贝叶斯统计复习
- 格式:doc
- 大小:290.50 KB
- 文档页数:5
贝叶斯统计习题1. 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)U 0,1θ:()(2)21-0<<1=0,θθπθ⎧⎨⎩(),()其它 求θ的后验分布。
解:()()()()()111335368362(|)(1)*2(1)112(1)15(|)840(1),01m x p x d C d d p x x m x θπθθθθθθθθθθπθπθθθθ==--=-===-<<⎰⎰⎰2. 设12,,,n x x x L 是来自均匀分布U 0,θ()的一个样本,又设θ的先验分布为Pareto 分布,其密度函数为+1000/>=0,αααθθθθπθθθ⎧⎨≤⎩,()其中参数0>0,>0θα,证明:θ的后验分布仍为Pareto 分布。
解:样本联合分布为:1(),0np x x θθθ=<<1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩{}110101()()()/1/,max ,,,n n n x p x x x αααπθθπθαθθθθθθ++++∝=∝>=L因此θ的后验分布的核为11/n αθ++,仍表现为Pareto 分布密度函数的核即1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩即得证。
3. 设12,,,n x x x L 是来自指数分布的一个样本,指数分布的密度函数为-(|)=,>0xp x e x λλλ,(1) 证明:伽玛分布(,)Ga αβ是参数λ的共轭先验分布。
(2) 若从先验信息得知,先验均值为0.0002,先验标准差为0.0001,确定其超参数,αβ。
解:()()()111()1()()()()(),.nii x nn n x n n x p x ee ex p x e Ga n nx λλααβλαβλλλλβπλλαλπλλπλλαβ=----+--+∑===Γ∝∝++样本的似然函数:参数的后验分布服从伽马分布220.0002(2)4,20000.0.0001αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩4. 设一批产品的不合格品率为θ,检查是一个接一个的进行,直到发现第一个不合格品停止检查,若设X 为发现第一个不合格品是已经检查的产品数,则X 服从几何分布,其分布列为 ()-1(=|)=1-,=1,2,x P X x x θθθL假如θ只能以相同的概率取三个值1/4, 2/4, 3/4,现只获得一个观察值=3x ,求θ的最大后验估计ˆMDθ。
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<-(实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gammaλλ- 1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】 (2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--= 由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)xN θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】 1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
贝叶斯统计习题1. 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)U 0,1θ()(2)21-0<<1=0,θθπθ⎧⎨⎩(),()其它 求θ的后验分布。
解:()()()()()111335368362(|)(1)*2(1)112(1)15(|)840(1),01m x p x d C d d p x x m x θπθθθθθθθθθθπθπθθθθ==--=-===-<<⎰⎰⎰2. 设12,,,n x x x 是来自均匀分布U 0,θ()的一个样本,又设θ的先验分布为Pareto 分布,其密度函数为+1000/>=0,αααθθθθπθθθ⎧⎨≤⎩,() 其中参数0>0,>0θα,证明:θ的后验分布仍为Pareto 分布。
解:样本联合分布为:1(),0np x x θθθ=<<1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩{}110101()()()/1/,max ,,,n n n x p x x x αααπθθπθαθθθθθθ++++∝=∝>=因此θ的后验分布的核为11/n αθ++,仍表现为Pareto 分布密度函数的核即1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩即得证。
3.设12,,,n x x x 是来自指数分布的一个样本,指数分布的密度函数为-(|)=,>0x p x e x λλλ,(1) 证明:伽玛分布(,)Ga αβ是参数λ的共轭先验分布。
(2) 若从先验信息得知,先验均值为0.0002,先验标准差为0.0001,确定其超参数,αβ。
解:()()()111()1()()()()(),.nii x nn n x n n x p x ee ex p x e Ga n nx λλααβλαβλλλλβπλλαλπλλπλλαβ=----+--+∑===Γ∝∝++样本的似然函数:参数的后验分布服从伽马分布220.0002(2)4,20000.0.0001αβαβαβ⎧=⎪⎪⇒==⎨⎪=⎪⎩4. 设一批产品的不合格品率为θ,检查是一个接一个的进行,直到发现第一个不合格品停止检查,若设X 为发现第一个不合格品是已经检查的产品数,则X 服从几何分布,其分布列为 ()-1(=|)=1-,=1,2,x P X x x θθθ假如θ只能以相同的概率取三个值1/4, 2/4, 3/4,现只获得一个观察值=3x ,求θ的最大后验估计ˆMDθ。
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(535311614531535315338533810<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(636311714631636315338533810<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x ex x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】 1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XNθ ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此 (174.64,1.26)x N θ1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
【贝叶斯统计答案】第二章+第三章第二章,,tpte(),,,2.2 解: 由题意,变量t服从指数分布:,,tni,pTe(),,,样本联合分布,,,,1,,,~(,),0Gae,,且, E()0.2,,Var()1,,,,,,,,(),由伽玛分布性质知:,,0.2,,,,0.04,0.2,,, ,,,,,1,2,,,t,3.8 又已知 n=20,nnnt,,,,,,20.04,76.2t,,,203.876,i,i ,所以 ,1,1ii由于伽玛分布是指数分布参数的共轭先验分布,而且后验分布,,,,,,tt(),,,,,nn,,,11,,ii()()()tpTeee,,,,,,,,,,, GantGa(,)(20.04,76.2),,,,,即后验分布为 ,i,,n20.04,|TE()0.263,,,, ,t76.2,,i,1IGantIGa(,)(20.04,76.2),,,,,服从倒伽玛分布 ,,,,i,,t,i,,||1,TT()()4.002EE,,,,, 1,,n,11,,2.3可以算出的后验分布为,的后验期望估计的后验方差为. Ga(11,4)16 n,362.5只有个别人算错了,答案是.2.6大家差不多都做对了.,,,1,,,,,,/,,00,2.7的先验分布为:(), ,,,0,,,,0,,,,max,,,xx令 ,,101n,,,,,nn1,()/,,,,,,,,n11可得后验分布为:()x, ,,,0,,,,,1(),,,n1,Ex(),则的后验期望估计为:, ,n,,1,2(),,,n1后验方差为:. Varx(),,2(1)(2)nn,,,,,,n1,,,2.8由xGaIGa~(,),~(,)可以得出 22,n12()1n,,1x,2,22 pxxex,,,(),0n,()2,,,,(1),,,,(),0,,e ,,,,,(),,(1)的后验分布为:x,2,n,,,,(1),22, ,,,,,,()()()xpxe,,nxIGa(,),,,,即为倒伽玛分布的核。
例1.6 正态均值(方差已知)的共轭先验分布是正态分布。
设x1, x2,…,xn是来自正态分布N(θ,2σ) 的一个样本观察值。
其中2σ已知样本的似然函数为:2211(|)e x p()2nniip x xθθσ=⎧⎫⎛=--⎨⎬⎝⎩⎭∑取另一正态分布N(μ, 2τ)作为正态均值θ的先验分布,即221()()e x p,2θμπθθτ⎧⎫-=--∞<<+∞⎨⎬⎩⎭其中μ, 2τ为已知。
由此可以写出样本x与参数θ的联合密度函数22221122212(,)e x p2niin n x xnh x kθθθμθμθστ=⎧⎫⎡⎤-+⎪⎪⎢⎥-+⎪⎪⎢⎥=-+⎨⎬⎢⎥⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭∑其中(1)/211(2)n nkπτσ-+--=,1niixxn==∑。
若在记220nσσ=,2211Aστ=+,22xBμστ=+,222211niiC xμστ==+∑,则有211(,)e x p22h x k A B Cθθθ⎧⎫⎡⎤=--+⎨⎬⎣⎦⎩⎭22(/)e xp2/B AkAθ⎧⎫-=-⎨⎬⎩⎭样本x的边际密度函数为1222()(,)m x h x d kAπθθ+∞-∞⎛⎫== ⎪⎝⎭⎰参数θ的后验分布为1/222(/)()e x p,2/B AxA Aπθπθ-⎧⎫-⎛⎫=-⎨⎬⎪⎝⎭⎩⎭这是参数为μ1, 21τ和的正态分布22122222010111,xBAσμτμσττστ----+===++例 1.7 二项分布中的成功概率θ的共轭先验分布是贝塔分布,设总体中X ~b (n ,θ ),先验分布Be(α,β),θ的后验分布解:设总体中X ~b (n ,θ ),先验分布Be (α,β),θ的后验分布为这是贝塔分布Be (α+x ,β+n -x ) 的核. θ的后验分布1.2 设一卷磁带上的缺陷数服从泊松分布)(λP ,其中λ可取1.0和1.5中的一个,又设λ的先验分布为6.0)5.1(,4.0)0.1(==ππ,假如检查一卷磁带发现了3个缺陷,求θ的后验分布。
贝叶斯统计知识整理第⼀章先验分布和后验分布统计学有两个主要学派,频率学派与贝叶斯学派。
频率学派的观点:统计推断是根据样本信息对总体分布或总体的特征数进⾏推断,这⾥⽤到两种信息:总体信息和样本信息;贝叶斯学派的观点:除了上述两种信息以外,统计推断还应该使⽤第三种信息:先验信息。
贝叶斯统计就是利⽤先验信息、总体信息和样本信息进⾏相应的统计推断。
1.1三种信息(1)总体信息:总体分布或所属分布族提供给我们的信息(2)样本信息:从总体抽取的样本提供给我们的信息(3)先验信息:在抽样之前有关统计推断的⼀些信息1.2贝叶斯公式⼀、贝叶斯公式的三种形式(⼀)贝叶斯公式的事件形式假定k A A ,,1 是互不相容的事件,它们之和i ki A 1= 包含事件B ,即i ki A B 1=? 则有:∑==ki ii i i i A B P A P A B P A P B A P 1)()()()()((⼆)贝叶斯公式的密度函数形式1.贝叶斯学派的⼀些具体思想假设I :随机变量X 有⼀个密度函数);(θx p ,其中θ是⼀个参数,不同的θ对应不同的密度函数,故从贝叶斯观点看,);(θx p 是在给定θ后的⼀个条件密度函数,因此记为)(θx p 更恰当⼀些。
在贝叶斯统计中记为)(θx p 它表⽰在随机变量θ给定某个值时,总体指标X 的条件分布。
这个条件密度能提供我们的有关的θ信息就是总体信息。
假设II :当给定θ后,从总体)(θx p 中随机抽取⼀个样本X1,…,Xn ,该样本中含有θ的有关信息。
这种信息就是样本信息。
假设III :从贝叶斯观点来看,未知参数θ是⼀个随机变量。
⽽描述这个随机变量的分布可从先验信息中归纳出来,这个分布称为先验分布,其密度函数⽤)(θπ表⽰。
2.先验分布定义1:将总体中的未知参数Θ∈θ看成⼀取值于Θ的随机变量,它有⼀概率分布,记为)(θπ,称为参数θ的先验分布。
3.后验分布(1)从贝叶斯观点看,样本x =(1x ,…,n x )的产⽣要分两步进⾏。
第一章 先验分布与后验分布1.1 解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有5418.03.02936.07.01488.07.01488.0)()|()()|()()|()|(2211111=⨯+⨯⨯=+=θπθθπθθπθθπA P A P A P A 4582.0)|(1)|(4582.03.02936.07.01488.03.02936.0)()|()()|()()|()|(122211222=-==⨯+⨯⨯=+=A A or A P A P A P A θπθπθπθθπθθπθθπ1.2 解:令121, 1.5λλ== 设X 为一卷磁带上的缺陷数,则()XP λ∴3(3)3!e P X λλλ-==R 语言求:)4(/)exp(*)3(^gamma λλ-1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有.10,)1(504)|(504)6,4(/1)6,4(1)6,4()1()1()1()1()1()1()1()()|()()|()|(53531161453153531533853381<<-==-=--=--=--==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求(2).10,)1(840)|(840)7,4(/1)7,4(1)7,4()1()1()1()1()1()1(2)1()1(2)1()()|()()|()|(63631171463163631533853381<<-==-=--=--=----==⎰⎰⎰⎰--θθθθπθθθθθθθθθθθθθθθθθθθθθπθθπθθπA beta B R B d d d C C d A P A P A :语言求1.5 解:(1)由已知可得.5.125.11,110110/1)()|()()|()|(,2010,101)(5.125.111)|(2112211)|(12,2121,1)|(5.125.11201011111111<<===<<=<<=+<<-==+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθd d x p x p x x p x p x x x p ,,即,时,当(2)由已知可得.6.115.11,1010110/1)()|,,()()|,,(),,|(,2010,101)(6.115.111)|,,(,219.1121,214.1121,211.1121,217.1121215.11212112211)|,,(9.11,4.11,1.11,7.11,5.11,0.12,6,2,1,2121,1)|,,(6.115.112010621621621621621654321621<<===<<=<<=+<<-+<<-+<<-+<<-+<<-+<<-========+<<-=⎰⎰θθθθπθθπθθπθθπθθθθθθθθθθθθθθθθθθd d x x x p x x x p x x x x x x p x x x p x x x x x x i x x x x p i ,即,,时,当【原答案:由已知可得 ()1,0.50.5P x x θθθ=-<<+1(),102010πθθ=<< 11.611.51()0.0110m x d θ==⎰从而有()()()10,11.511.6()P x x m x θπθπθθ==<< 】1.6 证明:设随机变量()XP λ,λ的先验分布为(,)Ga αβ,其中,αβ为已知,则即得证!),(~),,|()()|,,(),,|(,0,)()(,!!)|,,(121)(121211112111βαλπλλπλλπλλαβλπλλλλβαβλααλλ++∑∑∝•∝>Γ=∑===+--+--=-=-==∏∏n x Ga x x x ex x x p x x x e x e x e x x x p ni i n n x n n ni in x ni i x n ni i ni ii【原答案: (),0!x e P x x λλλλ-=>1(),0()e ααβλβπλλλα--=>Γ 因此 11(1)()()()x x x P x e e e λαβλαβλπλλπλλλλ---+--+∝•∝= 所以 (,1)x Ga x λαβ++】 1.7 解:(1)由题意可知.1},max{,1)/(1)/(122)()|,,()()|,,(),,|(,10,1)(,,2,1,10,22)|,,(121},max{221},max{2121121212112122111<<∝===<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθπθθπθθπθθπθθθθn nx x nn x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 ()1,01πθθ=<< 因此122()12(1)xxm x d x θθ=•=-⎰因此 2()()1(),1()1P x x x x m x x θπθπθθθ==<<- (实质是新解当n=1的情形)】(2) 由题意可知.1},max{,1)/(1)/(13232)()|,,()()|,,(),,|(,10,3)(,,2,1,10,22)|,,(12-21},max{2-22-21},max{2212211212121212122111<<∝=⨯⨯==<<==<<<==⎰⎰∏∏⎰∏∏====θθθθθθθθθθθθπθθπθθπθθθπθθθθn n x x n n x x nni in nni inn n n ni i nni inin x x d d x xd x x x p x x x p x x x n i x xx x x x p n n【原答案:由题意可知 1222()36xm x d x θθθ=•=⎰因此 ()()()1,01()P x x m x θπθπθθ==<<】1.8 解:设A 为100个产品中3个不合格,则3397100()(1)P A C θθθ=-由题意可知 199(202)()(1),01(200)πθθθθΓ=-≤≤Γ 因此 3971994296()()()(1)(1)(1)A P A πθθπθθθθθθθ∝•∝--=- 由上可知)297,5(~)|(Be A θπ1.9 解:设X 为某集团中人的高度,则2(,5)XN θ∴25(,)10XN θ∴2(176.53)5()p x θθ--=由题意可知 2(172.72)5.08()θπθ--=又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222(176.53)(172.72)(174.64)55.0821.26eeeθθθ------⨯∝•∝因此(174.64,1.26)x N1.10 证明:设22(,),,N u u θσσ其中为已知又由于X 是θ的充分统计量,从而有()()()()x x p x πθπθθπθ=∝•222222251()()11252()11225252u x x u eeeσθθθσσσ+----+⨯--⨯+⨯∝∝因此 222251(,)112525u x xN σθσσ+++又由于21112525σ≤+ 所以 θ的后验标准差一定小于151.11 解:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)X U θ.8,861)/(1192192)()|,,()()|,,(),,|(,4,192)(.81)|,,(8,8,5.3,2,1,0,1)|,,(768778774321321321433213213321>⨯====≥=>=====<<=⎰⎰⎰∞∞∞θθθθθθθθθθπθθπθθπθθθπθθθθθθd d d x x x p x x x p x x x x x x p x x x i x x x x p i ,时,当【原答案:设X 为某人每天早上在车站等候公共汽车的时间,则(0,)XU θ∴1(),0p x x θθθ=<<当8θ>时,31()p x θθ=43819211()8192m x d θθθ+∞==⎰从而有 7()()3()()128p x x m x θπθπθθ==, 计算错误】1.12 证明:由题意可知 1(),0,1,2,...,i np x x i n θθθ=<<=从而有 ()()()()x x p x πθπθθπθ∝•00111n n n ααααθθθθθ++++∝•∝ 因此 θ的后验分布仍是Pareto 分布。
第一章先验分布与后验分布§1.1三种信息统计学中有二个主要学派:频率学派和贝叶斯学派。
一、总体信息即总体分布或总体所属分不足给我们的信息,譬如,“总体是正态分布”这一句话就带给我们很多信息:它的密度函数是一条钟形曲线;它的一切距都存在;有关正态变量(服从正态分布的变量)的一些事件的概率可以计算,有正态分布可以导出2χ分布、t分布和F分布等重要分布;还有许多成熟的点估计、区间估计和假设检验方法可供我们选用。
二、样本信息即从总体抽取的样本给我们提供的信息。
这是最“新鲜”的信息,并且越多越好。
我们希望通过对样本信息的加工和处理对总体的某些特征作出较为精确的统计推断。
没有样本就没有统计学而言。
基于上述信息进行的统计推断被称为经典统计学,它的基本观点是把数据(样本)看成是来自具体一定概率分布的总体,所研究的对象是这个总体而不是局限于数据本身。
三、先验信息即在抽样之前有关统计问题的一些信息,一般说来,先验信息主要来源于经验和历史资料。
例如,英国统计学家(1961)Savage曾考察如下实验,一位常饮牛奶加茶的妇女称,她能辨别先倒进杯子里的是茶还是牛奶。
对此作了十次试验,她都正确地说出了。
假如被实验者是在猜测,每次成功的概率为0.5,那么十次-=,这是一个很小的概率,是几乎不可能发生的,都猜中的概率为1020.0009766所以“每次成功的概率为0.5”的假设应被拒绝。
被实验者每次成功的概率要比0.5大很多,这正是她的经验帮了她的忙活,所以先验信息在推断中不可忽视。
基于上述三种信息进行的统计推断被称为贝叶斯统计学。
它与经典统计学的最主要的差别在于是否利用先验信息。
在使用样本信息上也是有差异的。
贝叶斯学派很重视已出现的样本观察值,而对尚未发生的样本观察值不予考虑,贝叶斯学派很重视先验信息的收集、挖掘和加工,使它数量化,形成先验分布,参加到统计推断中来,以提高统计推断的质量。
贝叶斯学派最基本的观点是:任何一个未知量θ都可看作一个随机变量,应用一个概率分布去描述对θ的未知状况。
1.1设θ是一批产品的不合格率,已知它不是0.1就是0.2,且其先验分布为 π(0.1)=0.7 π(0.2)=0.3.假如从这批产品中随机抽取8个进行检查,发现有两个不合格品。
求θ的后验分布。
解:令120.1,0.2θθ==设A 为从产品中随机取出8个,有2个不合格,则22618()0.10.90.1488P A C θ== 22628()0.20.80.2936P A C θ== 从而有1111122()()()0.4582()()()()P A A P A P A θπθπθθπθθπθ==+2221122()()()0.5418()()()()P A A P A P A θπθπθθπθθπθ==+1.2 设一卷磁带上的缺陷数服从泊松分布P (λ),其中λ可取1和1.5中的一个,又设λ的先验分布为π(1)=0.4 π(1.5)=0.6.假如检查一卷磁带发现了3个缺陷,求λ的后验分布。
解:令121, 1.5λλ==设X 为一卷磁带上的缺陷数,则()X P λ:∴3(3)3!e P X λλλ-==1122(3)(3)()(3)()0.0998P X P X P X λπλλπλ∴===+== 从而有111222(3)()(3)0.2457(3)(3)()(3)0.7543(3)P X X P X P X X P X λπλπλλπλπλ==========1.3 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如先验分布为 (1)θ~u(0,1) (2)θ~π(θ)={10 )1(2else0<<-θθ解:设A 为从产品中随机取出8个,有3个不合格,则3358()(1)P A C θθθ=-(1) 由题意知 ()1,01πθθ=<< 从而有 351()()()504(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰(2)361()()()47040(1),01()()P A A P A d θπθπθθθθθπθθ==-<<⎰1.10 从正态总体N (0,4)中随机抽取容量为100的样本,又设θ的先验分布为正态分布。
贝叶斯统计习题
1. 设θ是一批产品的不合格率,从中抽取8个产品进行检验,发现3个不合格品,假如
先验分布为 (1)U 0,1θ()
(2)21-0<<1=0,θθπθ⎧⎨
⎩(),()其它 求θ的后验分布。
解:
2. 设12,,
,n x x x 是来自均匀分布U 0,θ()的一个样本,又设θ的先验分布为Pareto 分布,
其密度函数为 其中参数0>0,>0θα,证明:θ的后验分布仍为Pareto 分布。
解:样本联合分布为:
因此θ的后验分布的核为11/n αθ++,仍表现为Pareto 分布密度函数的核 即1111()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩
即得证。
3. 设12,,,n x x x 是来自指数分布的一个样本,指数分布的密度函数为-(|)=,>0x p x e x λλλ,
(1) 证明:伽玛分布(,)Ga αβ是参数λ的共轭先验分布。
(2) 若从先验信息得知,先验均值为0.0002,先验标准差为0.0001,确定其超参数,αβ。
解:
4. 设一批产品的不合格品率为θ,检查是一个接一个的进行,直到发现第一个不合格品停止检查,若设X 为发现第一个不合格品是已经检查的产品数,则X 服从几何分布,其分布列为 ()-1(=|)=1-,=1,2,x P X x x θθ
θ
假如θ只能以相同的概率取三个值1/4, 2/4, 3/4,现只获得一个观察值=3x ,求θ的最大后
验估计ˆMD
θ。
解:θ的先验分布为
在θ给定的条件下,X=3的条件概率为
联合概率为
X=3的无条件概率为
θ的后验分布为
5。
设x 是来自如下指数分布的一个观察值,
取柯西分布作为θ的先验分布,即
求θ的最大后验估计ˆMD
θ。
解 后验密度
6. 设12=(,,,)n x x x x 是来自均匀分布(0,)U θ的一个样本,又设θ服从Pareto 分布,密度函数为
求θ的后验均值和后验方差。
解:θ的先验分布为:1000/,()0,αααθθθθπθθθ+⎧>=⎨≤⎩
令{}101max ,,,n x x θθ= 可得后验分布为:1111
()/,()0,n n n x αααθθθθπθθθ+++⎧+>=⎨≤⎩ 则θ的后验期望估计为:1()()1
n E x n αθθα+=+-, 后验方差为:212()()(1)(2)
n Var x n n αθθαα+=+-+-. 7. 设x 服从伽玛分布1(,)22n Ga θ
,θ的分布为倒伽玛分布(,)IGa αβ, (1) 证明:在给定x 的条件下,θ的后验分布为倒伽玛分布(+,+)22
n x IGa αβ。
(2) 求θ的后验均值与后验方差。
解:由1~(,),~(,)22n x Ga IGa θαβθ
可以得出 (1)θ的后验分布为: 即为倒伽玛分布(,
)22
n
x IGa αβ++的核。
所以θ的后验分布为(,)22
n x IGa αβ++ (2)后验均值为22()2212
x x E x n n ββθαα++==+-+- 后验方差为2
2()2()(1)(2)22x Var x n n βθαα+=+-+- 8. 对正态分布(,1)N θ作观察,获得三个观察值:2,3,5,若θ的先验分布为(3,1)N ,求
θ的0.95可信区间。
9. 设某电子元件的失效时间X 服从指数分布,其密度函数为
若未知参数θ的先验分布为倒伽玛分布(1,0.01)IGa 。
计算该种元件在时间200之前失效的边缘密度。
解:
10. 设12,,,n X X X 相互独立,且(),=1,,i i X P i n θ。
若12,,,n θθθ是来自伽玛分布(),Ga αβ的一个样本,找出对12=(,,
,)n X x x x 的联合边缘密度。
解: 11. 某厂准备一年后生产一种新产品,如今有三个方案供选择:改建本厂原有生产线(1a ),从国外引进一条自动化生产线(2a );与兄弟厂协助组织“一条龙”生产线(3a )。
厂长预计一年后市场对此产品的需求量大致可分为三种:较高(1θ);一般(2θ);较低(3θ)。
假设其收益矩阵为(单位:万元),700980400=250-50090-200-800-30Q ⎛⎫ ⎪ ⎪ ⎪⎝⎭
假设厂长根据自己对一年后市场需求量是高,中,低,给出的主观概率分别为0.6,0.3,0.1。
求在悲观准则,乐观准则,和先验期望准则下的最优行动。
解:悲观准则下:首先行动1a ,2a ,3a 的最小收益分别为-200,-800,-30,。
然后选出其中
最大的收益为-30,从而最优行动为3a
乐观准则下:首先行动1a ,2a ,3a 的最大收益分别为700,980,400,。
然后选出其中
最大的收益为980,从而最优行动为2a 。
先验期望准则下:各行动的先验期望收益为
从而最优行动为1a 。
12. 某水果店准备购进一批苹果投放市场,市场需求量和采购量都在500至2000公斤之间,已知其收益函数为0.8-0.38,5000.9(,)0.34,
0.92000a a Q a a a θθθθ≤≤⎧=⎨≤≤⎩,假设θ的先验分布为 []500,2000上的均匀分布,该店应购进多少苹果可使先验期望收益最大?
解:先验期望收益为
当a=1343时,先验期望达到最大,故应购进1343公斤苹果。