21=-∙-. 5已知函数f(x)=ln(x-2)-)0(22≠a a ax 为常数且 (1)求导数f’(x) 答案: f ′(x)=).2(21>∙--x axx (2)解不等式:f’(x)>0 答案:令f ′(x)=).2(021>>--x axx 即.440202022a a x x a x x x +=∆=-+⎪⎩⎪⎨⎧>-+>的(i )当a ≤-1时,x 2+2x-a>恒成立,∴x>2.(ii)当a>-1时,02,02>-+>∆a x x 的解集为{x|x>1111-+-<-+a x a 或} ∴当-1<a ≤8时,.2,211>∴≤-+x a 当a>8时,11-+a >2, ∴x>11-+a .综合得,当a ≤8时,f ′(x)>0的解集为(2,+∞). 当a>8时,f ′(x)>0的解集为(11-+a ,+∞).命题角度 2导数几何意义的运用1.(典型例题)曲线y=x 3在点(1,1)的切线与x 轴、直线x=2所围成的三角形面积为_________.[考场错解] 填2 由曲线y=x 3在点(1,1)的切线斜率为1,∴切线方程为y-1==x-1,y=x.所以三条直线y=x,x=0,x=2所围成的三角形面积为S=21×2×2=2。
[专家把脉] 根据导数的几何意义,曲线在某点处的切线斜率等于函数在这点处的导数,上面的解答显然是不知道这点,无故得出切线的斜率为1显然是错误的。
[对症下药] 填38。
∵f ’(x)=3x 2当x=1时f ’(1)=3.由导数的几何意义知,曲线在点(1,1)处的斜率为3。
即切线方程为y-1=3(x-1) 得y=3x-2.联立⎩⎨⎧=-=223x x y 得交点(2,4)。
又y=3x-2与x 轴交于(32,0)。
∴三条直线所围成的面积为S=21×4×(2-32)=38。
2.(典型例题)设t ≠0,点P (t,0)是函数f(x)=x 3+ax 与g(x)=bx 3+c 的图像的一个公共点,两函数的图像在P 点处有相同的切线。
(1)用t 表示a 、b 、c ;(2)若函数y=f(x)-g(x)在(-1,3)上单调递减,求t 的取值范围。
[考场错解] (1)∵函数f(x)=x 3+ax 与g(x)=bx 2+c 的图像的一个公共点P(t,0).∴f(t)=g(t)⇒t 3+at=bt 2+c.①又两函数的图像在点P 处有相同的切线,∴f ’(t)=g ’(t) ⇒3t 3+a=2bt. ②由①得b=t,代入②得a=-t 2.∴c=-t 3.[专家把脉] 上面解答中得b=t 理由不充足,事实上只由①、②两式是不可用t 表示a 、b 、c ,其实错解在使用两函数有公共点P ,只是利用f(t)=g(t)是不准确的,准确的结论应是f(t)=0,即t 3+at=0,因为t ≠0,所以a=-t 2.g(t)=0即bt 2+c=0,所以c=ab又因为f(x)、g(x)在(t,0)处有相同的切线,所以f ’(t)=g;(t).即3t 2+a=2bt, ∵a=-t 2, ∴b=t.因此c=ab=-t 2²t=-t 3.故a=-t 2,b=t,c=-t 3(2)解法1 y=f(x)-g(x)=x 3-t 2x-tx 2+t 3y ’=3x 2-2tx-t 2=(3x+t)(x-t).当y ’=(3x+t)(x-t)<0时,函数y=f(d)-g(x)单调递减。
由y ’<0,若t<0,则t<x<-3t,若t>0,则-3t <x<t.则题意,函数y=f(x)-g(x)在(-1,3)上单调递减,则(-1,3)⊂(-3t ,t )或(-1,3)⊂(t ,-3t ) 所以t ≥3或-3t ≥3。
即t ≤-9或t ≥3。
又当-9<t<3时,函数y=f(x0-g(x)在(-1,3)上单调递增,所以t 的取值范围(-∞,-9)∪(3,+∞)解法2 y=f(x)-g(x)=x 3-t 2x-tx 2+t 3,y ’=3x 2-3tx-t 2=(3x+t)(x-t).∵函数y=f(x)-g(x)在(-1,3)上单调递减,且y ’=(3x+t)(x-t)≤0在(-1,3)上恒成立, ∴⎩⎨⎧≤-+≤--+-⎩⎨⎧≤≤=-=0)3)(9(0)1)(3(0|'0|'31t t t t y y x x 即解得 t ≤-9或t ≥3.3.(典型例题)已知函数f(x)=ax 3+bx 2-3x 在x=±1处有极值。