Synthesis, Crystal Structure and Inhibition of the K562 Cell Proliferation of N'-Tertbutylamino
- 格式:pdf
- 大小:172.25 KB
- 文档页数:5
第49卷第12期人工晶体学报Vol.49No.12 2020年12月JOURNAL OF SYNTHETIC CRYSTALS December,2020 InSei单晶的制备及其结构与性能研究周玄1,2,程国峰2,何代华1(1.上海理工大学材料科学与工程学院,上海200093;2.中国科学院上海硅酸盐研究所,上海200050)摘要:利用化学气相传输法(CVT)制备了InSeI单晶。
该晶体为黄色的针状物,晶体较脆。
在室温下进行X射线衍射分析发现,其属于四方晶系,晶胞参数为a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,空间群为他/a。
紫外可见光吸收光谱、光致发光光谱等结果显示该晶体的禁带宽度是2.48eV,在一定波段光的激发下,InSeI单晶在600nm左右有较宽的发射峰,表明该晶体的发光方式为缺陷态发光。
介电温谱表明InSeI单晶在440K时其四方相的结构发生了相变。
关键词:InSeI;金属基硫卤化合物;化学气相传输法;光致发光;禁带宽度;介电性能中图分类号:O78文献标识码:A文章编号:1000-985X(2020)12-225244 Synthesis,Structure and Properties of InSei Single CrystalsZHOU Xuan1,2,CHENG Guofeng2,HE Daihua1(1.School of Materials Science and Engineering,Lniversity of Shanghai for Science and Technology,Shanghai200093,China;2.Shanghai Institute of Ceramics,Chinese Academy of Sciences,Shanghai200050,China)Abstract:InSeI single crystals were synthesized by the chemical vapor transport(CVT)method.The crystal is yellow needleshaped and brittle.X-ray diffraction results at room temperature show the tetragonal system of InSeI,with lattice parameters of a=b=1.8643(5)nm,c=1.0120(3)nm,V=3.5172nm3,and space group is/a.The ultraviolet-visible absorption spectrum,photoluminescence spectrum results show that InSeI has a2.48eV band gap,under the excitation of a certain band of light,InSeI single crystal has a wide emission peak at about600nm,which indicates that the luminescence mode of the crystal is defect state luminescence.The dielectric temperature spectrum indicates that a phase transition happened in the tetragonal structure of InSeI crystals at440K.Key words:InSeI;metal based thiohalide;chemical vapor transport method;photoluminescence;band gap;dielectric property0引言近年来,金属基硫卤化合物MQX[1](M=Ga,In,Sb,Bi;Q=S,Se,Te;X=Cl,Br,I)由于其独特的光电性质如铁电性[2-3]、热电性[4]、光电导性[5]和非线性光学性能[6]等引起了科学界的浓厚兴趣。
Isolation and Crystal Structure of 2—Bromoaldisin 徐效华; 陈晓; 等【期刊名称】《《结构化学》》【年(卷),期】2001(020)003【摘要】The crystal structure of the title compound (C8H7BrN2O2,Mr=243.07) was isolated from the marine sponge Phacellia fusca Schmidt collected from the South China Sea. Its crystal structure was determined by single-crystal X-ray diffraction. The crystal is orthorhombic with space group Pbca, a=12.9952(8), b=7.4479(5), c=18.598(1) ?, V=1800.1(2) ?3, Z=8, Dc=1.794g/cm3, (=0.71073 ?, ( (MoK()=4.533mm-1, F(000)=960. The structrue was refined to R=0.0349, wR(F2)=0.0925 for 1589 reflections with I > 2((I). X-ray diffraction analysis reveals that the title compound has one five-membered pyrrole ring and one seven-membered azepin ring. There are two intermolecular hydrogen bonds between two molecules.【总页数】3页(P173-175)【作者】徐效华; 陈晓; 等【作者单位】InstituteandStateKeyLaboratoryofElemento-OrganicChemistry NankaiUniversity Tianjin300071 China【正文语种】中文【中图分类】O626【相关文献】1.Isolation, Crystal Structure and Antitussive Activity of 9S,9aS-neotuberostemonine [J], WU Yi;YE Qing-Mei;LIU Jing;XU Wei;ZHU Zi-Rong;JIANG Ren-Wang2.Isolation, Crystal Structure and Na+/K+-ATPase Inhibitory Activity of 1β-Hydroxydigitoxigenin [J], XU Yun-Hui;XU Jian;JIANG Xue-Yang;CHEN Zhi-Hua;XIE Zi-Jian;JIANG Ren-Wang;FENG Feng3.Isolation and Crystal Structure of Ent-kaurane Diterpenes from Rubus corchorifolius L.f. [J], CHEN Xue-Xiang;HUANG Jian-Xi;OU Yang-Wen;LIU Xiao-Juan;ZHOU Li-Ping;CAO Yong4.Isolation, Crystal Structure,and Anti-inflammatory Activity of Sakuranetin from Populus tomentosa [J], LIU Hai-Ping;CHAO Zhi-Mao;TAN Zhi-Gao;WU Xiao-Yi;WANG Chun;SUN Wen5.Isolation and Crystal Structure of 2-Bromoaldisin [J], 徐效化; 陈晓; 廖仁安; 谢庆兰因版权原因,仅展示原文概要,查看原文内容请购买。
ISSN AbbreviatedJournal TitleFull Title Category Subcategory Country1619-45004OR-Q J OPER RES4OR-A Quarterly Journal 管理科学运筹学与管理科GERMANY0891-0162AAOHN J AAOHN Journal PUBLIC, ENVIRON NURSING UNITED STATES 0149-1423AAPG BULL AAPG BULLETIN工程技术地球科学综合UNITED STATES 1550-7416AAPS J AAPS Journal医学药学UNITED STATES 1530-9932AAPS PHARMSCITECH AAPS PHARMSCITECH医学药学UNITED STATES 1532-8813AATCC REV AATCC REVIEW工程技术材料科学:纺织UNITED STATES 0942-8925ABDOM IMAGING ABDOMINAL IMAGING医学核医学UNITED STATES 0025-5858ABH MATH SEM HAMBURG A BHANDLUNGEN AUS DEM MAT数学数学GERMANY1085-3375ABSTR APPL ANAL Abstract and Applied Ana数学数学UNITED STATES 1069-6563ACAD EMERG MED ACADEMIC EMERGENCY MEDIC医学急救医学UNITED STATES 1040-2446ACAD MED ACADEMIC MEDICINE医学卫生保健UNITED STATES 1876-2859ACAD PEDIATR Academic Pediatrics PEDIATRICS UNITED STATES 1076-6332ACAD RADIOL ACADEMIC RADIOLOGY医学核医学UNITED STATES 0898-9621ACCOUNT RES Accountability in resear MEDICAL ETHICS UNITED STATES 0001-4842ACCOUNTS CHEM RES ACCOUNTS OF CHEMICAL RES化学化学综合UNITED STATES 0949-1775ACCREDIT QUAL ASSURACCREDITATION AND QUALIT工程技术分析化学GERMANY0889-325X ACI MATER J ACI MATERIALS JOURNAL工程技术材料科学:综合UNITED STATES 0889-3241ACI STRUCT J ACI STRUCTURAL JOURNAL工程技术材料科学:综合UNITED STATES 0360-0300ACM COMPUT SURV ACM COMPUTING SURVEYS工程技术计算机:理论方UNITED STATES 1550-4832ACM J EMERG TECH COM A CM Journal on Emerging 工程技术工程:电子与电UNITED STATES 0146-4833ACM SIGCOMM COMP COM A CM SIGCOMM Computer Com COMPUTER SCIENCE, INFORMATI UNITED STATES 0362-1340ACM SIGPLAN NOTICESACM SIGPLAN NOTICES工程技术计算机:软件工UNITED STATES 1549-6325ACM T ALGORITHMS ACM Transactions on Algo COMPUTER SCIENC MATHEMATICS, A UNITED STATES 1544-3558ACM T APPL PERCEPT ACM Transactions on Appl工程技术计算机:软件工UNITED STATES 1544-3566ACM T ARCHIT CODE OP A CM Transactions on Arch工程技术计算机:理论方UNITED STATES 1556-4665ACM T AUTON ADAP SYS A CM Transactions on Auto工程技术计算机:理论方UNITED STATES 1529-3785ACM T COMPUT LOG ACM Transactions on Comp工程技术计算机:理论方UNITED STATES 0734-2071ACM T COMPUT SYST ACM TRANSACTIONS ON COMP工程技术计算机:理论方UNITED STATES 1073-0516ACM T COMPUT-HUM INT A CM Transactions on Comp工程技术计算机:控制论UNITED STATES 0362-5915ACM T DATABASE SYSTACM TRANSACTIONS ON DATA工程技术计算机:软件工UNITED STATES 1084-4309ACM T DES AUTOMAT EL A CM TRANSACTIONS ON DESI工程技术计算机:软件工UNITED STATES 1539-9087ACM T EMBED COMPUT S A CM Transactions on Embe工程技术计算机:软件工UNITED STATES 0730-0301ACM T GRAPHIC ACM TRANSACTIONS ON GRAP工程技术计算机:软件工UNITED STATES 1046-8188ACM T INFORM SYST ACM TRANSACTIONS ON INFO工程技术计算机:信息系UNITED STATES 1094-9224ACM T INFORM SYST SE A CM Transactions on Info工程技术计算机:信息系UNITED STATES 2157-6904ACM T INTEL SYST TEC A CM Transactions on Inte COMPUTER SCIENC COMPUTER SCIEN UNITED STATES 1533-5399ACM T INTERNET TECHN A CM Transactions on Inte工程技术计算机:软件工UNITED STATES 1556-4681ACM T KNOWL DISCOV D A CM Transactions on Know COMPUTER SCIENC COMPUTER SCIEN UNITED STATES 0098-3500ACM T MATH SOFTWAREACM TRANSACTIONS ON MATH工程技术计算机:软件工UNITED STATES 1049-3301ACM T MODEL COMPUT S A CM Transactions on Mode工程技术计算机:跨学科UNITED STATES 1551-6857ACM T MULTIM COMPUTACM Transactions on Mult工程技术计算机:理论方UNITED STATES 0164-0925ACM T PROGR LANG SYS A CM TRANSACTIONS ON PROG工程技术计算机:软件工UNITED STATES 1936-7406ACM T RECONFIG TECHN A CM transactions on reco COMPUTER SCIENCE, HARDWARE UNITED STATES 1550-4859ACM T SENSOR NETWORK A CM Transactions on Sens工程技术电信学UNITED STATES 1049-331X ACM T SOFTW ENG METH A CM TRANSACTIONS ON SOFT工程技术计算机:软件工UNITED STATES1553-3077ACM T STORAGE ACM transactions on stor COMPUTER SCIENC COMPUTER SCIEN UNITED STATES 1559-1131ACM T WEB ACM Transactions on the 工程技术计算机:软件工UNITED STATES 0814-6039ACOUST AUST Acoustics Australia物理声学AUSTRALIA1063-7710ACOUST PHYS+ACOUSTICAL PHYSICS物理声学RUSSIA1944-8244ACS APPL MATER INTER A CS Applied Materials & 工程技术材料科学:综合UNITED STATES 2155-5435ACS CATAL ACS catalysis CHEMISTRY, PHYSICAL UNITED STATES 1554-8929ACS CHEM BIOL ACS Chemical Biology生物生化与分子生物UNITED STATES 1948-7193ACS CHEM NEUROSCI ACS Chemical Neuroscienc BIOCHEMISTRY & CHEMISTRY, MED UNITED STATES 2156-8952ACS COMB SCI ACS Combinatorial Scienc CHEMISTRY, APPL CHEMISTRY, MED UNITED STATES 2161-1653ACS MACRO LETT ACS Macro Letters化学UNITED STATES 1948-5875ACS MED CHEM LETT ACS Medicinal Chemistry CHEMISTRY, MEDICINAL UNITED STATES 1936-0851ACS NANO ACS Nano工程技术材料科学:综合UNITED STATES 2168-0485ACS SUSTAIN CHEM ENG A CS Sustainable Chemistr CHEMISTRY, MULT ENGINEERING, C UNITED STATES 2161-5063ACS SYNTH BIOL ACS Synthetic Biology生物UNITED STATES 1091-5397ACSMS HEALTH FIT J ACSMS HEALTH & FITNESS J医学运动科学UNITED STATES 1610-1928ACTA ACUST UNITED AC A CTA ACUSTICA UNITED WIT物理声学GERMANY0001-5113ACTA ADRIAT ACTA ADRIATICA生物海洋与淡水生物CROATIA0906-4702ACTA AGR SCAND A-ANACTA AGRICULTURAE SCANDI农林科学奶制品与动物科ENGLAND0906-4710ACTA AGR SCAND B-S P A CTA AGRICULTURAE SCANDI农林科学农艺学NORWAY0139-3006ACTA ALIMENT HUNG ACTA ALIMENTARIA农林科学食品科技HUNGARY0001-5172ACTA ANAESTH SCAND ACTA ANAESTHESIOLOGICA S医学麻醉学DENMARK0167-8019ACTA APPL MATH ACTA APPLICANDAE MATHEMA数学应用数学NETHERLANDS 0065-1036ACTA ARITH ACTA ARITHMETICA数学数学POLAND0094-5765ACTA ASTRONAUT ACTA ASTRONAUTICA工程技术工程:宇航UNITED STATES 0001-5237ACTA ASTRONOM ACTA ASTRONOMICA地学天文天文与天体物理POLAND1672-9145ACTA BIOCH BIOPH SIN A CTA BIOCHIMICA ET BIOPH生物生化与分子生物PEOPLES R CHINA 0001-527X ACTA BIOCHIM POL ACTA BIOCHIMICA POLONICA生物生化与分子生物POLAND1509-409X ACTA BIOENG BIOMECHActa of Bioengineering a BIOPHYSICS ENGINEERING, B POLAND1726-569X ACTA BIOETH Acta Bioethica医学卫生政策Chile0001-5296ACTA BIOL CRACOV BOT A CTA BIOLOGICA CRACOVIEN生物植物科学POLAND0236-5383ACTA BIOL HUNG ACTA BIOLOGICA HUNGARICA生物生物学HUNGARY1742-7061ACTA BIOMATER Acta Biomaterialia工程技术材料科学:生物ENGLAND0001-5342ACTA BIOTHEOR ACTA BIOTHEORETICA生物生物学NETHERLANDS 0102-3306ACTA BOT BRAS Acta Botanica Brasilica P LANT SCIENCES BRAZIL0365-0588ACTA BOT CROAT Acta Botanica CroaticaPLANT SCIENCES CROATIA1253-8078ACTA BOT GALLICA ACTA BOTANICA GALLICA生物植物科学FRANCE0187-7151ACTA BOT MEX Acta Botanica Mexicana生物植物科学MEXICO0001-5385ACTA CARDIOL ACTA CARDIOLOGICA医学心血管系统BELGIUM1011-6842ACTA CARDIOL SIN Acta Cardiologica Sinica医学心血管系统TAIWAN0583-6050ACTA CARSOLOGICA ACTA CARSOLOGICA地学地球科学综合SLOVENIA0567-7351ACTA CHIM SINICA ACTA CHIMICA SINICA化学化学综合PEOPLES R CHINA 1318-0207ACTA CHIM SLOV ACTA CHIMICA SLOVENICA化学化学综合SLOVENIA0001-5458ACTA CHIR BELG ACTA CHIRURGICA BELGICA医学外科BELGIUM0001-5415ACTA CHIR ORTHOP TRACTA CHIRURGIAE ORTHOPAE ORTHOPEDICS CZECH REPUBLIC 1508-1109ACTA CHIROPTEROL ACTA CHIROPTEROLOGICA生物动物学POLAND1233-2356ACTA CHROMATOGR ACTA CHROMATOGRAPHICA化学分析化学POLAND0102-8650ACTA CIR BRAS Acta Cirurgica Brasileir医学外科BRAZIL0353-9466ACTA CLIN CROAT Acta Clinica Croatica医学医学:内科CROATIA0108-7673ACTA CRYSTALLOGR A ACTA CRYSTALLOGRAPHICA S化学晶体学DENMARK0108-7681ACTA CRYSTALLOGR B ACTA CRYSTALLOGRAPHICA S化学晶体学DENMARK0108-2701ACTA CRYSTALLOGR C ACTA CRYSTALLOGRAPHICA S化学晶体学DENMARK0907-4449ACTA CRYSTALLOGR D ACTA CRYSTALLOGRAPHICA S生物晶体学DENMARK1744-3091ACTA CRYSTALLOGR F Acta Crystallographica S生物晶体学DENMARK0001-5547ACTA CYTOL ACTA CYTOLOGICA生物病理学UNITED STATES 1330-027X ACTA DERMATOVENER CR A cta Dermatovenerologica医学皮肤病学CROATIA0001-5555ACTA DERM-VENEREOL ACTA DERMATO-VENEREOLOGI医学皮肤病学NORWAY0940-5429ACTA DIABETOL ACTA DIABETOLOGICA医学内分泌学与代谢ITALY1841-0987ACTA ENDOCRINOL-BUCH A cta Endocrinologica-Buc医学内分泌学与代谢ROMANIA0374-1036ACTA ENT MUS NAT PRA A cta Entomologica Musei ENTOMOLOGY CZECH REPUBLIC 0873-9749ACTA ETHOL ACTA ETHOLOGICA生物动物学GERMANY2213-5812ACTA GEOD GEOPHYS Acta Geodaetica et Geoph GEOCHEMISTRY & GEOPHYSICS HUNGARY1214-9705ACTA GEODYN GEOMATER A cta Geodynamica et Geom地学地球化学与地球CZECH REPUBLIC 1581-6613ACTA GEOGR SLOV Acta Geographica Sloveni地学地质学SLOVENIA0001-5709ACTA GEOL POL ACTA GEOLOGICA POLONICA地学地质学POLAND1000-9515ACTA GEOL SIN-ENGL ACTA GEOLOGICA SINICA-EN地学地球科学综合PEOPLES R CHINA 1895-6572ACTA GEOPHYS Acta Geophysica地学地球化学与地球POLAND1861-1125ACTA GEOTECH Acta Geotechnica ENGINEERING, GEOLOGICAL GERMANY1854-0171ACTA GEOTECH SLOV Acta Geotechnica Sloveni地学工程:地质SLOVENIA0001-5792ACTA HAEMATOL-BASELACTA HAEMATOLOGICA医学血液学SWITZERLAND 1827-9635ACTA HERPETOL Acta Herpetologica ZOOLOGY ITALY0065-1281ACTA HISTOCHEM ACTA HISTOCHEMICA生物细胞生物学GERMANY0044-5991ACTA HISTOCHEM CYTOC A CTA HISTOCHEMICA ET CYT生物细胞生物学JAPAN0137-1592ACTA ICHTHYOL PISCAT A cta Ichthyologica et Pi FISHERIES ZOOLOGY POLAND0001-5903ACTA INFORM ACTA INFORMATICA工程技术计算机:信息系GERMANY1359-6454ACTA MATER ACTA MATERIALIA工程技术材料科学:综合UNITED STATES 0168-9673ACTA MATH APPL SIN-E A cta Mathematicae Applic数学应用数学PEOPLES R CHINA 0236-5294ACTA MATH HUNG ACTA MATHEMATICA HUNGARI数学数学HUNGARY0252-9602ACTA MATH SCI ACTA MATHEMATICA SCIENTI数学数学PEOPLES R CHINA 1439-8516ACTA MATH SIN ACTA MATHEMATICA SINICA-数学数学PEOPLES R CHINA 0001-5962ACTA MATH-DJURSHOLMACTA MATHEMATICA数学数学SWEDEN0001-5970ACTA MECH ACTA MECHANICA物理力学AUSTRIA0567-7718ACTA MECH SINICA-PRC A CTA MECHANICA SINICA物理工程:机械PEOPLES R CHINA 0894-9166ACTA MECH SOLIDA SIN A CTA MECHANICA SOLIDA SI物理材料科学:综合PEOPLES R CHINA 0386-300X ACTA MED OKAYAMA ACTA MEDICA OKAYAMA医学医学:研究与实JAPAN1646-0758ACTA MEDICA PORT Acta médica portuguesa MEDICINE, GENERAL & INTERNA PORTUGAL0412-1961ACTA METALL SIN ACTA METALLURGICA SINICA工程技术冶金工程PEOPLES R CHINA 1006-7191ACTA METALL SIN-ENGL A cta Metallurgica Sinica METALLURGY & METALLURGICAL PEOPLES R CHINA 0894-0525ACTA METEOROL SIN Acta Meteorologica Sinic地学气象与大气科学PEOPLES R CHINA 1217-8950ACTA MICROBIOL IMM H A cta Microbiologica et I IMMUNOLOGY MICROBIOLOGY HUNGARY0798-4545ACTA MICROSC MICROSCOPY VENEZUELA1335-1788ACTA MONTAN SLOVACAActa Montanistica Slovac地学地球科学综合SLOVAKIA2075-8251ACTA NATURAE Acta Naturae农林科学林学SOUTH AFRICA 0065-1400ACTA NEUROBIOL EXP ACTA NEUROBIOLOGIAE EXPE医学神经科学POLAND0001-6268ACTA NEUROCHIR ACTA NEUROCHIRURGICA医学临床神经学AUSTRIA0300-9009ACTA NEUROL BELG ACTA NEUROLOGICA BELGICA医学临床神经学BELGIUM0001-6314ACTA NEUROL SCAND ACTA NEUROLOGICA SCANDIN医学临床神经学DENMARK0001-6322ACTA NEUROPATHOL ACTA NEUROPATHOLOGICA医学病理学GERMANY1601-5215ACTA NEUROPSYCHIATRACTA NEUROPSYCHIATRICANEUROSCIENCESPSYCHIATRY DENMARK0001-6349ACTA OBSTET GYN SCAN A CTA OBSTETRICIA ET GYNE医学妇产科学DENMARK0253-505X ACTA OCEANOL SIN ACTA OCEANOLOGICA SINICA地学海洋学PEOPLES R CHINA 0001-6357ACTA ODONTOL SCAND ACTA ODONTOLOGICA SCANDI医学牙科与口腔外科NORWAY1146-609X ACTA OECOL ACTA OECOLOGICA-INTERNAT环境科学生态学FRANCE0284-186X ACTA ONCOL ACTA ONCOLOGICA医学肿瘤学NORWAY1755-375X ACTA OPHTHALMOL ACTA OPHTHALMOLOGICA医学眼科学DENMARK0001-6454ACTA ORNITHOL ACTA ORNITHOLOGICA生物鸟类学POLAND1745-3674ACTA ORTHOP Acta Orthopaedica医学整形外科ENGLAND0001-6462ACTA ORTHOP BELG Acta Orthopaedica Belgic医学整形外科BELGIUM1017-995X ACTA ORTHOP TRAUMATO A cta Orthopaedica et Tra ORTHOPEDICS TURKEY1413-7852ACTA ORTOP BRAS Acta ortopedica brasilei Orthopedics Brazil0001-6489ACTA OTO-LARYNGOL ACTA OTO-LARYNGOLOGICA医学耳鼻喉科学NORWAY0392-100X ACTA OTORHINOLARYNGO A cta Otorhinolaryngologi OTORHINOLARYNGOLOGY ITALY0803-5253ACTA PAEDIATR ACTA PAEDIATRICA医学小儿科ENGLAND0567-7920ACTA PALAEONTOL POLACTA PALAEONTOLOGICA POL地学古生物学POLAND1230-2821ACTA PARASITOL ACTA PARASITOLOGICA医学寄生虫学POLAND0103-2100ACTA PAUL ENFERM Acta Paulista de Enferma NURSING BRAZIL1000-0569ACTA PETROL SIN ACTA PETROLOGICA SINICA G EOLOGY PEOPLES R CHINA 1330-0075ACTA PHARMACEUT Acta Pharmaceutica PHARMACOLOGY & PHARMACY CROATIA1671-4083ACTA PHARMACOL SIN ACTA PHARMACOLOGICA SINI医学化学综合PEOPLES R CHINA 0587-4246ACTA PHYS POL A ACTA PHYSICA POLONICA A物理物理:综合POLAND0587-4254ACTA PHYS POL B ACTA PHYSICA POLONICA B物理物理:综合POLAND1000-3290ACTA PHYS SIN-CH EDACTA PHYSICA SINICA物理物理:综合PEOPLES R CHINA 0323-0465ACTA PHYS SLOVACA ACTA PHYSICA SLOVACA物理物理:综合SLOVAKIA1000-6818ACTA PHYS-CHIM SIN ACTA PHYSICO-CHIMICA SIN化学物理化学PEOPLES R CHINA 1748-1708ACTA PHYSIOL Acta Physiologica医学生理学ENGLAND0231-424X ACTA PHYSIOL HUNG ACTA PHYSIOLOGICA HUNGAR医学生理学HUNGARY0137-5881ACTA PHYSIOL PLANT ACTA PHYSIOLOGIAE PLANTA生物植物科学GERMANY0001-6837ACTA POL PHARM ACTA POLONIAE PHARMACEUT医学药学POLAND1000-3304ACTA POLYM SIN ACTA POLYMERICA SINICA化学高分子科学PEOPLES R CHINA 1785-8860ACTA POLYTECH HUNG ACTA POLYTECHNICA HUNGAR ENGINEERING, MULTIDISCIPLIN HUNGARY0065-1583ACTA PROTOZOOL ACTA PROTOZOOLOGICA生物微生物学POLAND0001-690X ACTA PSYCHIAT SCANDACTA PSYCHIATRICA SCANDI医学精神病学ENGLAND0284-1851ACTA RADIOL ACTA RADIOLOGICA医学核医学SWEDEN0303-464X ACTA REUMATOL PORT Acta Reumatologica Portu医学风湿病学PORTUGAL1644-0692ACTA SCI POL-HORTORU A cta Scientiarum Polonor农林科学园艺POLAND1678-0345ACTA SCI VET Acta Scientiae Veterinar VETERINARY SCIENCES BRAZIL1807-8621ACTA SCI-AGRON Acta Scientiarum. Agrono AGRONOMY BRAZIL1806-2563ACTA SCI-TECHNOL ACTA SCIENTIARUM-TECHNOL综合性期刊综合性期刊BRAZIL0001-6977ACTA SOC BOT POL ACTA SOCIETATIS BOTANICO生物植物科学POLAND0001-7051ACTA THERIOL ACTA THERIOLOGICA生物动物学POLAND0001-706X ACTA TROP ACTA TROPICA医学寄生虫学NETHERLANDS 0001-7213ACTA VET BRNO ACTA VETERINARIA BRNO农林科学兽医学CZECH REPUBLIC 0236-6290ACTA VET HUNG ACTA VETERINARIA HUNGARI农林科学兽医学HUNGARY0044-605X ACTA VET SCAND ACTA VETERINARIA SCANDIN农林科学兽医学DENMARK0567-8315ACTA VET-BEOGRAD ACTA VETERINARIA-BEOGRAD农林科学兽医学SERBIA0001-723X ACTA VIROL ACTA VIROLOGICA医学病毒学SLOVAKIA1217-8837ACTA ZOOL ACAD SCI H A CTA ZOOLOGICA ACADEMIAE生物动物学HUNGARY0324-0770ACTA ZOOL BULGAR ACTA ZOOLOGICA BULGARICA ZOOLOGY BULGARIA0001-7272ACTA ZOOL-STOCKHOLMACTA ZOOLOGICA生物动物学ENGLAND1139-9287ACTAS ESP PSIQUIATRI A CTAS ESPANOLAS DE PSIQU医学精神病学SPAIN0210-4806ACTAS UROL ESP Actas Urologicas Espanol UROLOGY & NEPHROLOGY SPAIN0964-5284ACUPUNCT MED Acupuncture in Medicine I NTEGRATIVE & COMPLEMENTARY ENGLAND0360-1293ACUPUNCTURE ELECTROACUPUNCTURE & ELECTRO-TH医学全科医学与补充UNITED STATES 1570-8705AD HOC NETW Ad Hoc Networks工程技术电信学NETHERLANDS 1551-9899AD HOC SENS WIREL NE A d Hoc & Sensor Wireless工程技术电信学UNITED STATES 1280-8571ADANSONIA ADANSONIA生物植物科学FRANCE1059-7123ADAPT BEHAV ADAPTIVE BEHAVIOR工程技术计算机:人工智ENGLAND0736-5829ADAPT PHYS ACT Q ADAPTED PHYSICAL ACTIVIT医学康复医学UNITED STATES 0306-4603ADDICT BEHAV ADDICTIVE BEHAVIORS医学药物滥用ENGLAND1369-1600ADDICT BIOL ADDICTION BIOLOGY BIOCHEMISTRY & SUBSTANCE ABUS ENGLAND0965-2140ADDICTION ADDICTION医学精神病学ENGLAND0214-4840ADICCIONES Adicciones SUBSTANCE ABUSE SPAIN0263-6174ADSORPT SCI TECHNOLADSORPTION SCIENCE & TEC工程技术工程:化工ENGLAND0929-5607ADSORPTION ADSORPTION-JOURNAL OF TH工程技术工程:化工NETHERLANDS 0065-2113ADV AGRON ADVANCES IN AGRONOMY农林科学农艺学UNITED STATES 0301-5556ADV ANAT EMBRYOL CEL A DVANCES IN ANATOMY EMBR生物发育生物学UNITED STATES 1072-4109ADV ANAT PATHOL ADVANCES IN ANATOMIC PAT医学病理学UNITED STATES 1743-6753ADV APPL CERAM Advances in Applied Cera工程技术材料科学:硅酸ENGLAND0188-7009ADV APPL CLIFFORD AL A dvances in Applied Clif数学物理:数学物理SWITZERLAND 0196-8858ADV APPL MATH ADVANCES IN APPLIED MATH数学应用数学UNITED STATES 2070-0733ADV APPL MATH MECH Advances in Applied Math MATHEMATICS, AP MECHANICS PEOPLES R CHINA 0065-2156ADV APPL MECH ADVANCES IN APPLIED MECH工程技术工程:机械UNITED STATES 0065-2164ADV APPL MICROBIOL ADVANCES IN APPLIED MICR生物生物工程与应用UNITED STATES 0001-8678ADV APPL PROBAB ADVANCES IN APPLIED PROB数学统计学与概率论ENGLAND1687-7969ADV ASTRON Advances in Astronomy ASTRONOMY & ASTROPHYSICS UNITED STATES 0256-1530ADV ATMOS SCI ADVANCES IN ATMOSPHERIC 地学气象与大气科学PEOPLES R CHINA 1049-250X ADV ATOM MOL OPT PHY A DVANCES IN ATOMIC MOLEC物理光学UNITED STATES 0724-6145ADV BIOCHEM ENG BIOT A DVANCES IN BIOCHEMICAL 工程技术生物工程与应用UNITED STATES 0065-2296ADV BOT RES Advances in Botanical Re生物植物科学UNITED STATES 1864-8258ADV CALC VAR Advances in Calculus of MATHEMATICS, AP MATHEMATICS GERMANY0065-230X ADV CANCER RES ADVANCES IN CANCER RESEA医学肿瘤学UNITED STATES 0065-2318ADV CARBOHYD CHEM BI A DVANCES IN CARBOHYDRATE生物生化与分子生物UNITED STATES 0360-0564ADV CATAL ADVANCES IN CATALYSIS化学物理化学UNITED STATES 0951-7197ADV CEM RES ADVANCES IN CEMENT RESEA工程技术材料科学:综合ENGLAND0065-2385ADV CHEM PHYS Advances in Chemical Phy PHYSICS, ATOMIC, MOLECULAR UNITED STATES 1548-5595ADV CHRONIC KIDNEY D A DVANCES IN CHRONIC KIDN医学泌尿学与肾脏学UNITED STATES 0065-2423ADV CLIN CHEM ADVANCES IN CLINICAL CHE医学医学实验技术UNITED STATES 1899-5276ADV CLIN EXP MED Advances in Clinical and MEDICINE, RESEARCH & EXPERI POLAND0001-8686ADV COLLOID INTERFAC A DVANCES IN COLLOID AND 化学物理化学NETHERLANDS 0219-5259ADV COMPLEX SYST ADVANCES IN COMPLEX SYST综合性期刊数学跨学科应用SINGAPORE0924-3046ADV COMPOS MATER ADVANCED COMPOSITE MATER工程技术材料科学:复合NETHERLANDS 0065-2458ADV COMPUT ADVANCES IN COMPUTERS工程技术计算机:软件工UNITED STATES 1019-7168ADV COMPUT MATH ADVANCES IN COMPUTATIONA数学应用数学NETHERLANDS 1687-8108ADV COND MATTER PHYS A dvances in Condensed Ma PHYSICS, CONDENSED MATTER UNITED STATES 1862-5347ADV DATA ANAL CLASSI A dvances in Data Analysi STATISTICS & PROBABILITY GERMANY1687-1847ADV DIFFER EQU-NY Advances in Difference E MATHEMATICS, AP MATHEMATICS UNITED STATES 1079-9389ADV DIFFERENTIAL EQU B ULLETIN OF SYMBOLIC LOG MATHEMATICS, AP MATHEMATICS UNITED STATES0169-409X ADV DRUG DELIVER REV A DVANCED DRUG DELIVERY R医学药学NETHERLANDS 0065-2504ADV ECOL RES ADVANCES IN ECOLOGICAL R环境科学生态学UNITED STATES 1582-7445ADV ELECTR COMPUT EN A dvances in Electrical a工程技术工程:电子与电ROMANIA1614-6832ADV ENERGY MATER Advanced Energy Material CHEMISTRY, PHYS ENERGY & FUELS GERMANY1474-0346ADV ENG INFORM ADVANCED ENGINEERING INF工程技术工程:综合ENGLAND1438-1656ADV ENG MATER ADVANCED ENGINEERING MAT工程技术材料科学:综合GERMANY0965-9978ADV ENG SOFTW ADVANCES IN ENGINEERING 工程技术计算机:跨学科ENGLAND1616-301X ADV FUNCT MATER ADVANCED FUNCTIONAL MATE工程技术材料科学:综合GERMANY0065-2660ADV GENET ADVANCES IN GENETICS生物遗传学UNITED STATES 1615-715X ADV GEOM ADVANCES IN GEOMETRY数学数学GERMANY0065-2687ADV GEOPHYS Advances in GeophysicsGEOSCIENCES, MULTIDISCIPLIN UNITED STATES 1382-4996ADV HEALTH SCI EDUCADVANCES IN HEALTH SCIEN医学卫生保健UNITED STATES 2192-2640ADV HEALTHC MATER Advanced healthcare mate工程技术生物材料Germany?0065-2725ADV HETEROCYCL CHEMADVANCES IN HETEROCYCLIC化学有机化学UNITED STATES 1687-7357ADV HIGH ENERGY PHYS A dvances in High Energy PHYSICS, PARTICLES & FIELDS UNITED STATES 1076-5670ADV IMAG ELECT PHYSAdvances in Imaging and 物理物理:应用UNITED STATES 0065-2776ADV IMMUNOL ADVANCES IN IMMUNOLOGY医学免疫学UNITED STATES 0898-8838ADV INORG CHEM ADVANCES IN INORGANIC CH化学无机化学与核化UNITED STATES 0065-2806ADV INSECT PHYSIOL ADVANCES IN INSECT PHYSI生物昆虫学UNITED STATES 0065-2881ADV MAR BIOL Advances in Marine Biolo MARINE & FRESHWATER BIOLOGY UNITED STATES 0935-9648ADV MATER ADVANCED MATERIALS工程技术材料科学:综合UNITED STATES 0882-7958ADV MATER PROCESS ADVANCED MATERIALS & PRO工程技术材料科学:综合UNITED STATES 1687-8434ADV MATER SCI ENG Advances in Materials Sc MATERIALS SCIENCE, MULTIDIS UNITED STATES 0001-8708ADV MATH ADVANCES IN MATHEMATICS数学数学UNITED STATES 1930-5346ADV MATH COMMUN Advances in Mathematics 工程技术计算机:理论方UNITED STATES 1687-9120ADV MATH PHYS Advances in Mathematical数学应用数学United States 1687-8132ADV MECH ENG Advances in Mechanical E工程技术机械工程United States 1896-1126ADV MED SCI-POLAND Advances in Medical Scie医学医学:研究与实POLAND1687-9309ADV METEOROL Advances in Meteorology地学天文气象与大气科学UNITED STATES 0065-2911ADV MICROB PHYSIOL ADVANCES IN MICROBIAL PH生物生化与分子生物UNITED STATES 1536-1365ADV NONLINEAR STUD ADVANCED NONLINEAR STUDI数学数学UNITED STATES 0161-9268ADV NURS SCI ADVANCES IN NURSING SCIE医学护理UNITED STATES 2161-8313ADV NUTR Advances in nutrition (B医学营养学UNITED STATES 2195-1071ADV OPT MATER Advanced Optical Materia MATERIALS SCIEN OPTICS GERMANY1943-8206ADV OPT PHOTONICS Advances in Optics and P OPTICS UNITED STATES 0065-3055ADV ORGANOMET CHEM ADVANCES IN ORGANOMETALL化学无机化学与核化UNITED STATES 0065-308X ADV PARASIT ADVANCES IN PARASITOLOGY医学寄生虫学UNITED STATES 0001-8732ADV PHYS ADVANCES IN PHYSICS物理物理:凝聚态物ENGLAND0065-3160ADV PHYS ORG CHEM ADVANCES IN PHYSICAL ORG化学物理化学UNITED STATES 1043-4046ADV PHYSIOL EDUC ADVANCES IN PHYSIOLOGY E医学生理学UNITED STATES 0065-3195ADV POLYM SCI ADVANCES IN POLYMER SCIE化学高分子科学GERMANY0730-6679ADV POLYM TECH ADVANCES IN POLYMER TECH工程技术高分子科学UNITED STATES 0921-8831ADV POWDER TECHNOL ADVANCED POWDER TECHNOLO工程技术工程:化工JAPAN1876-1623ADV PROTEIN CHEM STR A dvances in Protein Chem BIOCHEMISTRY & MOLECULAR BI UNITED STATES 0065-3276ADV QUANTUM CHEM ADVANCES IN QUANTUM CHEM化学物理化学UNITED STATES 0169-1864ADV ROBOTICS ADVANCED ROBOTICS工程技术机器人学JAPAN1527-7941ADV SKIN WOUND CAREAdvances in Skin & Wound DERMATOLOGY NURSING UNITED STATES 0273-1177ADV SPACE RES ADVANCES IN SPACE RESEAR地学天文地球科学综合ENGLAND1816-112X ADV STEEL CONSTR Advanced Steel Construct CONSTRUCTION & ENGINEERING, C PEOPLES R CHINA1369-4332ADV STRUCT ENG ADVANCES IN STRUCTURAL E工程技术工程:土木UNITED STATES 0065-3454ADV STUD BEHAV ADVANCES IN THE STUDY OF医学行为科学UNITED STATES 1615-4150ADV SYNTH CATAL ADVANCED SYNTHESIS & CAT化学应用化学GERMANY1095-0761ADV THEOR MATH PHYSAdvances in Theoretical 物理物理:粒子与场UNITED STATES 0741-238X ADV THER ADVANCES IN THERAPY医学药学ENGLAND0972-5768ADV VIB ENG ADVANCES IN VIBRATION EN ENGINEERING, ME MECHANICS INDIA0065-3527ADV VIRUS RES Advances in Virus Resear VIROLOGY UNITED STATES 0309-1708ADV WATER RESOUR ADVANCES IN WATER RESOUR环境科学水资源ENGLAND1875-9637AEOLIAN RES Aeolian Research GEOGRAPHY, PHYSICAL ENGLAND0001-9054AEQUATIONES MATH Aequationes Mathematicae MATHEMATICS, AP MATHEMATICS SWITZERLAND 0393-5965AEROBIOLOGIA AEROBIOLOGIA环境科学环境科学NETHERLANDS 0001-9240AERONAUT J AERONAUTICAL JOURNAL工程技术工程:宇航ENGLAND1680-8584AEROSOL AIR QUAL RES A erosol and air quality ENVIRONMENTAL SCIENCES China0278-6826AEROSOL SCI TECH AEROSOL SCIENCE AND TECH环境科学工程:化工UNITED STATES 1270-9638AEROSP SCI TECHNOL AEROSPACE SCIENCE AND TE工程技术工程:宇航FRANCE0740-722X AEROSPACE AM AEROSPACE AMERICA工程技术工程:宇航UNITED STATES 0364-216X AESTHET PLAST SURG AESTHETIC PLASTIC SURGER医学外科UNITED STATES 1090-820X AESTHET SURG J Aesthetic Surgery Journa SURGERY UNITED STATES 1434-8411AEU-INT J ELECTRON C A EU-INTERNATIONAL JOURNA工程技术电信学GERMANY0001-9704AFINIDAD AFINIDAD化学化学综合SPAIN1021-3589AFR ENTOMOL AFRICAN ENTOMOLOGY生物昆虫学SOUTH AFRICA 1680-6905AFR HEALTH SCI African Health Sciences M EDICINE, GENERAL & INTERNA UGANDA1681-5556AFR INVERTEBR AFRICAN INVERTEBRATES生物动物学SOUTH AFRICA 1608-5914AFR J AQUAT SCI African Journal of Aquat MARINE & FRESHWATER BIOLOGY SOUTH AFRICA 0141-6707AFR J ECOL AFRICAN JOURNAL OF ECOLO环境科学生态学ENGLAND2156-4574AFR J HERPETOL AFRICAN JOURNAL OF HERPE ZOOLOGY SOUTH AFRICA 1814-232X AFR J MAR SCI AFRICAN JOURNAL OF MARIN生物海洋与淡水生物SOUTH AFRICA 1994-8220AFR J PSYCHIATRY African Journal of Psych PSYCHIATRY SOUTH AFRICA 1022-0119AFR J RANGE FOR SCIAfrican Journal of Range ECOLOGY ENVIRONMENTAL SOUTH AFRICA 0189-6016AFR J TRADIT COMPLEM A frican Journal of Tradi医学全科医学与补充NIGERIA2305-7963AFR NAT HIST African Natural History B IODIVERSITY CONSERVATION SOUTH AFRICA 1562-7020AFR ZOOL AFRICAN ZOOLOGY生物动物学SOUTH AFRICA 0161-9152AGE AGE医学老年医学UNITED STATES 0002-0729AGE AGEING AGE AND AGEING医学老年医学ENGLAND1568-1637AGEING RES REV AGEING RESEARCH REVIEWS医学老年医学IRELAND0096-140X AGGRESSIVE BEHAV AGGRESSIVE BEHAVIOR医学行为科学UNITED STATES 1474-9718AGING CELL AGING CELL生物老年医学ENGLAND1594-0667AGING CLIN EXP RES AGING CLINICAL AND EXPER医学老年医学ITALY1368-5538AGING MALE Aging Male医学泌尿学与肾脏学ENGLAND1360-7863AGING MENT HEALTH AGING & MENTAL HEALTH医学精神病学ENGLAND1945-4589AGING-US Aging CELL BIOLOGY UNITED STATES 0169-5150AGR ECON-BLACKWELL AGRICULTURAL ECONOMICS管理科学农业经济与政策NETHERLANDS 0139-570X AGR ECON-CZECH Agricultural Economics-Z AGRICULTURAL ECONOMICS & PO CZECH REPUBLIC 0167-8809AGR ECOSYST ENVIRONAGRICULTURE ECOSYSTEMS &环境科学环境科学NETHERLANDS 1459-6067AGR FOOD SCI AGRICULTURAL AND FOOD SC农林科学农业综合FINLAND1461-9555AGR FOREST ENTOMOL AGRICULTURAL AND FOREST 农林科学昆虫学ENGLAND0168-1923AGR FOREST METEOROLAGRICULTURAL AND FOREST 农林科学林学NETHERLANDS 0002-1482AGR HIST AGRICULTURAL HISTORY农林科学科学史与科学哲UNITED STATES 0889-048X AGR HUM VALUES AGRICULTURE AND HUMAN VA农林科学科学史与科学哲NETHERLANDS1671-2927AGR SCI CHINA Agricultural Sciences in AGRICULTURE, MULTIDISCIPLIN PEOPLES R CHINA 0308-521X AGR SYST AGRICULTURAL SYSTEMS农林科学农业综合NETHERLANDS 0378-3774AGR WATER MANAGE AGRICULTURAL WATER MANAG农林科学农艺学NETHERLANDS 1663-7852AGRARFORSCH SCHWEIZ+A GRARFORSCH SCHWEIZ AGRICULTURE, MULTIDISCIPLIN SWITZERLAND 0303-1853AGREKON Agrekon AGRICULTURAL ECONOMICS & PO SOUTH AFRICA 0742-4477AGRIBUSINESS Agribusiness农林科学食品科技UNITED STATES 1722-6996AGRO FOOD IND HI TEC A GRO FOOD INDUSTRY HI-TE工程技术生物工程与应用ITALY0002-1857AGROCHIMICA AGROCHIMICA农林科学土壤科学ITALY1405-3195AGROCIENCIA-MEXICO AGROCIENCIA农林科学农业综合MEXICO2168-3565AGROECOL SUST FOOD Agroecology and Sustaina AGRICULTURE, MULTIDISCIPLIN UNITED STATES 0167-4366AGROFOREST SYST AGROFORESTRY SYSTEMS农林科学林学NETHERLANDS 0002-1962AGRON J AGRONOMY JOURNAL农林科学农艺学UNITED STATES 1774-0746AGRON SUSTAIN DEV Agronomy for Sustainable农林科学农艺学FRANCE0921-7126AI COMMUN AI COMMUNICATIONS工程技术计算机:人工智NETHERLANDS 0890-0604AI EDAM AI EDAM-ARTIFICIAL INTEL工程技术工程:制造UNITED STATES 0738-4602AI MAG AI MAGAZINE工程技术计算机:人工智UNITED STATES 0001-1452AIAA J AIAA JOURNAL工程技术工程:宇航UNITED STATES 0001-1541AICHE J AICHE JOURNAL工程技术工程:化工UNITED STATES 0269-9370AIDS AIDS医学病毒学UNITED STATES 1087-2914AIDS PATIENT CARE ST A IDS PATIENT CARE AND ST医学传染病学UNITED STATES 0889-2229AIDS RES HUM RETROVAIDS RESEARCH AND HUMAN 医学病毒学UNITED STATES 1742-6405AIDS RES THER AIDS Research and Therap INFECTIOUS DISEASES ENGLAND1139-6121AIDS REV AIDS REVIEWS医学传染病学SPAIN2158-3226AIP ADV AIP Advances NANOSCIENCE & N MATERIALS SCIE UNITED STATES 1873-9318AIR QUAL ATMOS HLTHAir Quality, Atmosphere ENVIRONMENTAL SCIENCES NETHERLANDS 1748-8842AIRCR ENG AEROSP TEC A IRCRAFT ENGINEERING AND工程技术工程:宇航ENGLAND1608-5906AJAR-AFR J AIDS RESAJAR-African Journal of 医学公共卫生、环境SOUTH AFRICA 0341-051X AKTUEL RHEUMATOL AKTUELLE RHEUMATOLOGIE医学风湿病学GERMANY0001-7868AKTUEL UROL AKTUELLE UROLOGIE医学泌尿学与肾脏学GERMANY0311-5518ALCHERINGA ALCHERINGA地学古生物学ENGLAND0741-8329ALCOHOL ALCOHOL医学毒理学UNITED STATES 0735-0414ALCOHOL ALCOHOLISM ALCOHOL AND ALCOHOLISM医学药物滥用ENGLAND0145-6008ALCOHOL CLIN EXP RES A LCOHOLISM-CLINICAL AND 医学药物滥用UNITED STATES 0002-5100ALDRICHIM ACTA ALDRICHIMICA ACTA化学有机化学UNITED STATES 1980-0436ALEA-LAT AM J PROBAB L atin American Journal o STATISTICS & PROBABILITY BRAZIL2211-9264ALGAL RES Algal Research-Biomass B BIOTECHNOLOGY & APPLIED MIC NETHERLANDS 1005-3867ALGEBR COLLOQ ALGEBRA COLLOQUIUM数学数学PEOPLES R CHINA 1472-2739ALGEBR GEOM TOPOL Algebraic and Geometric 数学数学ENGLAND0002-5232ALGEBR LOG+Algebra and Logic数学数学RUSSIA1937-0652ALGEBR NUMBER THEORY A lgebra and Number Theor MATHEMATICS UNITED STATES 1386-923X ALGEBR REPRESENT THALGEBRAS AND REPRESENTAT数学数学NETHERLANDS 0002-5240ALGEBR UNIV ALGEBRA UNIVERSALIS数学数学SWITZERLAND 1748-7188ALGORITHM MOL BIOL Algorithms for Molecular生物生化研究方法ENGLAND0178-4617ALGORITHMICA ALGORITHMICA工程技术计算机:软件工UNITED STATES 0269-2813ALIMENT PHARM THER ALIMENTARY PHARMACOLOGY 医学胃肠肝病学ENGLAND0971-4693ALLELOPATHY J ALLELOPATHY JOURNAL农林科学农艺学INDIA0301-0546ALLERGOL IMMUNOPATHALLERGOLOGIA ET IMMUNOPA医学过敏SPAIN0344-5062ALLERGOLOGIE ALLERGOLOGIE医学过敏GERMANY0105-4538ALLERGY ALLERGY医学过敏ENGLAND2092-7355ALLERGY ASTHMA IMMUN T he American Academy of ALLERGY IMMUNOLOGY SOUTH KOREA 1088-5412ALLERGY ASTHMA PROCALLERGY AND ASTHMA PROCE医学过敏UNITED STATES 0002-5852ALLG FORST JAGDZTG ALLGEMEINE FORST UND JAG农林科学林学GERMANY1664-2201ALPINE BOT Alpine Botany PLANT SCIENCES SWITZERLAND 1078-6791ALTERN THER HEALTH M A lternative therapies in INTEGRATIVE & COMPLEMENTARY United States 1868-596X ALTEX-ALTERN ANIM EX A LTEX-ALTERNATIVES TO AN MEDICINE, RESEARCH & EXPERI GERMANY0893-0341ALZ DIS ASSOC DIS ALZHEIMER DISEASE & ASSO医学病理学UNITED STATES 1552-5260ALZHEIMERS DEMENT Alzheimers & Dementia医学临床神经学UNITED STATES 1758-9193ALZHEIMERS RES THERAlzheimer\'s Research an医学神经病学United Kingdom 0002-7626AM BEE J AMERICAN BEE JOURNAL生物昆虫学UNITED STATES 0002-7685AM BIOL TEACH The American Biology Tea BIOLOGY EDUCATION, SCI UNITED STATES 0002-7812AM CERAM SOC BULL AMERICAN CERAMIC SOCIETY工程技术材料科学:硅酸UNITED STATES 0002-838X AM FAM PHYSICIAN AMERICAN FAMILY PHYSICIA医学医学:内科UNITED STATES 0002-8444AM FERN J AMERICAN FERN JOURNAL生物植物科学UNITED STATES 0002-8703AM HEART J AMERICAN HEART JOURNAL医学心血管系统UNITED STATES 0002-9092AM J AGR ECON AMERICAN JOURNAL OF AGRI管理科学农业经济与政策UNITED STATES 1533-3175AM J ALZHEIMERS DISAmerican Journal of Alzh GERIATRICS & GE CLINICAL NEURO UNITED STATES 1059-0889AM J AUDIOL American Journal of Audi AUDIOLOGY & SPE OTORHINOLARYNG UNITED STATES 1526-5161AM J BIOETHICS AMERICAN JOURNAL OF BIOE社会科学科学史与科学哲UNITED STATES 0002-9122AM J BOT AMERICAN JOURNAL OF BOTA生物植物科学UNITED STATES 2156-6976AM J CANCER RES American Journal of Canc ONCOLOGY UNITED STATES 0002-9149AM J CARDIOL AMERICAN JOURNAL OF CARD医学心血管系统UNITED STATES 1175-3277AM J CARDIOVASC DRUG A merican Journal of Card医学心血管系统NEW ZEALAND 0192-415X AM J CHINESE MED AMERICAN JOURNAL OF CHIN医学全科医学与补充UNITED STATES 1175-0561AM J CLIN DERMATOL AMERICAN JOURNAL OF CLIN医学皮肤病学NEW ZEALAND 0002-9165AM J CLIN NUTR AMERICAN JOURNAL OF CLIN医学营养学UNITED STATES 0277-3732AM J CLIN ONCOL-CANC A MERICAN JOURNAL OF CLIN医学肿瘤学UNITED STATES 0002-9173AM J CLIN PATHOL AMERICAN JOURNAL OF CLIN医学病理学UNITED STATES 1062-3264AM J CRIT CARE AMERICAN JOURNAL OF CRIT医学护理UNITED STATES 0894-8275AM J DENT AMERICAN JOURNAL OF DENT医学牙科与口腔外科UNITED STATES 0193-1091AM J DERMATOPATH AMERICAN JOURNAL OF DERM医学皮肤病学UNITED STATES 0095-2990AM J DRUG ALCOHOL AB A MERICAN JOURNAL OF DRUG SUBSTANCE ABUSE UNITED STATES 0735-6757AM J EMERG MED AMERICAN JOURNAL OF EMER医学急救医学UNITED STATES 0002-9254AM J ENOL VITICULT AMERICAN JOURNAL OF ENOL农林科学生物工程与应用UNITED STATES 0002-9262AM J EPIDEMIOL AMERICAN JOURNAL OF EPID医学公共卫生、环境UNITED STATES 0195-7910AM J FOREN MED PATHAMERICAN JOURNAL OF FORE医学病理学UNITED STATES 0002-9270AM J GASTROENTEROL AMERICAN JOURNAL OF GAST医学胃肠肝病学UNITED STATES 1064-7481AM J GERIAT PSYCHIAT A MERICAN JOURNAL OF GERI医学精神病学UNITED STATES 1543-5946AM J GERIATR PHARMAC A merican Journal Geriatr GERIATRICS & GE PHARMACOLOGY &UNITED STATES 1079-2082AM J HEALTH-SYST PHAMERICAN JOURNAL OF HEAL医学药学UNITED STATES 0361-8609AM J HEMATOL AMERICAN JOURNAL OF HEMA医学血液学UNITED STATES 1049-9091AM J HOSP PALLIAT ME A merican Journal of Hosp HEALTH CARE SCIENCES & SERV UNITED STATES 1042-0533AM J HUM BIOL AMERICAN JOURNAL OF HUMA生物生物学UNITED STATES 0002-9297AM J HUM GENET AMERICAN JOURNAL OF HUMA生物遗传学UNITED STATES 0895-7061AM J HYPERTENS AMERICAN JOURNAL OF HYPE医学外周血管病UNITED STATES 0271-3586AM J IND MED AMERICAN JOURNAL OF INDU医学公共卫生、环境UNITED STATES 0196-6553AM J INFECT CONTROLAMERICAN JOURNAL OF INFE医学传染病学UNITED STATES 0272-6386AM J KIDNEY DIS AMERICAN JOURNAL OF KIDN医学泌尿学与肾脏学UNITED STATES 1088-0224AM J MANAG CARE AMERICAN JOURNAL OF MANA医学卫生保健UNITED STATES。
期刊名称简写-全称索引:J2007-08-26 19:59英文期刊名称简写---全称索引:A2007-08-26 19:48为解决平时查资料过程中,经常遇到期刊名称简写,而不知道全称而无法查找文献的困难,以下提供了常用期刊的名称简写--全称对照。
Acc. Chem. Res. Accounts of Chemical ResearchACH - Models Chem. ACH - Models in ChemistryACI Mater. J. ACI Materials JournalACS Symp. Ser. ACS Symposium SeriesActa Biochim. Pol. Acta Biochimica PolonicaActa Biotechnol. Acta BiotechnologicaActa Chem. Scand. Acta Chemica ScandinavicaActa Chim. Sinica Acta Chimica Sinica 化学学报(中国)Acta Cienc. Indica, Chem. Acta Cienceia Indica ChemistryActa Cienc. Indica, Phys. Acta Ciencia Indica PhyicsActa Crystallogr., Sect. A: Found. Crystallogr. Acta Crystallographica Section A: Foundations Acta Crystallogr., Sect. B: Struct. Sci Acta Crystallographica Section B: Structural ScienceActa Crystallogr., Sect. C: Cryst. Struct. Commun. Acta Crystallographica Section C: Crystal Structure CommunicationsActa Crystallogr., Sect D: Biol. Crystallogr. Acta Crystallographica Section D: Biological CrystallographyActa Crystallogr. Sect. E: Struct. Rep. Online Acta Crystallographica Section E Structure Reports OnlineActa Hydroch. Hydrob. Acta Hydrochimica et HydrobiologicaActa Mater. Acta MaterialiaActa Metall. Acta MetallurgicaActa pharm. Sinica acta pharmaceutica sinica 中国药理学报Acta Phys. Pol., A Acta Physica Polonica AActa Phys. Pol., B Acta Physica Polonica BActa Polym. Acta PolymericaActa Polytech. Scand., Chem. Technol. Ser Acta Polytechnica Scandinavica - Chemical Technology SeriesAdhes. Age Adhesives AgeAdsorpt. Sci. Technol. Adsorption Science and TechnologyAdv. Appl. Microbiol. Advances in Applied MicrobiologyAdv. At. Mol. Opt. Phy. Advances in Atomic Molecular and Optical PhysicsAdv. Biochem. Eng./Biotechnol. Advances in Biochemical Engineering / BiotechnologyAdv. Carbohydr. Chem. Biochem. Advances in Carbohydrate Chemistry and Biochemistry Adv. Chem. Phys. Advances in Chemical PhysicsAdv. Chem. Ser. Advances in Chemistry SeriesAdv. Chromatogr. Advances in ChromatographyAdv. Colloid Interface Sci. Advances in Colloid and Interface ScienceAdv. Compos. Mater Advanced Composite MaterialsAdv. Cryog. Eng. Advances in Cryogenic EngineeringAdv. Eng. Mater. Advanced Engineering MaterialsAdv. Enzyme Regul. Advances in Enzyme RegulationAdv. Enzymol. Relat. Areas Mol. Biol. Advances in Enzymology and Related Areas of Molecular BiologyAdv. Filtr. Sep. Technol. Advances in Filtration and Separation TechnologyAdv. Funct. Mater. Advanced Functional MaterialsAdv. Heterocycl. Chem. Advances in Heterocyclic ChemistryAdv. Inorg. Chem. Advances in Inorganic ChemistryAdv. Mass Spectrom. Advances in Mass SpectrometryAdv. Synth. Catal. Advanced Synthesis and CatalysisAdv. Mater. Advanced MaterialsAdv. Mater. Opt. Electron. Advanced Materials for Optics and ElectronicsAdv. Mater. Processes Advanced Materials and ProcessesAdv. Mater. Res. Advances in Materials ResearchAdv. Organomet. Chem. Advances in Organometallic ChemistryAdv. Phys. Org. Chem. Advances in Physical Organic ChemistryAdv. Polym. Sci. Advances in Polymer ScienceAdv. Polym. Tech. Advances in Polymer TechnologyAdv. Powder Technol. Advanced Powder TechnologyAdv. Powder. Metall. Part. Mater. Advances in Powder Metallurgy and Particulate Materials Adv. Protein Chem. Advances in Protein ChemistryAdv. Quantum Chem. Advances in Quantum ChemistryAdv. Second Messenger Phosphoprotein Res. Advances in Second Messenger and Phosphoprotein ResearchAdv. Space Res. Advances in Space ResearchAdv. X-Ray Anal. Advances in X-Ray AnalysisAdverse Drug React. Toxicol. Rev. Adverse Drug Reactions and Toxicological Reviews Aerosol Sci. Technol. Aerosol Science and TechnologyAlChE J. AIChE JournalAlChE Symp. Ser. AIChE Symposium SeriesAm. Ceram. Soc. Bull. American Ceramic Society BulletinAm. Ind. Hyg. Assoc. J. American Industrial Hygiene Association JournalAm. J. Respir. Cell Mol. Biol. American Journal of Respiratory Cell and Molecular Biology Am. Lab. American LaboratoryAm. Mineral. American MineralogistAmmonia Plant Saf. Relat. Facil Ammonia Plant Safety and Related FacilitiesAn. Asoc. Quim. Argent. Anales de la Asociacion Quimica ArgentinaAn. Quim. Anales de QuimicaAnal. Biochem. Analytical BiochemistryAnal. Chem. Analytical ChemistryAnal. Chim. Annali di ChimicaAnal. Chim. Acta Analytica Chimica ActaAnal. Commun. Analytical CommunicationsAnal. Lett. Analytical LettersAnal. Sci. Analytical SciencesAngew. Chem. Int. Ed. Angewandte Chemie International EditionAngew. Makromol. Chem. Angewandte Makromolekulare ChemieAnn. Chim. (Rome) Annali di ChimicaAnn. Chim. - Sci. Mat. Annales de Chimie - Science des MateriauxAnn. Clin. Biochem. Annals of Clinical BiochemistryAnn. N.Y. Acad. Sci. Annals of the New York Academy of SciencesAnnu. Rep. Med. Chem. Annual Reports in Medicinal ChemistryAnnu. Rep. Prog. Chem. Sect. A: Inorg. Chem. Annual Reports on the Progress of Chemistry, Section A: Inorganic ChemistryAnnu. Rep. Prog. Chem. Sect. B: Org. Chem. Annual Reports on the Progress of Chemistry, Section B: Organic ChemistryAnnu. Rep. Prog. Chem. Sect. C: Phys. Chem. Annual Reports on the Progress of Chemistry, Section C: Physical ChemistryAnnu. Rev. Biochem Annual Review of BiochemistryAnnu. Rev. Biophys. Biomol. Struct. Annual Review of Biophysics and Biomolecular Structure Annu. Rev. Cell Dev. Biol. Annual Review of Cell and Developmental BiologyAnnu. Rev. Energy Env. Annual Review of Energy and the EnvironmentAnnu. Rev. Mater. Sci. Annual Review of Materials ScienceAnnu. Rev. Pharmacool. Toxicol. Annual Review of Pharmacology and ToxicologyAnnu. Rev. Phys. Chem. Annual Review of Physical ChemistryAnti-Cancer Drug Des. Anti-Cancer Drug DesignAnticancer Res. Anticancer ResearchAntimicrob. Agents Chemother. Antimicrobial Agents and ChemotherapyAntisense Nucleic Acid Drug Dev. Antisense and Nucleic Acid Drug DevelopmentAntiviral Chem. Chemother. Antiviral Chemistry and ChemotherapyAppita J. Appita JournalAppl. Biochem. Biotechnol. Applied Biochemistry and BiotechnologyAppl. Catal., A Applied Catalysis AAppl. Catal., B Applied Catalysis BAppl. Compos. Mater. Applied Composite MaterialsAppl. Environ. Microbiol. Applied and Environment MicrobiologyAppl. Geochem. Applied GeochemistryAppl. Magn. Reson. Applied Magnetic ResonanceAppl. Microbiol. Biotechnol. Applied Microbiology and BiotechnologyAppl. Opt. Applied OpticsAppl. Organomet. Chem. Applied Organometallic ChemistryAppl. Phys. A Applied Physics AAppl. Phys. B Applied Physics BAppl. Phys. Lett. Applied Physics LettersAppl. Radiat. Isot. Applied Radiation and IsotopesAppl. Sci. Res. Applied Scientific ResearchAppl. Spectrosc. Applied SpectroscopyAppl. Supercond. Applied SuperconductivityAppl. Surf. Sci. Applied Surface ScienceAppl. Therm. Eng. Applied Thermal EngineeringAquat. Toxicol. Aquatic ToxicologyArch. Biochem. Biophys. Archives of Biochemistry and BiophysicsArch. Environ. Contam. Toxicol. Archives of Environment Contamination and Toxicology Arch. Environ. Health Archives of Environment HealthArch. Insect Biochem. Physiol. Archives of Insect Biochemistry and PhysiologyArch. Microbiol. Archives of MicrobiologyArch. Pharm. Archiv der PharmazieArch. Pharmacal Res. Archives of Pharmacal ResearchArch. Physiol. Biochem. Archives of Physiology and BiochemistryArch. Toxicol. Archives of ToxicologyArch. Virol Archives of VirologyArtif. Cells, Blood Substitues, Immobilization Biotechnol. Artificial Cells Blood Substitutes and Immobilization BiotechnologyArzneim.-Forsch. Arzneimittel-Forschung/Drug ResearchAsian J. Chem. Asian Journal of ChemistryAsian J. Spectro. Asian Journal of SpectroscopyASTM Spec. Tech. Publ. ASTM Specical Technical PublicationAstron. Astrophys. Astronomy and AstrophysicsAstron. J. Astronomy JournalAstrophys J. Astrophysics JournalAt. Data Nucl. Data Tables Atomic Data and Nuclear Data TablesAt. Energ. Atomic EnergyAt. Spectrosc. Atomic SpectroscopyAtmos. Environ. Atmospheric EnvironmentAtomization Sprays Atomization and SpraysAust. J. Chem. Australian Journal of ChemistryJ. Contam. Hydrol. Journal of Contaminant HydrologyJ. Controlled Release Journal of Controlled ReleaseJ. Coord. Chem. Journal of Coordination ChemistryJ. Cryst. Growth Journal of Crystal GrowthJ. Dairy Sci. Journal of Dairy ScienceJ. Dispersion Sci. Technol. Journal of Dispersion Science and TechnologyJ. Elastomers Plast. Journal of Elastomers and PlasticsJ. Electroanal. Chem. Journal of Electroanalytical ChemistryJ. Electroceram. Journal of ElectroceramicsJ. Electrochem. Soc. Journal of the Electrochemical SocietyJ. Electron. Mater. Journal of Electronic MaterialsJ. Electron Microsc. Journal of Electron MicroscopyJ. Electron. Spectrosc. Relat. Phenom. Journal of Electron Spectroscopy and Related PhenomenaJ. Endocrinol. Journal of EndocrinologyJ. Endotoxin Res. Journal of Endotoxin ResearchJ. Eng. Mater. Technol. Journal of Engineering Materials and TechnologyJ. Environ. Biol. Journal of Environment biologyJ. Environ. Eng. Journal of Environment EngineeringJ. Environ. Health Journal of Environment HealthJ. Environ. Manage. Journal of Environment ManagementJ. Environ. Monit. Journal of Environmental MonitoringJ. Environ. Qual. Journal of Environment QualityJ. Environ. Radioact. Journal of Environment RadioactivityJ. Environ. Sci. Health., Part A Journal of Environment Science and Health, Part A Environmental ScienceJ. Environ. Sci. Health., Part B Journal of Environment Science and Health, Part B PesticidesJ. Enzym Inhib. Journal of Enzyme InhibitionJ. Essent. Oil Res. Journal of Essential Oil ResearchJ. Ethnopharmacol. Journal of EthnopharmacologyJ. Eur. Ceram. Soc. Journal of the European Ceramic SocietyJ. Exp. Biol. Journal of Experimental BiologyJ. Exp. Bot. Journal of Experimental BotanyJ. Exposure Anal. Environ. Epidemiol. Journal of Exposure Analysis and Environment EpidemiologyJ. Ferment. Bioeng. Journal of Fermentation and BioengineeringJ. Fire Sci. Journal of Fire SciencesJ. Fluid Mech. Journal of Fluid MechanicsJ. Fluids Eng. Journal of Fluids EngineeringJ. Fluorine Chem. Journal of Fluorine ChemistryJ. Food Biochem. Journal of Food BiochemistryJ. Food Eng. Journal of Food EngineeringJ. Food Lipids Journal of Food LipidsJ. Food Prot. Journal of Food ProtectionJ. Food Sci. Journal of Food ScienceJ. Gen. Appl. Microbiol. Journal of General and Applied MicrobiologyJ. Gen. Microbiol. Journal of General MicrobiologyJ. Hazard. Mater. Journal of Hazardous materialsJ. Heat Transfer Journal of Heat TransferJ. Heterocycl. Chem. Journal of Heterocyclic ChemistryJ. High. Resolut. Chromatogr. Journal of High Resolution ChromatographyJ. Histochem. Cytochem. Journal of Histochemistry and CytochemistryJ. Hypertens. Journal of HypertensionJ. Imaging Sci. Technol. Journal of Imaging Science and TechnologyJ. Inclusion Phenom. Mol. Recognit. Chem. Journal of Inclusion Phenomena and Molecular Recognition in ChemistryJ. Ind. Microbiol. Journal of Industrial MicrobiologyJ. Indian Chem. Soc. Journal of the Indian Chemical SocietyJ. Ind. Microbiol. Biotechnol. Journal of Industrial Microbiology and BiotechnologyJ. Inorg. Biochem. Journal of Inorganic BiochemistryJ. Inorg. Nucl. Chem. Journal of Inorganic and Nuclear ChemistryJ. Inorg. Organomet. Polym. Journal of Inorganic and Organometallic PolymersJ. Inst. Chem. Journal of Institute of Chemists (India)J. Inst. Environ. Sci. Journal of the Institute of Environment SciencesJ. Inst. Water Environ. Manage. Journal of the Institution of Water and Environment Management J. Intell. Mater. Syst. Struct. Journal of Intelligent Material Systems and StructuresJ. Interferon Cytokine Res. Journal of Interferon and Cytokine ResearchJ. Interferon Res. Journal of Interferon ResearchJ. Jpn. Inst. Met. Journal of the Japan Institute of MetalsJ. Korean Chem. Soc. Journal of the Korean Chemical SocietyJ. Labelled Compd. Radiopharm. Journal of Labelled Compounds and RadiopharmaceuticalsJ. Lipid Mediators Journal of Lipid MediatorsJ. Lipid Mediators Cell Signalling Journal of Lipid Mediators and Cell SignallingJ. Lipid Res. Journal of Lipid ResearchJ. Liq. Chromatogr. Journal of Liquid ChromatographyJ. Liq. Chromatogr. Related Technol. Journal of Liquid Chromatography and Related TechnologiesJ. Low Temp. Phys. Journal of Low Temperature PhysicsJ. Lumin. Journal of LuminescenceJ. Macromol. Sci., Phys. Journal of Macromolecular Science - PhysicsJ. Macromol. Sci., Polym. Rev. Journal of Macromolecular Science Polymer ReviewsJ. Macromol. Sci., Pure Appl. Chem. Journal of Macromolecular Science Pure and Applied ChemistryJ. Macromol. Sci., Rev. Macromol. Chem. Phys. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and PhysicsJ. Magn. Magn. Mater. Journal of Magnetism and Magnetic MaterialsJ. Magn. Reson., Ser A Journal of Magnetic Resonance Series AJ. Magn. Reson., Ser B Journal of Magnetic Resonance Series BJ. Mass Spectrom. Journal of Mass SpectrometryJ. Mater. Chem. Journal of Materials ChemistryJ. Mater. Civ. Eng. Journal of Materials in Civil EngineeringJ. Mater. Cycles Waste Manage. Journal of Material Cycles and Waste ManagementJ. Mater. Eng. Perform. Journal of Materials Engineering and PerformanceJ. Mater. Process. Manuf. Sci. Journal of Materials Processing and Manufacturing ScienceJ. Mater. Process. Technol. Journal of Materials Processing TechnologyJ. Mater. Res. Journal of Materials ResearchJ. Mater. Sci. Lett. Journal of Materials Science LettersJ. Mater. Sci. - Mater. Electron. Journal of Materials Science - Materials in ElectronicsJ. Mater. Sci. - Mater. Med. Journal of Materials Science Materials in MedicineJ. Mater. Sci. Technol. Journal of Materials Science and TechnologyJ. Mater. Synth. Process. Journal of Materials Synthesis and ProcessingJ. Math. Chem. Journal of Mathematical ChemistryJ. Med. Chem. Journal of Medicinal ChemistryJ. Membr. Biol. Journal of Membrane BiologyJ. Membr. Sci. Journal of Membrance ScienceJ. Microbiol. Biotechnol. Journal of Microbiology and BiotechnologyJ. Microbiol. Methods Journal of Microbiological MethodsJ. Microcolumn Sep. Journal of Microcolumn SeparationsJ. Microelectromech. Syst. Journal of Microelectronic SystemsJ. Microencapsulation Journal of MicroencapsulationJ. Mol. Biol. Journal of Molecular BiologyJ. Mol. Catal. Journal of Molecular CatalysisJ. Mol. Catal. A: Chem. Journal of Molecular Catalysis A: ChemicalJ. Mol. Catal. B: Enzym. Journal of Molecular Catalysis B: EnzymaticJ. Mol. Graphics Modell. Journal of Molecular Graphics and ModellingJ. Mol. Liq. Journal of Molecular LiquidsJ. Mol. Microbiol. Biotechnol. Journal of Molecular Microbiology and BiotechnologyJ. Mol. Model. Journal of Molecular ModelingJ. Mol. Spectrosc. Journal of Molecular SpectroscopyJ. Mol. Struct. Journal of Molecular StructureJ. Nanopart. Res. Journal of Nanoparticle ResearchJ. Nat. Prod. Journal of Natural ProductsJ. Near Infrared Spectrosc. Journal of Near Infrared SpectroscopyJ. Neurochem. Journal of NeurochemistryJ. Neurosci. Journal of NeuroscienceJ. Neurosci. Res. Journal of Neuroscience ResearchJ. New Mater. Electrochem. Syst. Journal of New Materials for Electrochemical Systems J. Non-Cryst. Solids Journal of Non-Crystalline SolidsJ. Non-Equilib. Thermodyn. Journal of Non-Equilibrium ThermodynamicsJ. Nucl. Mater. Journal of Nuclear MaterialsJ. Nucl. Sci. Technol. Journal of Nuclear Science and TechnologyJ. Opt. Soc. Am. B: Opt. Phys. Journal of the Optical Society of America B: Optical Physics J. Org. Chem. Journal of Organic ChemistryJ. Organomet. Chem. Journal of Organometallic Chemistry作者: zwz1012 发布日期: 2006-4-03J. Organomet. Chem. Journal of Organometallic ChemistryJ. Pet. Sci. Technol. Journal of Petroleum Science and TechnologyJ. Pharm. Biomed. Anal. Journal of Pharmaceutical and Biomedical AnalysisJ. Pharm. Pharmacol. Journal of Pharmacy and PharmacologyJ. Pharm. Sci. Journal of Pharmaceutical SciencesJ. Pharmacol. Exp. Ther. Journal of Pharmacology and Experimental TherapeuticsJ. Pharmacol. Toxicol. Methods Journal of Pharmacological and Toxicological Methods J. Phase Equilib. Journal of Phase EquilibriumJ. Photochem. Photobiol., A Journal of Photochemistry and Photobiology AJ. Photochem. Photobiol., B Journal of Photochemistry and Photobiology BJ. Photopolym. Sci. Technol. Journal of Photopolymer Science and TechnologyJ. Phys. A: Math. Gen. Journal of Physics A: Mathematical and GeneralJ. Phys. B: At., Mol. Opt. Phys. Journal of Physics B: Atomic Molecular and Optical PhysicsJ. Phys. Chem. Journal of Physical ChemistryJ. Phys. Chem. A Journal of Physical Chemistry AJ. Phys. Chem. B Journal of Physical Chemistry BJ. Phys. Chem. Ref. Data Journal of Physical and Chemical Reference DataJ. Phys. Chem. Solids Journal of Physics and Chemistry of SolidsJ. Phys. D: Appl. Phys. Journal of Physics D: Applied PhysicsJ. Phys. G: Nucl. Part. Phys. Journal of Physics G: Nuclear and Particle PhysicsJ. Phys. I Journal de Physique IJ. Phys. II Journal de Physique IIJ. Phys. III Journal de Physique IIIJ. Phys. IV Journal de Physique IVJ. Phys. Org. Chem. Journal of Physical Organic ChemistryJ. Phys. Soc. Jpn. Journal of the Physical Society of JapanJ. Phys.: Condens. Matter Journal of Physics: Condensed MatterJ. Planar. Chromatogr. - Mod. TLC Journal of Planar Chromatography - Modern TLCJ. Plant Biochem. Biotechnol. Journal of Plant Biochemistry and BiotechnologyJ. Polym. Eng. Journal of Polymer EngineeringJ. Polym. Environ. Journal of Polymers and the EnvironmentJ. Polym. Mater. Journal of Polymer MaterialsJ. Polym. Sci., Part A: Polym. Chem. Journal of Polymer Science Part A: Polymer ChemistryJ. Polym. Sci., Part B: Polym. Phys. Journal of Polymer Science Part B: Polymer PhysicsJ. Porous Mater. Journal of Porous MaterialsJ. Porphyrins Phthalocyanines Journal of Porphyrins and PhthalocyaninesJ. Power Sources Journal of Power SourcesJ. Prakt. Chem. /Chem-Ztg Journal fur Praktische Chemie - Chemiker ZeitungJ. Propul. Power Journal of Propulsion and PowerJ. Protein Chem. Journal of Protein ChemistryJ. Pulp Pap. Sci. Journal of Pulp and Paper ScienceJ. Quant. Spectrosc. Radiat. Transfer Journal of Quantitative Spectroscopy and Radiative Transfer J. Radioanal. Nucl. Chem. Journal of Radioanalytical and Nuclear ChemistryJ. Radioanal. Nucl. Chem. Art. Journal of Radioanalytical and Nuclear Chemistry ArticlesJ. Radioanal. Nucl. Chem. Lett. Journal of Radioanalytical and Nuclear Chemistry LettersJ. Raman Spectrosc. Journal of Raman SpecroscopyJ. Rapid Methods Autom. Microbiol. Journal of Rapid Methods and Automation in Microbiology J. Reinf. Plast. Compos. Journal of Reinforced Plastics and CompositesJ. Rheol. Journal of RheologyJ. S. Afr. Inst. Min. Metall. Journal of the South African Institute of Mining and MetallurgyJ. Sci. Food Agric. Journal of the Science of Food and AgricultureJ. Sci. Ind. Res. Journal of Scientific and Industrial ResearchJ. Serb. Chem. Soc. Journal of the Serbian Chemical SocietyJ. Sep. Sci. Journal of Separation ScienceJ. Sol-Gel Sci. Technol. Journal of Sol-Gel Science and TechnologyJ. Solid State Chem. Journal of Solid State ChemistryJ. Solid State Electrochem. Journal of Solid State ElectrochemistryJ. Solution Chem. Journal of Solution ChemistryJ. Steroid Biochem. Mol. Biol. Journal of Steroid Biochemistry and Molecular BiologyJ. Strain Anal. Eng. Des. Journal of Strain Analysis for Engineering DesignJ. Struct. Chem. Journal of Structural ChemistryJ. Supercrit. Fluids Journal of Supercritical FluidsJ. Synth. Org. Chem Jpn. Journal of Synthetic Organic Chemistry, JapanJ. Test. Eval. Journal of Testing and EvaluationJ. Therm. Anal. Journal of Thermal AnalysisJ. Therm. Anal. Calorim. Journal of Thermal Analysis and CalorimetryJ. Therm. Spray Technol. Journal of Thermal Spray TechnologyJ. Thermophys Heat Transfer Journal of Thermophysics and Heat TransferJ. Thermoplast. Compos. Mater. Journal of Thermoplastic Composite MaterialsJ. Toxicol. Environ. Health Journal of Toxicology and Environment HealthJ. Toxicol., Clin. Toxicol. Journal of Toxicology - Clinical ToxicologyJ. Toxicol., Cutaneous Ocul. Toxicol. Journal of Toxicology - Cutaneous and Ocular Toxicology J. Toxicol., Toxin Rev. Journal of Toxicology - Toxin ReviewsJ. Trace Elem. Exp. Med. Journal of Trace Elements in Experimental MedicineJ. Trace Elem. Med Biol. Journal of Trace Elements in Medicine and BiologyJ. Trace Microprobe Tech. Journal of Trace and Microprobe TechniquesJ. Vac. Sci. Technol., A Journal of Vacuum Science and Technology AJ. Vac. Sci. Technol., B Journal of Vacuum Science and Technology BJ. Wood Chem. Technol. Journal of Wood Chemistry and TechnologyJACS Journal of the American Chemical SocietyJOM JOM Journal of the Minerals Metals and Materials SocietyJPC J. Planar Chromatogr. - Mod. TLC JPC Journal of Planar Chromatography Modern TLC Jpn. J. Appl. Phys., Part 1 Japanese Journal of Applied Physics Part 1Jpn. J. Appl. Phys., Part 2 Japanese Journal of Applied Physics Part 2Jpn. J. Cancer Res. Japanese Journal of Cancer ResearchJpn. J. Pharmacol. Japanese Journal of PharmacologyJpn. J. Toxicol. Environ. Health Japanese Journal of toxicology and Environment healthJSME Int J., Ser. A JSME International Journal Series A: Mechanics and Material Engineering JSME Int J., Ser. B JSME International Journal Series B: Fluids and Thermal Engineering JSME Int J., Ser. C JSME International Journal Series C: Mechanical Systems Machine Elements and ManufacturingKautsch. Gummi Kunstst. Kautschuk Gummi KunststoffeKey Eng. Mater. Key Engineering MaterialsKhim. Fiz. Khimicheskaya FizikaKinet. Catal. Kinetics and CatalysisKinet. Katal. Kinetika i KatalizKolloidn Zh Kolloidn ZhurnalKoord. Khim. Koordinatsionnaya Khimiya (Russian Journal of Coordination Chemistry)Korean J. Chem. Eng. Korean Journal of Chemical EngineeringKovove Mater. Kovove Materialy Metallic MaterialsLab. Autom. Inf. Manage. Laboratory Automation and Information ManagementLab. Invest. Laboratory InvestigationLab. Rob. Autom. Laboratory Robotics and AutomationLaser Chem. Laser ChemistryLC-GC LC-GC The Magazine of Separation ScienceLett. Appl. Microbiol. Letters in Applied MicrobiologyLett. Pept. Sci. Letters in Peptide ScienceLiebigs Ann. Chem. Liebigs Annalen der ChemieLiebigs Ann. Recl. Liebigs Annalen - RecueilLife Sci. Life SciencesLiq. Cryst. Liquid CrystalsLubr. Eng. Lubrication EngineeringLubr. Sci. Lubrication ScienceMacromol. Chem. Phys. Macromolecular Chemistry and PhysicsMacromol. Rapid Commun. Macromolecular Rapid CommunicationsMacromol. Symp. Macromolecular SymposiumMacromol. Theory Simul. Macromolecular Theory and SimulationsMagn. Reson. Chem. Magnetic Resonance in ChemistryMagn. Reson. Mater. Phys., Biol. Med. Magnetic Resonance Materials in Physics, Biology and MedicineMagy. Kem. Foly. Magyar Kemiai FolyoiratMain Group Chem. Main Group ChemistryMain Group Met. Chem. Main Group Metal ChemistryManuf. Chem. Manufacturing ChemistMar. Biol. Marine BiologyMar. Biotechnol. Marine BiotechnologyMar. Chem. Marine ChemistryMar. Environ. Res. Marine Environment ResearchMar. Pollut. Bull. Marine Pollutution BulletinMass Spectrom. Rev. Mass Spectrometry ReviewsMater. Charact. Materials CharacterizationMater. Chem. Phys. Materials Chemistry and PhysicsMater. Corros. Materials and CorrosionMater. Des. Materials and DesignMater. Eval. Materials EvaluationMater. Forum Materials ForumMater. High Temp. Materials at High TemperaturesMater. Lett. Materials LettersMater. Manuf. Processes Materials and Manufacturing ProcessesMater. Org. Materials and OrganismsMater. Performance Materials PerformanceMater. Res. Bull. Materials Research BulletinMater. Res. Innovations Materials Research InnovationsMater. Sci. Materials ScienceMater. Sci. Eng., A Materials Science and Engineering AMater. Sci. Eng., B Materials Science and Engineering BMater. Sci. Eng., C Materials Science and Engineering CMater. Sci. Eng., R Materials Science and Engineering ReportsMater. Sci. Forum Materials Science ForumMater. Sci. Semicond. Process. Materials Science in Semiconductor ProcessingMater. Sci. Res. Int. Materials Science Research InternationalMater. Sci. Technol. Materials Science and TechnologyMater. Struct. Materials and StructuresMater. Today Materials TodayMater. Trans., JIM Materials Transactions, JIMMaterialwiss. Werkstofftech. Materialwissenschaft und WerkstofftechnikMatrix Biol. Matrix BiologyMeas. Sci. Technol. Measurement Science and TechnologyMech. Compos. Mater. Mechanics of Composite MaterialsMech. Compos. Mater. Struct. Mechanics of Composite Materials and StructuresMech. Mater. Mechanics of MaterialsMech. Time-Depend. Mater. Mechanics of Time Dependent MaterialsMed. Chem. Res. Medicinal Chemistry ResearchMendeleev Commun. Mendeleev CommunicationsMet.-Based Drugs Metal-Based DrugsMet. Ions Biol. Syst. Metal Ions in Biological SystemsMet. Sci. Heat Treat. Metal Science and Heat TreatmentMetab. Eng. Metabolic EngineeringMetall. Mater. Trans. A Metallurgical and Materials Transactions A: Physical Metallurgy and Materials ScienceMetall. Mater. Trans. B Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing ScienceMetall. Trans. A Metallurgical Transactions AMetall. Trans. B Metallurgical Transactions BMetalloved. Term. Obrab. Met. Metallovedenie i Termicheskaya Obrabotka Metallov Methods Biochem. Anal. Methods of Biochemical AnalysisMethods Enzymol. Methods in EnzymologyMicrob. Comp. Genomics Microbial and Comparative GenomicsMicrobiol. Res. Microbiological ResearchMicrochem. J. Microchemical JournalMicroelectron. Eng. Microelectronic EngineeringMicroelectron. J. Microelectronics JournalMicroporous Mater. Microporous MaterialsMicroporous Mesoporous Mater. Microporous and Mesoporous MaterialsMicroscale Thermophys. Eng. Microscale Thermophysical EngineeringMicrosc. Microanal. Microscopy and MicroanalysisMicrosc. Res. Tech. Microscopy Research and TechniqueMikrochim. Acta Mikrochimica ActaMine Water Environ. Mine Water and the EnvironmentMiner. Eng. Minerals EngineeringMiner. Metall. Process Minerals and Metallurgical ProcessingMiner. Process. Extr. Metall. Rev. Mineral Processing and Extractive Metallurgy ReviewMini-Rev. Med. Chem. Mini - Reviews in Medicinal ChemistryMod. Drug Discovery Modern Drug DiscoveryMod. Phys. Lett. A Modern Physics Letters AMod. Phys. Lett. B Modern Physics Letters BModell. Simul. Mater. Sci. Eng. Modelling and Simulation in Materials Science and Engineering Mol. Cell. Biochem. Molecular and Cellular BiochemistryMol. Cryst. Liq. Cryst. Sci. Technol., Sect. A Molecular Crystals and Liquid Crystals Science and Technology Section AMol. Cryst. Liq. Cryst. Sci. Technol., Sect. C Molecular Crystals and Liquid Crystals Science and Technology Section CMol. Mar. Biol. Biotech, Molecular Marine Biology and BiotechnologyMol. Interventions Molecular InterventionsMol. Microbiol. Molecular MicrobiologyMol. Pharmacol. Molecular PharmacologyMol. Phys. Molecular PhysicsMol. Reprod. Dev Molecular Reproduction and DevelopmentMol. Supramol. Photochem. Molecular and Supramolecular PhotochemistryMon. Not. R. Astron. Soc. Monthy Notices of the Royal Astronomical SocietyMonatsh. Chem. Monatshefte fur ChemieMRS Bull. MRS BulletinMRS Internet J. Nitride Semicond. Res. MRS Internet Journal of Nitride Semiconductor Nachr. Chem. Tech. Lab. Nachrichten aus Chemie Technik und LaboratoriumNano Lett. Nano LettersNanostruct. Mater. Nanostructured MaterialsNat. Biotechnol. Nature BiotechnologyNat. Prod. Lett. Natural Products LettersNat. Prod. Rep. Natural Products ReportsNat. Prod. Sci. Natural Product SciencesNat. Struct. Biol. Natural Structural BiologyNat. Toxins Natural ToxinsNATO ASI Ser., Ser. A NATO ASI Series, Series A Life SciencesNATO ASI Ser., Ser. B NATO ASI Series, Series B PhysicsNATO ASI Ser., Ser. C NATO ASI Series, Series C Mathematical and Physical SciencesNATO ASI Ser., Ser. E NATO ASI Series, Series E Applied PhysicsNATO ASI Ser., Ser. G NATO ASI Series, Series G Ecological SciencesNATO ASI Ser., Ser. H NATO ASI Series, Series H Cell BiologyNaunyn-Schmiedeberg s Arch. Pharmacol. Naunyn-Schmiedeberg s Archives of Pharmacology NDT and E Int. NDT and E International。
THE CRYSTAL STRUCTURE OF THE b0PHASE INAl±Mg±Si ALLOYSS.J.ANDERSEN1,2,H.W.ZANDBERGEN2,J.JANSEN2,3,C.TRáHOLT2,U.TUNDAL4and O.REISO41SINTEF Materials Technology,Applied Physics,7034Trondheim,Norway,2National Centre for HREM,Laboratory of Materials Science,Delft University of Technology,Rotterdamseweg137,2628 AL Delft,The Netherlands,3Laboratory for Crystallography,University of Amsterdam,Nieuwe Achtergracht166,1018WV Amsterdam,The Netherlands and4HYDRO Aluminium,Metallurgical Rand D Centre,Sunndalsùra,Norway(Received17November1997)AbstractÐThe crystal structure of b0,one of the strengthening phases in the commercially important Al±Mg±Si alloys,is determined by use of high resolution electron microscopy(HREM)and electron di raction(ED).A trial structure was established from exit wave phase reconstructed HREM images.A least-square re®nement of the model coordinates was done using data from digitally recorded ED patterns.A recently developed computer program(MSLS)was applied,taking into account dynamic scattering.The atomic unit cell contains two units of Mg5Si6.It is C-centred monoclinic,space group C2/m, a=1.51620.002nm,b=0.405nm,c=0.67420.002nm,b=105.320.58.The atomic packing may be regarded as a hard ball packing using clusters,the clusters being(1)centred tetragons of Mg atoms and(2) so-called twin icosacaps where Mg atoms are centred above and below pentagonal rings of four Si atoms an one Mg atom.A growth related stacking fault in the structure is explained by a de®ciency of Mg atoms.A model for the b0/Al interface is given.#1998Acta Metallurgica Inc.1.INTRODUCTION1.1.GeneralThe discovery of the precipitation hardening mech-anism in the beginning of this century in an Al±Cu alloy has had great implications for all technologies requiring light alloys with some strength,and es-pecially for the aerospace and construction technol-ogies.The increase in hardness that the commercial Al alloys achieve upon hardening is usually a factor of2or more.In the Al±Mg±Si(6xxx)alloys such a tremendous increase in strength is caused by pre-cipitates formed from solution,of merely1wt%of Mg and Si that is added to the aluminium.The maximum hardness is achieved when the alloy con-tains a combination of very®ne fully coherent so-called Guinier Preston(GP-I)zones with diameters about2.5nm,and the semicoherent,larger needles, b0(GP-II zones)with a typical size4Â4Â50nm3. The density of these phases is very high.For the b0 needles,a number density in the matrix of about 104/m m3is normal.This is equal to a volume of nearly1%in the material.The6xxx series alloys are not among the strongest aluminium alloys,but they represent a high share of the aluminium pro-ducts in the world(H20%).In1989,about90%of the tonnage extruded in western Europe,was Al±Mg±Si alloys[1].1.2.The precipitation/transformation sequenceThe phases occurring in the Al±Mg±Si alloys have been studied for more than50years due to the commercial importance of these materials.In1948 Geisler and Hill[2]and Gunier and Lambot[3] reported that X-ray Laue pattern zones indicated the formation of small(H2Â2Â10nm3)needles or Guinier Preston(GP)zones,when the temperature was raised to2008C.Further heating caused the zones to thicken into rods,called b',and®nally a large plate-shaped equilibrium phase,b,was seen to form.The latter was known to be of the f.c.c.CaF2 type with a composition Mg2Si.The alloys that were studied were close to the Al±Mg2Si section of the Al±Mg±Si phase diagram;therefore it was assumed that the composition of all the Mg±Si con-taining phases was ter experiments have shown that the precipitation and transformation is quite complicated and that except for the equili-brium phase,b,the phases involved do not have the stoichiometric ratio Mg2Si.In Table1the transformation sequence at low ageing temperatures for alloys near the quasi-binary section Al±Mg2Si of the phase diagram is summar-ised.The range of existence and sizes of the b'rods and b plates depend not only on the heat-treatment, but on several other factors as well,such as cooling rate from homogenisation or extrusion and the number of Al±Fe(+Mn)±Si containing phases (dispersoids)in the material.This will not be dis-cussed in this paper.In the following a discussion of the precipitation/ transformation sequence shown in Table1is given.Acta mater.Vol.46,No.9,pp.3283±3298,1998#1998Acta Metallurgica Inc.Published by Elsevier Science Ltd.All rights reservedPrinted in Great Britain1359-6454/98$19.00+0.00 PII:S1359-6454(97)00493-X32831.2.1.Atomic clusters.After rapid cooling from homogenisation or extrusion the material is super-saturated with Mg and Si.Due to the higher solubi-lity of Mg in Al,when stored at room temperature or heated,Si ®rst goes out of solution and forms small clusters,but there are also some indications of clustering of Mg [5].The nucleation of Si-clusters will occur at quenched-in vacancies at temperatures as low as À508,below which the vacancy movement becomes very low [6].Storing or heating above À508will cause Mg to di use to the clusters,and Mg±Si phases will pre-cipitate.The di usion of Mg to the Si clusters has been veri®ed through APFIM [5,7]where the ratio of Mg/Si in the average cluster was found to increase with time when heated at 708.Since the number of Si clusters formed will be important for the precipitation of the strengthening GP zones,the storing time at a low temperature before arti®cial ageing is important concerning the material proper-ties.1.2.2.GP zones and the b 0phase .The ®rst phase to precipitate on the small clusters is the GP zones.Based on a TEM study of Al±Mg 2Si [8]Thomas proposed a model for these particles;Mg and Si replace Al in such a ratio that the occupied volume is about the same.He proposed a simple substi-tution along 110-directions with strings of atoms in the sequence Mg±Si±Mg±Mg±Si±Mg.Here two di-ameters of Mg (2Â0.32nm)and one of Si (0.235nm)amounts to 0.874nm,as compared with three diameters of Al (0.859nm).In more recent research the evolution of GP zones in several Al±Mg 2Si alloys was studied by calorimetry [6],in 6061by calorimetry and TEM [5],and by atom-probe ®eld-ion microscopy (APFIM)and TEM/HREM [5,7].These works support the view that there are at least two phases in the size range of the GP-zones,called GP-I and GP-II.For the GP-I type the size is in the range 1±3nm.The crystal structure is unknown.The zones are fully coherent and probably have a spherical shape.Dutta and Allen [9]observed by TEM small spot-like features of ``unresolved''shape of about 2.5nm that should be the GP-I zones.Particles investigated by APFIM [5]with comparable dimensions to these zones seem to have Mg/Si ratios usually less than 1.This composition is therefore di erent from that of the model proposed by Thomas [8].The GP-II zone is the same phase as the currently investigated b 0phase.This phase has the shape of ®ne needles,typically about 4Â4Â50nm 3when the material is in the aged-hardened condition [7,10].In this condition the number density of the nee-dles is high;typically 104/m m 3[10].The b 0phase is fully coherent only along the b -axis.Edwards et al.[7]managed to determine the unit cell of the b 0phase by electron di raction.It was found to be a monoclinic C-centred structure with a =0.153420.012nm,b =0.405nm,c =0.68320.015nm,b =10621.58.The b -axis is along the needle-axis.It is the full coherency of GP-I zones,the semi-coherency of the GP-II zones together with their high number densities that introduce in the alu-minium matrix strain and resistance against move-ment of dislocations,that gives the material its mechanical strength.1.2.3.The b 'phase .The next phase in the trans-formation sequence after the GP-I zones and the b 0phase is the b 'phase.This has a lower Mg/Si ratio than the equilibrium b phase.Lynch et al.found by X-ray microanalysis evidence for a ratio of Mg/Si in the b 'rods in an overaged material to be about 1.73[11],while Matsuma et al.[12]later determined the ratio to be about 1.68.For materials with excess silicon relative to Al±Mg 2Si there may be very small precipitates also of the b 'and a so-called B 'phase that is richer in silicon,or even Si particles [4].Because of this such particles with sizes comparable to b 0[7,4]may be mistaken for the b 0phase.The b 'and the B 'phase are reported as having the hexa-gonal unit cells a =0.705nm,c =0.405nm and a =0.104nm,c =0.405nm,respectively.In Refs [7,4]the relative number of b 0as compared with the smallest b '(and B ')particles was not deter-mined.It was recently suggested that b 'is a h.c.p.structure with a =0.405nm,c =0.67nm [12,13].1.2.4.The b phase.The b phase is the equilibrium phase in this system.It is the only phase up to now with a known structure.It is a CaF 2type f.c.c.structure with a =0.639nm having formula Mg 2Si.The structure may be described as strings of three atoms,Mg±Si±Mg,on the corners and faces of a cube,directed along the diagonals.Table 1.The evolution of Mg±Si phases near the quasi-binary section Al±Mg 2Si (top to bottom)Transformation/precipitation sequence Crystal type Size (nm)Composition Clusters of Si and fewer of Mg unknown unknown Si (Mg)Clusters containing Si and Mg unknown unknown Mg/Si <1Coherent spherical GP-I zonesunknown H 1±3Mg/Si H 1Semi-coherent GP-II zones (b 0needles)monoclinic H 4Â4Â50Mg/Si r 1b 'rods (and B 'rods)hexagonal H 20Â20Â500Mg/Si H 1.7b -Mg 2Si platescubicmicronsMg/Si =2The B 'phase is observed with alloys having excess Si relative to Al±Mg 2Si.It contains more Si than b '[4].ANDERSEN et al.:Al±Mg±Si ALLOY32841.3.SummationSumming up the information above,it appears that the phases that evolve from the very®ne Si-clusters into coarser particles take up progressively more magnesium during the coarsening and trans-formation processes,until an equilibrium compo-sition Mg2Si for the b phase®nally is reached.In this paper we report the structure determi-nation of the b0phase,which must be one of the important hardening phases in the commercial6xxx alloys.The technique used in the structure determi-nation is the through focus exit wave reconstruction technique in high resolution electron microscopy,in combination with quantitative electron di raction.2.EXPERIMENTAL2.1.Material and sample preparationThe as-received material was in the shape of extruded sections.It was supplied by HYDRO Aluminium AS(Sunndalsùra).The composition of the material was Al±0.2Fe±0.5Mg±0.53Si±0.01Mn (wt%).The material is from the same batch and extruded sections as investigated in Refs[10,14], there labelled as A and C,respectively.Specimen preparation and location in the extruded section of the samples for TEM are described in Refs[10,14]. Prior to the arti®cial ageing(5h at1858)the ma-terial had undergone a rather standard processing for an extrusion product.After the jet-polishing, specimens were stored in methanol.Most of the TEM experiments were performed within a day after specimen preparation.2.2.TEM equipment and experimental dataAll TEM work was performed using a PHILIPS CM30-ST/FEG electron microscope operated at 300kV.The microscope is equipped with a Photometrix1024Â1024slow scan CCD camera (12bits dynamical range),enabling a linear record-ing of HREM and ED puter control of the CCD camera and the microscope is handled with a Tietz software package.In this way series of 15±20HREM images with focus increments of typi-cally 5.2nm were recorded for each exit wave reconstruction.For the high resolution work suitable aluminium grains were selected and tilted into a h100i zone axis.HREM images were recorded at room tem-perature on as thin areas as possible,typically4±10nm.Needles were selected that could be viewed along their[010]zone axis.In this situation,the needles usually extend through the whole thickness of the specimen,such that no image blurring occurs due to overlap with the matrix.For a single image, the exposure time was usually about1s.For the di raction experiments a small spot-size (5±10nm)was used with exposure times of1±5s. Two zone-axes of the needles were chosen;[010]and[001].For the latter,the aluminium grain was tilted to a h310i zone axis,where statistically one out of six needles is in the correct orientation. Many of the needles contain stacking-faults or sec-ond phases.For a reliable structure determination it is important that the area where a di raction pat-tern is taken is free of defects.Given the resolution of the microscope it should be relatively easy to select single crystalline b0particles.However,to prevent the rapid contamination of the illuminated area that is typical for this kind of specimen at room temperature,the specimen was cooled to about100K.The sample cooling holder has a much poorer mechanical stability resulting in such a loss of resolution that selection of single crystal b0particles was di cult.Because of this ED pat-terns were taken from each particle encountered. Therefore quite many di raction patterns had to be discarded because of streaking and twinning prob-ably caused by the stacking-faults or sometimes extra spots caused by a intergrown phase that was determined to be b'.Five[010]di raction patterns were selected.For the[001]zone axis there is a greater chance of``cross-talk''due to more overlap of the matrix with the crystal,and suitable di rac-tion patterns for the re®nement were more di cult to®nd.Here®ve of the16recorded patterns were from the correct projection or particle.Only two of these patterns could later be re®ned.In addition to the problem with overlap spots from the b'phase, the reason was also the strong interference with the aluminium matrix in this projection that made sub-traction of the background di cult.The thickness of the investigated areas were somewhat larger for the di raction experiments than for the HREM ex-periments.The subsequent re®nements showed that the thickness usually exceeded10nm.In Fig.6, parts of two of the digitally recorded di raction images are shown.This®gure also shows some streaking caused by oversaturation of the CCD camera,which was not equipped with over¯ow pro-tection.The streaks and the aluminium di raction re¯ections were excluded from the images prior to data reduction.The exit wave reconstruction of the HREM focus series were done with a software package based on algorithms developed by Van Dyck and Coene[15±17].Given the coherency of the presently available ®eld emission guns the structural information in ordinary HREM images goes well beyond the point-to-point resolution in the electron microscope. The reconstruction method takes advantage of the knowledge about the transfer function,e.g.how the microscope optics distorts the electron wave after leaving the crystal(the exit wave)on its way to the image plane.This distortion is also a function of defocus.A series of HREM images are recorded at intervals of known defocus.The amplitude and phase information that is mixed up in the HREM images is retrieved through digital processing,andANDERSEN et al.:Al±Mg±Si ALLOY3285corrections for focus and spherical aberration are done.Furthermore,since typically15±20images are used in the reconstruction a considerable reduction in noise is attained.The exit wave is thus independent of various aberrations of the electron microscope, but it is still dependent on the specimen thickness. Only for very small specimen thicknesses is the exit wave very similar to the projected potential,viz.the projected atomic structure.For thicker sections,e.g. more than about10nm for the presently presented exit wave image,the local contrast in the exit wave can be quite di erent from the local scattering poten-tial.Thus,for such thicknesses a higher brightness at a certain point in the phase image of the exit wave as compared to other points,does not have to imply the presence of a locally more strongly scattering atom at this point.The good news is that the positions of the bright dots should correlate well with the location of the atoms.In the presently used electron microscope the res-olution is enhanced from0.20nm to about0.14nm. The HREM images presented in this work are recombined exit wave phase images.See Coene et al.[17],Zandbergen et al.[18]and Op de Beeck et al.[19]for examples and discussion of the method. The re®nement of the structure was done using the computer programme package MSLS[20].The CCD images with the di raction patterns were cor-rected for the¯at®eld(variation in the pixel sensi-tivity)and over¯ow during read-out of the CCD camera.Spurious X-ray signals and the Al di rac-tion spots were omitted.Automatic indexing and data reduction on the patterns were done.The obtained two-dimensional indices of the images were next transformed into the correct hkl indices so that the di raction data sets could be combined. MSLS was used for re®nement of the trial structure coordinates as obtained from the reconstructed exit wave.This program re®nes coordinates based on the least-squares procedure using the multi-slice al-gorithm to account for the dynamic di raction.The parameters re®ned were the thickness,the scaling factor,the centre of the Laue circle for each of the data sets,and the atomic coordinates and tempera-ture factors.The R-value used as measure of the correctness of the structure is de®ned as R=a(I calcÀI obs)2/a(I obs)2.Only the signi®cant re¯ections(I obs>2s(I obs))were used.R-values between2and6%are being quoted for the most reliably determined structures.3.RESULTS/DISCUSSION3.1.Conventional HREM/TEMConventional TEM shows the interior of the Al grains to mainly contain particles having a®ne nee-dle shape.The needles lay along h100i Al directions. Figure1gives an example.It is a bright®eld image in an Al h100i zone axis where the needles clearly point in two normal directions.The dark spots are needles pointing in the viewing direction.The exper-imental di raction patterns as well as HREM images show that the needle shaped particles mostly are of one kind,the monoclinic phase that is usually referred to as the b0phase.Figure2shows a HREM image with one such needle.Such images show the precipitates to be coherent along the nee-dle direction(their b-axis)with a h100i Al direction. This con®rms that their cell parameter is the same as aluminium,b=0.405nm.Many of the b0precipitates were found to con-tain stacking faults.In some precipitates an inter-growth of b0with another phase was observed.It is most probably the b'phase which has the hexago-nal axis along the needle direction.Sometimes this phase was found to exist alone.The cell parameter a=0.705nm has been con®rmed from exit wave simulated images.These images will be published later.In the same material coarser rods of the b' phase have earlier been investigated;It was reported that they nucleate on®ne Al±Fe±Si particles[14].It may be expected that much of the b'particles nucle-ate on b0since with longer arti®cial ageing times the micro-structure will contain an increasing amount of rods of b'.By selected area electron dif-fraction the coarse b'phase in this material was determined to have a hexagonal structure with a H0.71nm,c H0.41nm.The a-axis therefore®ts well with the phase intergrown with b0.The struc-ture of the small and large b'is therefore probably the same.We did not observe any B'phase in the material.3.2.Elemental analysis of the b0phaseWe performed several X-ray analyses of the small precipitates with the spot along the needle axis. Due to the very thin specimen areas(10±40nm)the spectra obtained should in principle not be signi®-cantly in¯uenced by absorption in the specimen, which is the most important reason for deviations from the actual concentration.In spite of the small size of the spot(1±2nm),there was always an Al peak present in the spectrum,of varying height. This is partly caused by stray electrons travelling down the column of the electron microscope which are not focused with the rest of the electrons in the beam probe and therefore many hit aluminium. Secondly,because during analysis the beam is par-allel to the needle axis,i.e.to the[010]zone axis of b0,this implies an e ective beam broadening by the elastic scattering of some electrons into aluminium. For some of the recordings there is also an e ect of specimen drift during recording.Another e ect is the contamination layer and the(aluminium)oxide layer on the surface of the particle which primarily contains Al.The EDS experiments could therefore not rule out that some Al is contained in the precipitate.As a standard for determining the K-ratios a mineral forsterite was used whose mainANDERSEN et al.:Al±Mg±Si ALLOY 3286components are MgO and SiO 2with a composition so that the Mg/Si atomic ratio is 2.Not taking into account the possible systematic deviations,the EDS experiments indicated that the atomic ratio for Mg/Si was close to or even below 1.The accuracy of these measurements were on the order of 10%.However,they ruled out the earlier accepted ratio of 2for the b 0phase.EDS measurements were also performed on larger particles of the b 'and b -Mg 2Si phases which had been extracted from the alu-minium matrix.These phases gave compositions near the expected,as listed in Table 1.The accuracy here was much better for thin sections since the alu-minium matrix could be avoided entirely.3.3.Exit wave reconstruction3.3.1.The unit cell.Coherency of the b 0phase with the matrix .In Fig.3a reconstructed exit wave (phase)of a b 0particle in the [010]orientation embedded in aluminium is shown.The b 0[010]direction is parallel to a h 100i type aluminium zone axis and is along the needle.Atomic columns in the viewing direction in the image appear as bright dots.The columns in the Al matrix are clearly resolved;in this projection the separation between nearest neighbor columns are 0.2025nm,or half the Al unit cell length.Due to the face centering of alu-minium the nearest neighbor atom columns are also shifted 0.2025nm in the viewing direction relative to each other.In the ®gure circles are drawn that indicate the two di erent height positions of the atoms in the viewing direction.The lattice image of the Al matrix changes over the image due to local variations in tilt.The b 0unit cell is outlined in the particle.Due to the C-centering,the a -axis is twice the apparent periodicity.By calibrating the magni®cation of the image using the aluminium lattice,the unit cell was established to be a =1.51620.002nm,c =0.67420.002nm and b H 105±1068.HREM of other nee-dles lying in the normal direction (Fig.2)have shown that there is a full coherence between the crystal along the b -axis with the same periodicity as the aluminium matrix;therefore b =0.405nm.In the re®nement of di raction images for this zone axis,the monoclinic angle is calculated.It was found to have a mean value b =105.320.58when averaged over 7di raction patterns.The b 0unit cell is closely related to the alu-minium lattice.From di raction patterns (Fig.5)asFig.1.A typical low magni®cation micrograph of b 0needles in a h 001i Al zone axis.Needles are directed along the three h 100i Al directions and appear therefore point-like (dark spots)in the viewing direction.The needles have a mean diameter of about 4nm,and an average length about 50nm.Alarger b 'rod (white appearance)is directed in the viewing direction in the centre of the image.ANDERSEN et al.:Al±Mg±Si ALLOY 3287well as from the exit wave (Fig.3)the following relationship between the phases can be found; 001 Al k 010 b 0,"310 Al k 001 b 0,230 Al k 100 b 0This relationship is the same as found earlier byEdwards et al.[7].A corresponding super cell in aluminium can be de®ned by real vectors ~ab 0 2~a Al 3~b Al ,~b b 0~c Al ,~c b 0 À32~a Al 12~b Alwith respective lengths 1.46,0.405and 0.64nm witha monoclinic angle of 105.38.Half of this super cellis outlined in Fig.3on the left side of the b 0par-ticle.The super cell is also C-centred monoclinicsince two neighbor corners of the half cell along ~ab 0fall on Al atoms in di erent layers.The unit cell for b 0is slightly larger than this Al super cell;3.8%along ~ab 0and 5.3%along ~c b 0.The half super cell (asymmetric unit)contains 11Al atoms.The coherency between b 0and aluminium aids in quantifying the shift of the stacking fault (sf)in the particle that is indicated in Fig.3;By using the Al matrix as reference it can be veri®ed that Al atoms at the left interface,at the upper part (e.g.near the white corners of the unit cell of b 0)are at a di er-ent height relative to similar atoms of b 0on the lower part (here with a black ®ll){.This is illus-trated by the two outlined (half)super cells in the Al matrix that are related to the unit cell of b 0in the upper and lower part of the particle.These super cells are shifted a vector a Al [101]/2relative to each other,which indicates that the shift across the stacking fault in the particle is nearly the same.This shift vector is a Burgers vector of the most common dislocation in aluminium.A model of the fault is given in Section5.Fig.2.Ordinary HREM image of b 0-needle in an h 001i zone axis in Al.The c -axis of the needle is in the plane,and the coherency with h 100i Al in the needle direction is evident.As expected,there is no exact zone axis of b 0along the viewing direction h 001i Al zone axis.The left part of the picture was fourier ®ltered;A high pass ®lter was applied to the upper part and a low pass ®lter to the lower partto extract the periodic information from Al (upper)and the b 0-phase (lower)only.{Alternatively,assume the corners of the outlined unit cells of b 0on each side of the stacking fault to be at thesame heights along ~cb 0.The atoms to the left of Ðand in the matrix outside Ðthese corners must then necessarily have similar heights,since the atomic con®guration and distances to the left of these corners are similar,whether above or below the stacking fault.This assumption must be wrong;When keeping track of the atomic columns in the matrix it leads to the conclusion of an Al atom being at two heights at the same time.Therefore,the corners ofthe unit cells along ~cb 0have di erent heights across the stacking fault.ANDERSEN et al.:Al±Mg±Si ALLOY3288In Fig.4the coherency between the two phases can be studied in more detail.This image is a Fast Fourier Transformation (FFT)of part of Fig.3.Only the lower part of the b 0precipitate is included to reduce streaking caused by the stacking fault.After applying a Fourier ®lter (selecting the con-tents inside the circles superposed on the FFT of Fig.4)the Al re¯ections plus the 610,610,403and 403re¯ections of b 0contribute to the image in Fig.5.The white arrows indicate interface dislo-cations between the particle and matrix.For example,the b 0(601)lattice planes with a spacing d 601=0.211nm are parallel with the Al (200)planes with a spacing of 0.203nm.Therefore,one interface dislocation is expected for each 25Al d 200spacings (normal to the [100]axis in the ®gure).Similarly,for the 403planes,for each 20Al d 020spacing one expects an interface dislocation.The spacings between dislocations observed in Fig.5are di erent from the theoretical ones.The reason for this devi-ation is probably variation in local strain in the particle caused by the stacking fault.Although the exact dislocation is not clear in the image,a matrix dislocation found (marked ``d '')also complicates the situation concerning the mis®t dislocations.This dislocation is found to have a Burgers vector b =0.5a Al [101],as was found when a Burgers vec-tor loop was performed around the particle.This is indicated by the open arrow (d).In Fig.6,two ex-perimental di raction images from the [010]and [001]zone axes are shown.The b 0610and 403re¯ections that coincide with the 200and 020Al matrix re¯ections can also be seen in Fig.6(a).In Fig.6(b)the perfect coherency relation of the (010)lattice planes of the b 0phases with (200)lattice planes can be seen from the overlap of the respect-ive di raction spots.3.3.2.Extraction of the atomic coordinates for b 0from the exit wave images .Figure 7(a)is an increased magni®cation of part of Fig.3.Here the atomic columns are represented as white dots.From this image the atomic positions were esti-mated using the following assumptions:(1)The number of atoms in the unit cell is 22,just as the number of atoms in the similar super cell in aluminium.The number ®ts the apparentnumberFig.3.Phase of an reconstructed exit wave of a typical b 0needle in Al is shown.The needle is viewed head-on along its [010]axis,and along an Al h 001i zone axis.Atomic columns appear white.The b 0unit cell and half the corresponding super cell in Al are outlined.Similarly ®lled circles in the matrix or in the precipitate are atoms (Al or Mg)at the same height.A stacking fault (sf)is indicated.The shiftacross the stacking fault can be determined to be a Al [101]/2.ANDERSEN et al.:Al±Mg±Si ALLOY 3289。
Crystallographic properties of KSr2Nb5O15Silvania Lanfredi1,*,Celso X.Cardoso,Marcos A.L.NobreFaculdade de Cieˆncias e Tecnologia–FCT,Universidade Estadual Paulista–UNESP,C.P.467,CEP:19060900,Presidente Prudente,SP,BrazilAbstractNanostructured KSr2Nb5O15oxide was synthesized by the polymeric precursor method,a chemical synthesis route based on the Pechini’s method.The X-ray diffraction(XRD)pattern of the calcined powder at11508C were performed in the angular range52u1208with a 0.028step and afixed counting time of30s.The XRD data were analyzed by the Rietveld refinements using the FullProf software.The results showed a tetragonal system with the tetragonal tungsten bronze structure(TTB)type(a=12.4585(2)A˚and c=3.9423(6)A˚,V=611,90 (2)A˚3).In this work,the sites occupancy by the K+and Sr2+cations on the TTB type structure were determined.The thermal parameters(B) were analyzed.#2004Elsevier B.V.All rights reserved.Keywords:KSr2Nb5O15;Chemical synthesis;Tetragonal tungsten bronze;Rietveld method1.IntroductionFrom ferroelectricity discovery and related properties in BaTiO3in1945[1],a large amount of research has been addressed to ferroelectric oxides,in the search by new materials and properties for technological applications.High performance dielectric ceramics act as a key materials for resonators and temperature compensated capacitors.Some ferroelectric polycation oxides are also very important due to the microwave telecommunications progress involving satellite broadcasting and other related devices[2,3].Inten-sive technological research on the next generation of wire-less telecommunications devices has revealed a lack of proper materials for use in new electronic elements and devices.This lack of advanced materials represents a chal-lenge to development of the next generation of materials for microwave application.Although this problem is widely understood,there is still an insignificant interaction between electronic engineers and their materials science counter-parts,which would significantly enhance the progress in this field.In some cases,industrial requirements are not fully recognized by non-industrial segments due to an absent of significant level of communication and analysis of import-specific details of this research area.An among ferroelectric oxides,especially some oxides with the tetragonal tungsten bronze structure(TTB)type are in forefront both in the area of research as well as in industrial applications.Taking into account TTB structure type,a wide variety of cations substitution is possible due the presence of several inter-stices called A,B,and C,respectively[4-6].The tetragonal tungsten bronze-type structure can be considered as a deri-vative of the classical perovskite one.The crystal structure of the TTB-phase is shown in Fig.1[7].It can be described by the chemical formula(A1)2(A2)4C4Nb10O30.A1,A2, and C denote different sites in the crystal structure.The A1 cavities have a cuboctahedral coordination of oxygen atoms, the A2cavities a pentacapped pentagonal prismatic,and the C cavities a tricapped trigonal prismatic one.The size of these cavities decreases in the order A2>A1>C.TTB type compounds,alkaline and/or alkaline-earth metals are located in the A1and A2sites,while only small cations like Li are found in the C site[8].TTB-type compounds with A6Nb10O30formulae,with A=Sr,Ba, are semiconductors containing niobium ions.One possible reason for the semiconducting behavior of these compounds may be the low electron concentration compared to the metallic Na4.5W10O30.However,the increase of the number/locate/msebMaterials Science and Engineering B112(2004)139–143 *Corresponding author.E-mail address:silvania@prudente.unesp.br(nfredi).1Member of the UNESP/CVMat–Virtual Center of Research inMaterials.0921-5107/$–see front matter#2004Elsevier B.V.All rights reserved.doi:10.1016/j.mseb.2004.05.021of charge carries is possible by replacing of divalent alkaline earth cations with trivalent lanthanoids,in according to M 2þ6Àx Ln 3þx Nb 10O 30.The distribution of metal cations in different interstices can improve physical properties,such as electro-optic,nonlinear,elasto-optic and pyroelectric properties [9].These properties depend on the morphology of the specimen and the method of synthesis.Alkali-metal niobate powders are typically prepared via solid-state reaction using alkali-metal carbonate and nio-bium oxide as starting materials [10].However,this tradi-tional method does not always lead to a homogeneous mixture of compounds.Process of grinding and regrinding are typically necessary.This preparation process involves several restrictions to powder features being all one inherent to this processing technique.As an example,metastables intermediate phases can be found when powders are pre-pared by conventional methods.Furthermore,high calcina-tions and sintering temperatures are required to complete the synthesis reaction and densi fication due the low surface area of raw and products powders,respectively.Indeed,this method does not always allow the production of homoge-neous single-phase ceramics.Otherwise,oxides synthesis based on the chemical methods lead to simultaneous improve-ment of several chemistry and physic parameters such as stoichiometry,texture control,chemical homogeneity and single phase.A wide range of chemical routes adequate to the powder synthesis has been developed for preparing of niobate.Coprecipitation and sol-gel processes are the most common chemical routes [11,12].Another interesting methods to prepare ceramic powders have been described elsewhere,such as the polymeric pre-cursor method [13-16],the wet chemical method using a water-soluble malic acid complex [17]and hydrothermal synthesis [18].It is interesting to note that a major part ofchemical synthesis methods exhibit a great potential to prepare reliable solid solutions involving signi ficant rela-tives fractions of cations of alkali metal or another doping one.In general,few studies on the electrical,dielectrical and structural properties have been addressed to the KSr 2Nb 5O 15system of TTB type structure.Furthermore,in several studies reported elsewhere,oxides belong to the TTB sys-tems have been prepared by conventional method.In this work,the KSr 2Nb 5O 15single phase powder was synthesized by a chemical method based on the Pechini ’s method termed Polymeric Precursor method.The powder was characterized by X-ray diffractions.The crystallographic parameters,as unit cell and atomic parameters,of the KSr 2Nb 5O 15powder with TTB type structure were re fined from the Rietveld method.2.Experimental2.1.Synthesis procedurePolymeric precursor method has been successfully used to synthesize nanometric [15,19]and nanostructured pow-ders [15,19,20]depending on the calcinations temperature.Typically,nanometric particles exhibit amorphous character on the XRD analysis [15].Further crystallinity degree is attained at more higher calcinations temperature,which is accomplished of particle growth [15,20].As a function of particle growth,the development of nanostructures occurs [20].KSr 2Nb 5O 15single phase powder was synthesized by the polymeric precursor method (PPM)a route of chemical synthesis based on the method developed by Pechini [21].As a whole,this method gives rise a better control of reagents,a low calcination temperature,a single phase material and powder with high speci fic surface area.The starting reagents for the powder synthesis via che-mical route were citric acid H 3C 6H 5O 7ÁH 2O (99.5%reagent),ethylene glycol HOCH 2CH 2OH (98.0%Synth)and niobium ammonium oxalate NH 4H 2[NbO(C 2O 4)3]Á3H 2O (CBMM-Brazil),strontium nitrate Sr(NO 3)2(99.5%)and potassium oxalate K 2C 2O 2ÁH 2O (99.5%).The ratio among of chelating agents used was 3mole of citric acid for each mol of metallic cations to be chelated.The ratio between citric acid and ethylene glycol is given in weight percentage,for a solution of 60%in weight of citric acid,40%in weight of ethylene glycol was used.Citric acid was dissolved in ethylene glycol at 908C,while the solution was continuously stirred in a beaker.In the sequence,each salt was dissolved.Due to the slow rate of solubilization of NH 4H 2[NbO(C 2O 4)3]Á3H 2O in the ethylene glycol/citric,100ml of distilled water was added,which promotes a fast salt solubilization.After com-plete dissolution of salts,a colorless and translucent solu-tion was achieved being the temperature raised to 1408C promoting the polyester formation.After the polyesteri fica-tion reaction,a polymeric gel is obtained.The polymer isnfredi et al./Materials Science and Engineering B 112(2004)139–143140Fig.1.Schematic representation of the tetragonal tungsten bronze structure (TTB).maintained in the beaker undergoes a primary calcination in a furnace type box at3508C during3h.This process leads to the partial polymer decomposition forming a puff or expanded resin,which consists in a brittle reticulated mate-rial.As a function of gases emanation(CO,CO2and H2O) and O2consume,an atmosphere renovation of the furnace should be guaranteed.This material was deagglomerate (350mesh)in an agate mortar being termed precursor.This brittleness material was ball milled in a polypropy-lene jar using as grinding media zircon balls during10h in isopropyl alcohol.Thus,the material was dry in a grove box with forced air circulation at508C and deagglomerate in agate mortar at a350mesh minimum.The precursor was calcined in a tube furnace with integral oxygen atmosphere. An oxygenflux of300ml/min was maintained during a complete thermal cycle,heating cycle and cooling cycle. The heating cycle was carried out via two calcination steps.From room temperature,the temperature was increased using a heating rate equal to10o C/min up to3508C;at this point the temperature was kept constant during3h.In the sequence,the same heating rate was used being the tem-perature increased at11508C being maintained during10h. After this cycle,the furnace was cooling to the natural rate. The oxygenflux was maintained constant at300ml/min during the cooling cycle.2.2.X-ray instrumentation and analysisThe powder obtained from calcination of the precursor in oxygen atmosphere was characterized by X-ray diffraction (XRD).A diffractometer with Cu K a radiation(l=1.54A˚) and a graphite monochromator were used.Measurements were carried in the angular range582u1208,the scanning step of0.028andfixed counting time of30s.The diffraction pattern is refined in according to the Rietveld method.The refinement was performed using the program Fullprof[22]. The parameters and variables adopted during the refinement process are the background coefficients,profile coefficients, histogram scale,lattice parameters,linear absorption coeffi-cients,coordination parameters or oxygen parameters(X)and isothermal parameters for four kinds of atoms(K,Sr,Nb and O).The background level wasfitted with afive-order poly-nomial function and the peak shape with a pseudo-V oigt function.The tetragonal tungsten bronze niobate synthesized was identified from the JCPDS card number34-0123.The thermal stability and properties were investigated by differential thermal analysis(DTA)and differential scanning calorimetry(DSC).The measurements were carried out in air atmosphere at heating rate equal to108C/min,in the temperature range fromÀ1008C to5008C for DSC analysis and from room temperature up to12008C for DTA analysis. In both thermal analysis none endothermic or exothermic phenomenon was detected.The physical and chemical behavior observed suggest a great thermal stability of the KSr2Nb5O15powder prepared,in according to previous procedure and parameters of preparing.3.Results and discussionX-ray diffraction profile showed the formation of the KSr2Nb5O15TTB with single phase and crystalline char-acteristic.The Rietveld method was used to determine the set of crystallographic parameters of the KSr2Nb5O15 oxide synthesized by chemical route.Table1shows the initial atomic parameters of the proposed structure for thenfredi et al./Materials Science and Engineering B112(2004)139–143141Table1Atomic coordinates,isotropic thermal parameters B(A˚)and relativeoccupancies PAtoms Wyckoffpositionx y z B PSr(1)2a000.008(6)0.59(10)0.25K(2)4c0.1718(4)0.6718(5)À0.0209(7) 2.75(3)0.25Sr(2)4c0.1718(4)0.6718(5)À0.0209(7) 2.75(3)0.25Nb(1)2b01/21/20.74(4)0.25Nb(2)8d0.0762(3)0.2133(3)0.4768(4)0.10(6)1O(1)8d0.1568(2)0.0696(3)0.5399(7)0.04(5)1O(2)8d0.3489(3)0.0067(10)0.5339(8)0.07(5)1O(3)8d0.0731(3)0.2072(9)0.0235(7)0.07(5)1O(4)4c0.2842(3)0.7827(9)0.3973(11)0.07(5)0.5O(5)2b01/2À0.101(12)0.07(5)0.25Table2Structural data of the KSr2Nb5O15TTB niobate synthesized by chemicalrouteCrystallographic dataFormula KSr2Nb5O15Crystal system TetragonalSpace group P4bm(No.100)a(A˚)12.4585(2)c(A˚) 3.9423(6)V(A˚)611.90(2)Z2Molecular weight918.79Data collectionTemperature(8C)24Wavelength[Cu K a](A˚) 1.5418Monochromator GraphiteMeasuring range(8)52u120Step(82u)0.02Integration time(s)30Rietveld dataProgram FULLPROFNumber of independent reflections290Number of independent parameters46Function for background level Polynomial5-orderFunction for peak shape(H2=U tan2u+V tan u+W)Pseudo-V oigtU0.0530(4)V0.0230(2)W0.0160(4)R Bragg(%) 6.02R F(%) 4.28c R p(%)13.0c R wp(%)16.1x2 2.98re finement,as well as the isotopic thermal parameters and relative occupancies.Fig.2shows the Rietveld graphic for the KSr 2Nb 5O 15with the observed and calculated X-ray diffraction as well as their difference.On it are represented the observed curve that was obtained by X-ray diffraction (spotted curve)and derived curve (continuous lines).The residual curve and the positions of the peaks (marked by small bars)are shown below.The residual pattern shows that there is a good match between the theoretical and observed X-ray patterns,noted by the small variation along the diffraction angle.The X-ray diffraction pattern obtained was indexed on the basis of a tetragonal unit cell.From observed re flections,there is only evidence of the rule existence [(0,k ,l )k =2n ],which is compatible with space groups P 4bm ,and P 4/mbm .The re finements were performed taking in account the centro-symmetric space group P 4bm .Powder data and experimen-tal conditions are listed in Table 2.The best theoretical adjust were obtained supposing each pentagonal A site (site 4c (x ,x +1/2,z ))statistically occupied by equal quantities of K +and Sr 2+ions and each square B site (site 2a (0,0,z )occupied by Sr 2+ion,as shown in Table 1.KSr 2Nb 5O 15is a ferroelectric material with a Curie temperature at around 430K at 103Hz.In fact,ferroelectric polarization is sup-posed to be due to D z (Nb displacement from its position in the paraelectric phase,at least for displacive ferroelectric.The value of z (coordinate of Nb (2)in 8j sites)is different from z =1/2.In addition,the highly covalent Nb –O bonds ensure a long-range dipolar interaction within the ferro-electric domains and lead to a classical ferroelectric beha-vior [23].R Bragg ,R F ,R p and R wp index values obtained from re finement of the KSr 2Nb 5O 15system,as well as the unitary cell parameters and the volume V are shown in Table 2.The R p index,R p ¼f P W i ðY i o ÀY i c Þ2=P W i Y i o 2Þg 1=2where W i is the weight assigned at each intensity step,indi-cates the agreement between the structure model adopted and the real one.The R wp index,R wp P j Y i o ÀY i c j =P Y i owhere Y i o and Y i care the observed and calculated intensities,respectively,indicates the quality of the re finement.All the re finement indexes obtained for the KSr 2Nb 5O 15are con-sidered very good.The unit cell parameters derived for KSr 2Nb 5O 15were:a=12.4585(2)A˚,c =3.9423(6)A ˚and the volume V cell =611.90(2)A˚3.These values are in accordance with one published previously,which was prepared from the conven-tional method (mechanical mixture of oxides/carbonates)with thermal treatment at high temperature (1300–15008C and 10–30h of thermal treatment).Comparison between the data of this work with one publishing elsewhere [24]showed that the KSr 2Nb 5O 15oxide obtained in this work,exhibits a minor isotropic thermal parameter B value with relation to one of the KSr 2Nb 5O 15oxide prepared by con-ventional method [24].Since B parameter is connected tonfredi et al./Materials Science and Engineering B 112(2004)139–143142Fig.2.Rietveld graphic for KSr 2Nb 5O 15synthesized by chemical route.order–disorder degree,a more higher B value suggests some superior disorder degree in the structure[25].Then,it is possible to hypothesize that KSr2Nb5O15oxide synthesized in this work exhibits a small static disorder in the grain interiors and/or grain boundary regions.This feature is compatible with process of rearrangement and growing up of crystallites from sintering phenomenon of the nanostruc-tures[15,19,20].Based on the natural development sequence of particles considering the method of synthesis used in this work,i.e.nanoparticles!nanostructures!submicro-metric particles!micrometric particles,it seems that continuous defragmentation of crystallites and eventual annihilation of disordered domains can be connected with enhancement of order aspects at least during high tempera-ture treatment.Some kind of order retrieving has been reported after thermal annealing of disordered material,in which a disorder degree has been created by mechanical refinement in crystallite size[26].4.ConclusionThe chemical synthesis based on Pechini’s method showed an adequate method to prepare KSr2Nb5O15single phase with controlled stoichiometry.In addition,KSr2Nb5-O15crystalline powder was obtained at lower temperature than one prepared by conventional mixture of oxides.The Rietveld refinement showed that the KSr2Nb5O15TTB type structure presents a space group compatible with P4bm and each pentagonal A site is statistically occupied by equal quantities of K+and Sr2+ions and each square B site is occupied by Sr2+ion.AcknowledgementsThis work was supported by the Brazilian research funding institutions FAPESP.The authors wish to acknowl-edge Prof.P.Gravereau for training on the Rietveld method analysis and Dr.S.Pechev for help in the manipulation of the Fullprof program,and the CBMM-Brazil for providing the niobium salt.References[1]B.Wul,L.M.Goldman,C.R.Acad.Sci.URSS46(1945)139.[2]D.Kolar,S.Glaberscek,Z.Stadler,D.Suvorov,Ferroelectrics27(1980)269.[3]X.M.Chen,Y.Suzuki,N.Sato,J.Mater.Sci:Mater.Electron.5(1994)244.[4]P.R.Slater,J.T.S.Irvine,Solid State Ionics124(1999)61.[5]K.Tatsumi,M.Hibino,T.Kudo,Solid State Ionics96(1997)35.[6]B.Tribotte´,J.M.Haussonne,G.Desgardin,J.Eur.Ceram.Soc.19(1999)1105.[7]A.Magneli,Ark.Kemi1(1949)269.[8]S.C.Abrahams,P.B.Jamieson,J.L.Bernstein,J.Chem.Phys.54(1971)2355.[9]N.Wakiya,J.K.Wang,A.Saiki,K.Shinozaki,N.Mizutani,J.Eur.Ceram.Soc.19(1999)1071.[10]C.L.Wang,Y.G.Wang,P.L.Zhang,W.L.Zhong,H.S.Zhao,SolidState Comm.85(1993)331.[11]nfredi,L.Dessemond,A.C.M.Rodrigues,J.Eur.Ceram.Soc.20(2000)983.[12]M.A.L.Nobre,nfredi,Catal.Today78(2003)529.[13]M.A.L.Nobre,nfredi,J.Appl.Phys.93(2003)5576.[14]M.A.L.Nobre,nfredi,Appl.Phys.Lett.81(2002)451.[15]M.A.L.Nobre,E.Longo,E.R.Leite,J.A.Varela,Mater.Lett.28(1996)215.[16]M.A.L.Nobre,nfredi,Appl.Phys.Lett.82(2003)2284.[17]E.R.Camargo,M.Kakihana,Solid State Ionics151(2002)413.[18]I.C.M.S.Santos,L.H.Loureiro,M.F.P.Silva, A.M.V.Cavaleiro,Polyedron21(2002)2009.[19]R.C.R.Franco,E.R.Camargo,M.A.L.Nobre,E.R.Leite,E.Longo,J.A.Varela,Ceram.Int.25(1999)455.[20]E.R.Leite,M.A.L.Nobre,M.Cerqueira,E.Longo,J.A.Varela,J.Am.Ceram.Soc.80(1997)2649.[21]M.P.Pechini,US Patent No.3.330.697(1967).[22]J.Rodrigues-Carvajal,Collected Abstracts of Powder DiffractionMeeting,Toulouse,France,1990,p.127.[23]S.C.Abrahams,S.K.Kurtz,P.B.Jamieson,Phys.Rev.172(1968)551.[24]H.A.Belghiti,A.Simon,P.Gravereau,A.Villesuzanne,M.Elaatmani,J.Ravez,Solid State Sci.4(2002)933.[25]P.Chatterjee,S.P.Sen-Gupta,Appl.Surf.Sci.182(2001)372.[26]X.Gao,J.Xue,T.yu,Z.Shen,J.Whang,J.Am.Ceram.Soc.85(2002)833.nfredi et al./Materials Science and Engineering B112(2004)139–143143。
Na2TiO3晶型及其相变的高温原位拉曼光谱与X射线衍射联合研究徐磊;尤静林;王建;王敏;周灿栋【摘要】本文设计了α、β和γ三种晶型的Na2 TiO3晶体的制备方法,采用固相烧结技术成功制备了该晶体的上述三种晶型,并对其常温拉曼光谱进行了比较研究.对其中已知晶型结构的γ-Na2 TiO3的拉曼光谱进行密度泛函理论的模拟计算,基于计算对其拉曼光谱高频区主要振动模式进行归属.运用高温原位拉曼光谱技术和X射线衍射技术对无序型亚稳态α-Na2 TiO3晶体升温过程的相变及其结构变化进行了原位追踪与研究,为不同晶型的Na2 TiO3晶体的温致结构演变及晶型的鉴定提供重要的实验依据.【期刊名称】《光散射学报》【年(卷),期】2018(030)002【总页数】7页(P126-132)【关键词】Na2TiO3晶体;晶型转变;高温原位拉曼光谱;高温原位X射线衍射【作者】徐磊;尤静林;王建;王敏;周灿栋【作者单位】省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;省部共建高品质特殊钢冶金与制备国家重点实验室、上海市钢铁冶金新技术开发应用重点实验室和上海大学材料科学与工程学院,上海200072;宝山钢铁股份有限公司,上海201900【正文语种】中文【中图分类】O7921 引言碱金属钛酸盐作为一种基础的离子交换材料,被广泛应用于热稳定陶瓷电容器;此外,在微波介质谐振器、增强型塑料、绝热材料以及电位传感器等领域也有重要应用[1-2];碱金属钛酸盐也是n型半导体材料,具有良好的光催化活性[3-4]。
第42卷第3期2021年3月发光学报CHINESE JOURNAL OF LUMINESCENCEVol.42No.3Mar.,2021文章编号:1000-7032(2021)03(283-13分子堆积——影响固态有机小分子力响应发光行为的关键因素李爱森1,王金凤2,李振(1.天津大学-新加坡国立大学福州联合学院天津大学福州国际校区,福建福州350207;2.天津大学分子聚集态科学研究院,天津300072;3.武汉大学化学与分子科学学院,湖北武汉430072)扌摘要:力刺激响应型有机发光小分子因其独特的发光性质在信息加密、光学存储、压力传感器等领域具有潜在应用,引起了广泛关注。
其相关发光特性并不只来源于单分子结构,更与分子聚集态不同的堆积模式密切相关,因此,如何调控分子堆积模式是获得功能化发光材料的关键。
本文主要从力致变色和力致发光材料体系岀发,概述了几种调控分子间相互作用的策略,突岀强调了分子堆积与发光性能之间的关系,为研究具有新颖发光特性的发光材料提供了研究思路,希望促进有机发光材料的进一步发展。
关键词:外力;力致变色;力致发光;分子堆积;分子间相互作用中图分类号:O482.31文献标识码:A DOI;10.37188/CJL.20200354Molecular Stacking一Key Factor in Mechanical-responsive Luminescent Behaviors of Solid Organic Small MoleculesLI Ai-sen1,WANG Jin-feng2,LI Zhen1,2,3*(1.Joint School of National University of Singapore and Tianjin University,International Campus qf Tianjin University,Fuzhou350207,China;2.Institute of Molecular Aggregation Science,Tianjin University,Tianjin300072,China;3.College of Chemistry and Molecular Sciences,Wuhan University,Wuhan430072,China)*Corresponding Author,E-mail:lizhentju@Abstract:Mechanical-responsive organic luminogens have potential applications in the fields of information encryption,optical storage,pressure sensors,etc.due to their unique luminescent properties,and have attracted widespread attention.Their luminescent properties are not only derived from the single-molecule structure,but also closely related to the different stacking modes of molecular aggregates.Therefore,how to control the molecular stacking mode becomes a key issue for obtaining functional luminescent materials.This review mainly focuses on the material system of mechano-chromism and mechanoluminescence,outlines several strategies to regulate the intermolecular interactions,and highlights the relationship between molecular stacking and luminescent performance, which paves a new way to design novel luminescence materials and further promotes the development of organic luminescent materials.Key words:external force;mechanochromism;mechanoluminescence;molecular stacking;intermolecular interactions收稿日期;2020-11-22;修订日期;2021-01-24基金项目:天津大学启动经费资助项目Supported by Start-up Funds for Tianjin University284发光学报第42卷1引言有机发光小分子可通过分子间非共价键相互作用形成分子聚集体。
第53卷第5期2024年5月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.53㊀No.5May,2024化学气相沉积制备高c 轴取向的BiOI 薄膜徐玉琦1,2,李晴雯1,2,钟㊀敏1,2(1.渤海大学化学与材料工程学院,锦州㊀121013;2.辽宁省光电功能材料与检测重点实验室,锦州㊀121013)摘要:碘氧化铋(BiOI)由于低毒性㊁对点缺陷的耐受性和较强的吸光能力而应用在光催化㊁光伏和光电探测器领域㊂本文采用化学气相沉积(CVD)方法,以BiI 3粉末作为蒸发源,O 2/Ar 作为反应气体,在钠钙玻璃基底上沉积BiOI 薄膜,并通过研究蒸发源温度和沉积时间对薄膜物相和形貌的影响,分析了BiOI 薄膜的生长机理㊂结果表明CVD 方法制备的BiOI 薄膜属于四方晶系,具有高c 轴取向的特点㊂c 轴取向的薄膜平行于基底生长,其结晶性㊁透过率及缺陷性能等都与蒸发温度和沉积时间密切相关㊂当蒸发温度为370ħ㊁沉积时间为20min 时,BiOI 薄膜的晶化最好,透过率最低,缺陷最少㊂关键词:碘氧化铋;光电材料;化学气相沉积;半导体中图分类号:O78;O484㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2024)05-0841-07Preparation of BiOI Films with High c -axis Orientation by Chemical Vapor DepositionXU Yuqi 1,2,LI Qingwen 1,2,ZHONG Min 1,2(1.College of Chemical and Material Engineering,Bohai University,Jinzhou 121013,China;2.Liaoning Key Laboratory of Optoelectronic Functional Materials Testing and Technology,Jinzhou 121013,China)Abstract :Bismuth iodide oxide (BiOI)has attracted attention in the fields of photocatalysis,photovoltaics and photodetectors due to its low toxicity,tolerance to point defects,and strong light absorption ability.This article adopts the chemical vapor deposition (CVD)method,using BiI 3powder as the evaporation source and O 2/Ar as the reaction gas,to obtain high c -axis oriented BiOI films on a soda-lime glass substrate.The growth mechanism of BiOI films was analyzed by studying the effects of evaporation source temperature and deposition time on the phase and morphology of the films.The results indicate that the BiOI films prepared by CVD method belongs to the tetragonal crystal system with a high c -axis orientation.The c -axis oriented thin film grows parallel to the substrate,the evaporation temperature and deposition time have a significant impact on the crystallization,absorption ability and traps of the BiOI films.When the evaporation temperature is 370ħand the depositiontime is 20min,the BiOI film has the best crystallization and the lowest transmittance and traps.Key words :BiOI;photoelectric material;chemical vapor deposition;semiconductor ㊀㊀收稿日期:2023-11-29㊀㊀基金项目:辽宁省教育厅基金(LJKZ1029)㊀㊀作者简介:徐玉琦(1999 ),女,安徽省人,硕士研究生㊂E-mail:2790059649@ ㊀㊀通信作者:钟㊀敏,博士,副教授㊂E-mail:zhongmin@0㊀引㊀㊀言当前,铅卤钙钛矿ABX 3(A =CH 3NH +3或Cs +,B =Pb 2+,X =Cl -㊁Br -㊁I -)已经在太阳能电池㊁发光器件及X 射线探测器等领域取得较大进展[1-3],然而其稳定性和铅的毒性问题仍然有待解决,具有特殊 ns 2 电子结构的材料被认为是铅卤钙钛矿的替代材料[4]㊂其中,碘氧化铋(BiOI)的Bi 3+离子半径与Pb 2+相当,具有相同的6s 26p 0电子构型,即Bi 3+形成稳定的孤对价电子,与阴离子的p 轨道杂交,具备与铅卤钙钛矿类似的缺陷容忍性,理论上具有较高的器件效率[5]㊂此外,由于BiOI 的低毒性[6]㊁优异的环境稳定性[7]和较强的吸光能力[8],其被应用于薄膜太阳能电池的吸收层及X 射线探测器[7,9],显示了BiOI 用于光电器件的842㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷潜力㊂迄今,制备BiOI薄膜的方法有电沉积法[10]㊁水热法[11]㊁气溶胶辅助化学气相沉积法[12]和连续离子吸附反应[13]等,但这些方法过于复杂,制备的薄膜晶化度较差,限制了其发展㊂化学气相沉积(chemical vapor deposition,CVD)作为一种成熟的沉积技术,最近被应用于制备BiOI薄膜㊂2012年Ye等[14]首次在低温下使用CVD方法在大气氛围中制备了BiOI薄膜,但空气纯度较低导致薄膜杂质较多,质量不高㊂2017年, Hoye等[7]使用双温区管式炉,以BiI3为铋源和O2/Ar为氧源制备了无针孔BiOI薄膜,而且该薄膜在大气环境中至少能保持四方相197d,之后制备了相应的太阳能电池器件,但该器件的光电转换效率(power conversion efficiency,PCE)仅为2%㊂2019年,Zeng等[15]利用CVD法在云母基底上制备了BiOI单层,由于云母基底缺乏高能成核中心,表面成核比较困难,作者巧妙将两片云母衬底堆叠在一起,形成限域空间得到BiOI单层㊂当前高质量BiOI薄膜生长仍然困难,亟需深入了解其生长机理进而指导高质量BiOI薄膜的生长㊂本文采用CVD方法在钠钙玻璃基底上制备出高c轴取向的BiOI薄膜并分析了生长机理,将为高质量BiOI薄膜的生长提供借鉴㊂1㊀实㊀㊀验1.1㊀实验装置及材料CVD装置由双温区管式炉(OTF-1200X,合肥科晶)改装,BiI3粉末(纯度99.95%)由江西科泰新材料有限公司提供,Ar/O2气体(体积比V(O2)ʒV(Ar)=1ʒ5)由锦州益通气体有限公司提供㊂1.2㊀薄膜制备如图1所示,将装有0.3g BiI3粉末的瓷舟放置于蒸发区(蒸发区温度为T1),钠钙玻璃基底放置于沉积区(沉积区温度为T2),并保持T2=T1+20ħ㊂反应在O2/Ar气氛中常压进行,将T1和T2同时加热至设定温度并保持相同的沉积时间(t)㊂由于实验中发现BiOI薄膜仅在T2沉积区(基底距离瓷舟4cm处)处有均匀沉积,所以本实验主要改变T1及t㊂BiOI反应原理为2BiI3+O2ң2BiOI+I2[7],在气体输运作用下,BiOI薄膜在钠钙玻璃基底上沉积,所得薄膜及粉末如图1(b)所示㊂图1㊀实验装置及制备的薄膜㊂(a)CVD装置示意图;(b)BiOI粉末及薄膜Fig.1㊀Experimental setup and prepared film.(a)Schematic diagram of CVD;(b)BiOI powder and film1.3㊀薄膜表征使用X射线衍射仪(Rigaku,日本理学)对样品进行物相表征;采用场发射扫描电子显微镜(S-4800,日本日立)表征BiOI薄膜的表面形貌;通过紫外-可见光谱仪(PE-750,美国PE公司)测试BiOI薄膜的透射光谱,并计算其光学带隙;通过532nm激发光源下的拉曼光谱仪(LabRam HR Evolution,法国Horiba)得到BiOI 薄膜的拉曼/荧光光谱㊂2㊀结果与讨论图2(a)是CVD方法制备的BiOI薄膜及粉末的XRD图谱,可以看出粉末衍射峰主要位于9.72ʎ㊁29.7ʎ㊁31.7ʎ㊁46.45ʎ㊁51.42ʎ㊁55.2ʎ处,与BiOI标准卡片(JCPDS,No.00-010-0445)一致㊂薄膜衍射峰位于9.74ʎ㊁19.48ʎ㊁39.44ʎ㊁49.96ʎ处,分别对应BiOI的(001)㊁(002)㊁(004)和(005)晶面,说明CVD方法制备的薄膜材料为BiOI,属于四方晶系,且有(00l)择优取向,类似文献[9]中BiOI的单晶XRD图谱㊂图2(b)显示㊀第5期徐玉琦等:化学气相沉积制备高c轴取向的BiOI薄膜843㊀t=30min固定不变时,随着T1升高到370ħ,衍射峰强度增加,说明薄膜结晶性增强㊂当T1=380ħ时,薄膜出现杂相Bi4O5I2㊂图2(c)为T1=370ħ时,不同沉积时间(t)制备的BiOI薄膜XRD图谱㊂观察发现,当t<20min时,随着t增加,薄膜衍射峰强度增强,晶化程度变好㊂当t=20min时,衍射峰强度达到最大,此时晶化最好;t继续增加,衍射峰强度反而降低㊂原因可能是此时BiI3和O2生成BiOI的反应已经完成(t=15min 时仍然有BiI3粉末残留,如图2(d)所示),但加热仍然在进行,由于热应力和晶格变化[16],部分纳米片破裂,结晶性变差㊂图2㊀BiOI系列样品XRD图谱㊂(a)BiOI粉末和薄膜;(b)不同蒸发温度的BiOI薄膜;(c)不同沉积时间的BiOI薄膜;(d)T1=370ħ,t=15min时BiOI粉末Fig.2㊀XRD of BiOI samples.(a)BiOI powder and film;(b)BiOI films at different evaporation temperatures;(c)BiOI films prepared at different time;(d)BiOI powder(T1=370ħ,t=15min)图3(a)~(e)是t=30min固定不变时,不同蒸发温度(T1)下制备的BiOI薄膜SEM照片,当T1从330ħ升高至370ħ时,BiOI薄膜从不连续变为连续㊂T1=330ħ时,纳米片尚未完全形成且尺寸较小,薄膜主要由团聚体组成,如图3(a)所示㊂当T1升高至350ħ时,纳米片形成并且晶粒尺寸增大,但仍有不少缝隙,图3(d)显示当T1=360ħ时,纳米片尺寸变大,缝隙逐渐消失,与XRD衍射峰强度增加结果一致㊂由图3(e)可知,T1=370ħ时,纳米片厚度变厚,薄膜结晶性增加,纳米片之间开始堆叠挤压,薄膜由平坦纳米片和随机插入的垂直纳米片组成㊂图4(a)~(f)为T1=370ħ固定不变时,不同沉积时间(t)所制备的BiOI薄膜SEM照片,随着t增加,纳米片尺寸增大,并且薄膜结构更紧凑,t=20min时纳米片尺寸达到最大,尺寸可达3μm,与上述XRD结果一致,随着t继续增加,BiOI纳米片尺寸明显变小,可能原因是热应力导致纳米片破裂[16]㊂通过上述分析,说明T1和t对BiOI薄膜形貌有较大影响㊂通过紫外-可见透射光谱研究了BiOI薄膜的光学性质,图5(a)和(b)分别为不同T1和t时的薄膜透射图,可以看出T1和t影响BiOI薄膜的透过率㊂当T1增加时,透过率降低㊂在T1=370ħ㊁t=20min时透过率最低,可能原因是升高温度增加了BiOI晶体的生长速率,晶粒尺寸增加,薄膜更加致密[17-18],与图3的844㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷SEM结果一致㊂当t>20min时,透过率增加,原因是纳米片受到破坏,薄膜结晶性和致密性变差,与图4(f)一致㊂图5(c)和(d)是利用公式αhν=A(hν-E g)1/2得到的Tauc图(式中α㊁hν㊁A和E g分别表示吸收系数㊁光子能量㊁材料的特征常数和禁带宽度),通过外切法可得BiOI薄膜的光学带隙[19]㊂t=30min,T1为330㊁340㊁350㊁360和370ħ时BiOI薄膜的禁带宽度分别为2.08㊁2.19㊁2.2㊁2.2和2.32eV,t为5㊁10㊁15㊁20㊁25和30min时薄膜的禁带宽度分别为2.15㊁2.16㊁2.28㊁1.93㊁2.25和2.32eV,与文献[6]报道的BiOI带隙一致㊂图3㊀不同蒸发温度下制备的BiOI薄膜SEM照片Fig.3㊀SEM images of BiOI films prepared at different evaporation temperatures图4㊀不同沉积时间下制备的BiOI薄膜SEM照片Fig.4㊀SEM images of BiOI films prepared with different deposition time图6(a)是不同蒸发温度(T1)和沉积时间(t)下制备的BiOI薄膜Raman图,如图所示,BiOI薄膜的Raman光谱主要有3个峰,位于87和150cm-1处的拉曼峰分别属于Bi-I振动的A1g和E g声子伸展模式[12]㊂㊀第5期徐玉琦等:化学气相沉积制备高c 轴取向的BiOI 薄膜845㊀除了A 1g 和E g 拉伸模式外,在101cm -1处出现一个肩峰,猜测可能与表面原子振动有关[20]㊂随着T 1和t 升高,BiOI 薄膜中A 1g 和E g 振动模式的强度增加,肩峰增加更加明显,这可能是T 1和t 增加导致BiOI 团聚增加[18,21],进而导致拉曼衍射峰增强,这与XRD 结果一致㊂图5㊀BiOI 薄膜不同蒸发温度㊁不同沉积时间下的透射光谱图和Tauc 图Fig.5㊀Transmission spectra and Tauc diagram of BiOI films prepared at different evaporation temperatures and different depositiontime 图6㊀不同蒸发温度(a)和不同沉积时间(b)下BiOI 薄膜的拉曼光谱Fig.6㊀Raman spectra of BiOI thin films prepared at different evaporation temperatures (a)and different deposition time (b)图7是在不同蒸发温度(T 1)和沉积时间(t )时的荧光光谱,在700nm 处均有一个宽的发射峰,与文献[22]的发射峰基本一致,根据有关理论分析[7]可归属为缺陷发射峰㊂Huq 等[22]通过退火BiOI 薄膜引入缺陷,结合瞬态吸收光谱指出700nm 处PL 峰归属于薄膜表面200nm 处的载流子复合㊂Lai 等[23]表明BiOI 薄膜中宽PL 峰的形成可能是深陷阱态诱导热激活㊁多声子发射(multiple-phonon emission,MPE)介导的电荷复合导致的㊂如图7(a)~(b)所示,在T 1=330ħ或t =5min 时,荧光峰最强可能是温度太低或反应时间过短时晶体生长不完全导致薄膜内缺陷较多㊂随着温度升高或时间延长,荧光峰逐渐减弱,说明温度升高和时间延长都会减少缺陷㊂荧光峰对应缺陷的具体归属有待于深入研究㊂图8(a)和(b)分别是BiOI 晶体结构图和BiOI 生长机理示意图,BiOI 是通过层间范德瓦耳斯力沿c 轴堆叠形成的层状结构[24],如图8(a)所示㊂在[I-Bi-O-Bi-I]层中,每个铋中心被四个氧原子和四个碘原子包围,形成不对称的十面体㊂同时层内强共价键(沿a 轴和b846㊀研究论文人工晶体学报㊀㊀㊀㊀㊀㊀第53卷轴延伸)与层间范德瓦耳斯力的结合使BiOI具有各向异性[12]㊂BiOI薄膜生长机理推测如图8(b)所示, T1=330ħ时,BiOI生长不完全,未形成完整的纳米片,从XRD分析结果得出晶体主要沿c轴生长㊂温度升高,纳米片尺寸增大,纳米片生长完全,形成连续薄膜,当T1增加到360ħ时,[I-Bi-O-Bi-I]层在范德瓦耳斯力作用下沿c轴堆叠,厚度增加,纳米片成四方体㊂T1=370ħ时,纳米片厚度增加,同时出现一些随机插入的纳米片㊂图7㊀不同蒸发温度(a)和不同沉积时间(b)下BiOI薄膜的荧光光谱图Fig.7㊀Photoluminescence spectra of BiOI thin films prepared at different evaporation temperatures(a)anddifferent deposition time(b)图8㊀BiOI晶体结构图(a)和薄膜生长机理图(b)Fig.8㊀Crystal structure of BiOI(a)and growth mechanism of BiOI films(b)3㊀结㊀㊀论本文采用CVD方法在钠钙玻璃基底上制备了c轴取向的BiOI薄膜,通过XRD㊁SEM㊁紫外-可见透射光谱及荧光光谱等表征方法研究了蒸发温度(T1)和沉积时间(t)对薄膜物相结构㊁微观形貌和光学性质的影响㊂研究结果表明:薄膜合适的蒸发温度窗口为350~370ħ(高于370ħ产生杂相,低于350ħ无薄膜生成或薄膜不连续)㊂不同蒸发温度和沉积时间下制备的BiOI薄膜均为c轴取向,并且随着蒸发温度的升高和沉积时间的延长(t<20min时),薄膜的结晶性提高,纳米片尺寸增大,透过率降低㊂荧光光谱显示随着薄膜质量的提高,其内部缺陷减少㊂在T1=370ħ㊁t=20min时,薄膜的晶化最好,纳米片尺寸可达3μm,透过率最低,缺陷最少㊂但当t>20min时,薄膜的结晶性和纳米片尺寸开始下降,可能原因是热应力导致纳米片破裂㊂参考文献[1]㊀ZHOU S,FU S Q,WANG C,et al.Aspartate all-in-one doping strategy enables efficient all-perovskite tandems[J].Nature,2023,624:69-73.[2]㊀LIN K B,XING J,QUAN L N,et al.Perovskite light-emitting diodes with external quantum efficiency exceeding20percent[J].Nature,2018,㊀第5期徐玉琦等:化学气相沉积制备高c轴取向的BiOI薄膜847㊀562(7726):245-248.[3]㊀YI L Y,HOU B,ZHAO H,et al.X-ray-to-visible light-field detection through pixelated colour conversion[J].Nature,2023,618:281-286.[4]㊀LI T S,LUO S L,WANG X J,et al.Alternative lone-pair ns2-cation-based semiconductors beyond lead halide perovskites for optoelectronicapplications[J].Advanced Materials,2021,33(32):e2008574.[5]㊀BRANDT R E,STEVANOVIC'V,GINLEY D S,et al.Identifying defect-tolerant semiconductors with high minority-carrier lifetimes:beyondhybrid lead halide perovskites[J].MRS Communications,2015,5(2):265-275.[6]㊀ABUELWAFA A A,MATIUR R M,PUTRI A A,et al.Synthesis,structure,and optical properties of the nanocrystalline bismuth oxyiodide(BiOI)for optoelectronic application[J].Optical Materials,2020,109:110413.[7]㊀HOYE R L Z,LEE L C,KURCHIN R C,et al.Strongly enhanced photovoltaic performance and defect physics of air-stable bismuth oxyiodide(BiOI)[J].Advanced Materials,2017,29(36):1702176.[8]㊀HE C,GONG Y B,LI S Z,et al.Efficient electricity generation and degradation of organic pollutants in wastewater using Ag-BiOI photoactivatedfuel cell[M]//ACS Symposium Series.Washington,DC:American Chemical Society,2014:149-164.[9]㊀JAGT R A,BRAVIC'I,EYRE L,et yered BiOI single crystals capable of detecting low dose rates of X-rays[J].Nature Communications,2023,14:2452.[10]㊀SHINDE S,MAJUMDAR P,SIL S,et al.Energy-inexpensive galvanic deposition of BiOI on electrodes and its conversion to3D porous BiVO4-based photoanode[J].The Journal of Physical Chemistry C,2020,124(35):18930-18945.[11]㊀ABDUL-MANAF N A,AZMI A H,FAUZI F,et al.The effects of micro and macro structure on electronic properties of bismuth oxyiodide thinfilms[J].Materials Research Express,2021,8(9):096401.[12]㊀SUN Z C,ZHANG H J,MEI B C.Enhanced charge separation and transfer efficiency of BiOI with the dominantly exposed(102)facet forsensitive photoelectrochemical photodetection[J].Inorganic Chemistry,2023,62(14):5512-5519.[13]㊀MATIUR R M,NOR F,ARIMA Y,et pact continuous BiOI film for solid-state solar cell via faster lifting speed of the dip-SILARtechnique at room temperature[J].Materials Science in Semiconductor Processing,2021,130:105808.[14]㊀YE L Q,CHEN J N,TIAN L H,et al.BiOI thin film via chemical vapor transport:photocatalytic activity,durability,selectivity and mechanism[J].Applied Catalysis B:Environmental,2013,130/131:1-7.[15]㊀ZENG W,LI J,FENG L P,et al.Synthesis of large-area atomically thin BiOI crystals with highly sensitive and controllable photodetection[J].Advanced Functional Materials,2019,29(16):1900129.[16]㊀ZENG W,FENG L P,LI J,et al.Synthesis of millimeter-size single-crystal2D BiOI sheets and ribbons on mica[J].Chemistry of Materials,2019,31(23):9715-9720.[17]㊀RAJ MOHAMED J,AMALRAJ L.Effect of precursor concentration on physical properties of nebulized spray deposited In2S3thin films[J].Journal of Asian Ceramic Societies,2016,4(3):357-366.[18]㊀PUTRI A A,KATO S,KISHI N,et al.Relevance of precursor molarity in the prepared bismuth oxyiodide films by successive ionic layeradsorption and reaction for solar cell application[J].Journal of Science:Advanced Materials and Devices,2019,4(1):116-124. [19]㊀PODRAZA N J,QIU W,HINOJOSA B B,et al.Band gap and structure of single crystal BiI3:resolving discrepancies in literature[J].Journalof Applied Physics,2013,114(3):33110.[20]㊀KAZYREVICH M E,MALASHCHONAK M V,MAZANIK A V,et al.Photocurrent switching effect on platelet-like BiOI electrodes:influenceof redox system,light wavelength and thermal treatment[J].Electrochimica Acta,2016,190:612-619.[21]㊀PUTRI A A,KATO S,KISHI N,et al.Angle dependence of synthesized BiOI prepared by dip coating and its effect on the photovoltaicperformance[J].Japanese Journal of Applied Physics,2019,58:SAAD09.[22]㊀HUQ T N,LEE L C,EYRE L,et al.Electronic structure and optoelectronic properties of bismuth oxyiodide robust against percent-level iodine-,oxygen-,and bismuth-related surface defects[J].Advanced Functional Materials,2020,30(13):1909983.[23]㊀LAL S,RIGHETTO M,ULATOWSKI A M,et al.Bandlike transport and charge-carrier dynamics in BiOI films[J].The Journal of PhysicalChemistry Letters,2023,14(29):6620-6629.[24]㊀JAGT R A,HUQ T N,BÖRSIG K M,et al.Controlling the preferred orientation of layered BiOI solar absorbers[J].Journal of MaterialsChemistry C,2020,8(31):10791-10797.。