关于晶体的化学知识点解析高中化学晶体知识点
- 格式:doc
- 大小:12.00 KB
- 文档页数:3
高中化学晶体结构知识点1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。
原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;2、分子晶体、原子晶体、金属晶体、离子晶体对比表3、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。
4、金属熔沸点高低的比较:(1)同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。
(2)同主族金属单质,从上到下(如碱金属)熔沸点降低。
(3)合金的熔沸点比其各成分金属的熔沸点低。
(4)金属晶体熔点差别很大,如汞常温为液体,熔点很低(-38.9℃),而铁等金属熔点很高(1535℃)。
5、原子晶体与金属晶体熔点比较:原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。
6、分子晶体与金属晶体熔点比较:分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。
7、判断晶体类型的主要依据?一看构成晶体的粒子(分子、原子、离子);二看粒子间的相互作用;另外,分子晶体熔化时,化学键并未发生改变,如冰→水。
8、化学键:化学变化过程一定发生就化学键的断裂和新化学键的形成,但破坏化学键或形成化学键的过程却不一定发生化学变化,如食盐的熔化会破坏离子键,食盐结晶过程会形成离子键,但均不是化学变化过程。
9、判断晶体类型的方法?(1)依据组成晶体的微粒和微粒间的相互作用判断①离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。
②原子晶体的构成微粒是原子,微粒间的作用力是共价键。
高中化学知识点:晶体结构与性质晶体结构与性质是高中化学中重要的知识点之一。
晶体是由原子、分子或离子等微观粒子沿着空间做周期性重复排列所形成的固体物质,具有规则的几何外形和固定的熔点。
晶体结构与其性质有着密切的关系,了解晶体结构可以帮助我们更好地理解晶体的性质和特征。
一、晶体结构晶体结构是指晶体中原子或离子的排列方式以及它们之间的相互作用。
根据晶体中微观粒子的种类和排列方式,可以将晶体分为离子晶体、分子晶体、原子晶体等不同类型。
其中,离子晶体是最常见的晶体之一,其基本结构单元是正负离子,这些离子通过离子键相互结合。
分子晶体则是由分子通过范德华力相互结合形成的,而原子晶体则是原子通过共价键相互结合形成的。
在晶体结构中,晶胞是最基本的结构单元,它是一个重复单位,可以代表整个晶体结构。
晶胞具有规则的几何外形,并且具有对称性。
晶胞中的原子或离子的排列方式以及它们之间的相互作用,决定了晶体的物理和化学性质。
二、晶体的性质1、晶体的导电性晶体的导电性是指晶体在电场的作用下能够导电的能力。
离子晶体具有较好的导电性,因为离子晶体中存在可以自由移动的离子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其导电性相对较差。
2、晶体的热稳定性晶体的热稳定性是指晶体在温度变化时保持其结构的稳定性和物理性质的能力。
离子晶体具有较高的热稳定性,因为离子键的键能较大,而分子晶体和原子晶体由于分子或原子之间的相互作用比较弱,其热稳定性相对较差。
3、晶体的还原性晶体的还原性是指晶体在化学反应中失去电子的能力。
离子晶体具有较强的还原性,因为离子晶体中的离子容易失去电子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其还原性相对较差。
此外,晶体的光学性质、磁性、机械性质等也是晶体性质的重要组成部分。
不同的晶体结构对应不同的物理和化学性质,理解和掌握晶体结构和性质之间的关系对于我们更好地认识化学世界具有重要的意义。
三、晶体结构与性质的关系晶体结构和性质之间存在着密切的关系。
高中化学晶体知识点高中化学教材中的晶体内容是微观分子、原子结构与宏观物质产生联系的桥梁。
为了帮助高中生掌握晶体知识点,下面店铺为高中生整理化学晶体知识点,希望对大家有所帮助。
高中化学晶体知识点石墨――混合型晶体石墨晶体为层状结构,层与层之间的作用力为范德华力,每一层内C原子间以共价键形成正六边形结构(见图8)。
由于层内C原子以较强的共价键相结合,所以石墨有较高的熔点。
但由于层间的范德华力较弱,层间可以滑动,故石墨的硬度较小。
因此石墨晶体又称为过渡型晶体或混合型晶体。
石墨品体中每个C原子只拥有其所连接的3个C-C键的1/2(3/2个),因此晶体中C原子与C-C键数之比为2:3。
干冰――分子晶体干冰晶体中的CO2分布在立方体的顶点和面心上,分子间由分子间作用力结合形成晶体(见图7)。
C02分子内存在共价键,因此晶体中既有分子间作用力,又有共价键,但熔、沸点的高低由分子间的作用力决定,影响分子间作用力的主要因素是相对分子质量,从晶胞的结构可知与一个CO2分子距离最近且相等的CO2分子共有12个。
金刚石、二氧化硅――原子晶体(1) 金刚石是一种具有空间网状结构的原子晶体。
每个C原子以共价键与其他4个C原子紧邻,由5个碳子形成正四面体的结构单元,由共价键构成的最小环结构中有6个碳原子(见图4),由于每个C原子拥有所连4个C-C键的1/2(2个),所以碳原子个数与C-C键数之比为1:2。
(2) 二氧化硅晶体可以看成是金刚石结构中,C原子被Si原子代替,且在C-C键之间插入O原子后形成的,即每个硅原子与周围的四个氧原子构成一个正四面体,构成二氧化硅晶体结构的最小环是由12个原子构成椅式环,键角∠(O-Si-O)=109°28'(见图5)。
每个Si原子拥有所连4个O原子的1/2(2个)(见图6),因此si、O原子个数比为1:2,即化学式表示为SiO2。
氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
化学金属晶体知识点总结一、金属晶体的基本概念金属晶体是由金属原子以一定规律排列组成的固体结构。
金属晶体具有一些特点,如具有金属典型的电性能、热性能和光学性能,同时还具有良好的延展性、韧性和导电性。
二、金属晶体的结构金属晶体的结构是由金属原子通过化学键相互连接而形成的。
金属晶体的结构有多种类型,其中最常见的是面心立方晶体结构和体心立方晶体结构。
金属晶体的结构对金属的性能具有重要影响,比如面心立方晶体结构使得金属具有优良的导电性和导热性,而体心立方晶体结构使得金属具有良好的韧性和延展性。
三、金属晶体的性能1. 导电性:金属晶体中的自由电子能够在晶体结构中自由传导,因此金属具有良好的导电性能。
2. 导热性:金属晶体中的自由电子能够在晶体结构中迅速传递热量,因此金属具有良好的导热性能。
3. 延展性:金属晶体中的金属原子之间的化学键相对较弱,因此金属具有良好的延展性能,可以被拉伸成细丝或者铺展成薄片。
4. 韧性:金属晶体中的金属原子之间的化学键相对较强,因此金属具有良好的韧性能,可以经受一定的外力而不易断裂。
5. 耐腐蚀性:金属晶体中的化学键特点使得金属具有一定的抗腐蚀性能,可以抵御外界腐蚀物质的侵蚀。
四、金属晶体的制备金属晶体的制备方法有多种,常见的包括熔融法、沉淀法、溶胶-凝胶法等。
熔融法是通过将金属加热至熔点后冷却凝固成固体晶体;沉淀法是通过将金属盐溶液中加入适量还原剂使金属物质析出,然后经过洗涤、干燥等处理制备金属晶体;溶胶-凝胶法是通过将金属盐加入溶液中形成凝胶后再经过热处理的方法制备金属晶体。
五、金属晶体的应用金属晶体广泛应用于工业生产中,主要包括金属材料、金属合金、金属催化剂等。
金属材料广泛用于航空航天、汽车制造、机械加工等领域;金属合金具有优异的物理性能和化学性能,用于制备高强度、高耐热、高耐腐蚀的材料;金属催化剂广泛用于化工生产中的有机合成、空气净化等领域。
总的来说,金属晶体是由金属原子组成的固体结构,在工业生产和科研领域有重要应用。
高中化学知识点详解晶体结构晶体结构是高中化学中重要的知识点之一,它涉及到晶体的组成、排列和结构等方面。
本文将详细解析晶体结构的相关概念和特征。
晶体是由一定数量的原子、离子或分子按照一定的规律结合在一起形成的具有规则外观的固体物质。
晶体的结构对其性质和应用具有重要影响。
晶体结构可以通过实验方法和理论模型来研究和解释。
1. 晶体的基本组成晶体的基本组成单位分为晶体胞和晶胞内的基本组织。
晶体胞是晶格的最小重复单位,可以通过平移操作来无限重复整个晶体结构。
晶胞内的基本组织是晶体内的原子、离子或分子的排列方式。
2. 晶体的晶格类型晶体的晶格类型可以分为立方晶系、四方晶系、单斜晶系、正交晶系、三斜晶系、五类三方晶系和六斜晶系。
不同的晶格类型对应着晶胞的不同形状,给晶体带来了不同的结构和性质。
3. 晶体的点阵晶体的点阵是晶格具有的一个特征,它描述了晶体内的原子、离子或分子的排列方式。
点阵可以分为简单点阵、面心立方点阵和密堆积点阵。
不同的点阵结构给晶体带来了不同的物理和化学性质。
4. 晶体的组成晶体的组成可以分为离子晶体、共价晶体、金属晶体和分子晶体四种类型。
离子晶体由阳离子和阴离子按照一定的配位比例组成,共价晶体由原子通过共用电子而形成,金属晶体则是由金属原子通过金属键连接在一起,而分子晶体则是由分子通过范德华力相互作用形成。
5. 晶体的结构特征晶体的结构特征包括晶胞参数、平均密度、元素比例和晶胞中原子、离子或分子的具体排列方式等。
通过实验和理论模型的分析,可以确定晶体的结构特征,并进一步研究其性质和应用。
总结起来,晶体结构是由晶体胞和胞内基本组织构成的,晶格类型和点阵类型直接影响晶体的结构和性质。
晶体的组成类型包括离子晶体、共价晶体、金属晶体和分子晶体。
通过对晶体的结构特征的研究和分析,可以进一步揭示其性质和应用。
通过本文的详解,我们对高中化学中的晶体结构有了更深入的了解,希望对学习和掌握该知识点有所帮助。
总结:四大晶体晶体类型离子晶体原子晶体分子晶体金属晶体概念离子间离子键原子间共价键分子间分子力金属离子和e金属键晶体质点阴、阳离子原子分子金属离子原子和e作用力离子键共价键分子间力金属键物理性质熔沸点较高很高很低一般高少数低硬度较硬很硬硬度小多数硬少数软溶解性易溶于水难溶任何溶剂相似相溶难溶导电性溶、熔可硅、石墨可部分水溶液可固、熔可实例盐MOH MO C Si SiO2SiC HX XO n HXO n金属或合金1.各种晶体中的化学键⑴离子晶体:一定有离子键,可能有共价键(极性键、非极性键、配位键)⑵分子晶体:一定没有离子键,可能有极性键、非极性键、配位键;也可能根本没有化学键。
⑶原子晶体:一定没有离子键,可能有极性键、非极性键。
⑷金属晶体:只有金属键2、物质熔沸点高低比较规律(1)晶体内微粒间作用力越大,熔沸点越高,只有分子晶体熔化时不破坏化学键。
(2)不同晶体(一般情况下):原子晶体>离子晶体>分子晶体熔点:上千度~几千度〉近千度~几百度〉多数零下最多几百度(3)相同条件下一般地说熔沸点:固态>液态>气态2、物质熔沸点高低比较规律(4)同种晶体离子晶体:比较离子键强弱,离子半径越小,电荷越多,熔沸点越高MgO〉MgCl2>NaCl〉KCl>KBr原子晶体:比较共价键强弱(看键能和键长)金刚石(C)> 水晶(SiO2) > SiC > Si分子晶体:比较分子间力(和分子内的共价键的强弱无关)1)组成和结构相似时,分子量越大熔沸点越高F2〈Cl2〈Br2〈I2;HCl〈HBr 〈HI;CF4〈CCl4 < CBr4 < CI4;N2〈O2 ;同系物熔沸点的比较2)同分异构体:支链越多熔沸点越低正戊烷>异戊烷〉新戊烷金属晶体:比较金属键,金属原子半径越小,价电子数越多,熔沸点越高。
熔沸点同族从上到下减小,同周期从左到右增大.Li>Na>K〉Rb>Cs ; Na〈Mg〈Al3、晶体类型的判断◆从物质的分类上判断:●离子晶体:强碱、大多数盐类、活泼金属氧化物;●分子晶体:大多数非金属单质(金刚石、石墨、晶体硅、晶体硼除外)及氧化物(SiO2除外),所有的酸及非金属氢化物,大多数有机物等。
关于晶体的化学知识点解析高中化学晶体知识
点
晶体具有规则的几何外形、固定的熔沸点、各向异性(如云母的解离性各个方向不同)。
其原因是组成晶体的质点(分子、原子、离子)以确定位置的点在空间作有规则的排列,这些点群具有一定的几何形状,称为结晶格子(简称晶格)。
每个质点在晶格中所占的位置称为晶格的结点。
晶体中含有晶体结构中具有代表性的最小部分称为单元晶体(简称晶胞)。
根据构成晶体的粒子种类及粒子之间的相互作用不同,可将晶体分为离子晶体、原子晶体、分子晶体和金属晶体等。
常见的盐、味精、雪化、宝石、石英、各种金属及合金制品是晶体,工业中的矿物岩石也是晶体,就连地上的泥土沙石也包含着许多晶体。
玻璃、珍珠、沥青、塑料等则是非体晶。
那才能快速鉴定某种物质是晶体还是非晶体呢?一种最常见的技术是X 射线技术。
如没有X线机,可以根据是否有固定的熔点来判断。
当温度升高到某一温度便开始熔解,而在熔解的过程中温度不变则为晶体。
晶体是怎么长出来呢?自然界中晶体的形成同食盐的结晶过程一样,从溶液中诞生。
比如,岩石的裂缝处充满了溶解的液态物质,一些晶体就逐渐沉积在岩石表面。
当岩石表面的水蒸发之
后,晶体也就随之形成了。
许多晶体是在令人难以置信的压力和温度下形成的。
比如,钻石就是在地壳深出高温高压的岩桨中产生的,这些钻石因地壳变动和火山喷发而被送到地球表面。
但是自然界蕴藏的晶体远远满足不了人们的需要,因此,科学家就师法自然,模拟自然界的成矿条培育晶体,这就是人工晶体。
海水里提炼出的食盐就是人工晶体之一。
现在,人们不仅能用人工方法合成出自然界没有的晶体,如水晶、金刚石、人工合成胰岛素等,也能用人工方法合成出自然界没有的晶体,如常见的单晶硅。
这些人工晶体不但能满足人们独特的审美需求,还能在工业生产中发挥重要作用。
比如,纯净的人工石英晶体(即人工冰晶)是一种优良的压电晶体,它既能把机械能转变成电能;也能把电能转变成机械能。
压电晶体被广泛应运在钟表和无线电工业上,遥控器、电子表、手机、声纳等都是利用压电晶体或其他压电材料来实现能量转换的。
人们利用闪烁晶体制造的探测器进行高能物理实验和宇宙射线的探测;利用激光晶体(如人造的红宝石晶体、石榴石晶体)制造的激光器产生各种激光。
自动化技术的日新月异,电子计算机的更新换代,广播电视的普及与提高,通信事业的迅猛发展等都离不开半导体晶体。
追溯人类近百年的历史,我们会发现,人工晶体为现代科技的发展立下了赫赫战功。
在第二次世界大战中,石英晶体作为无线电通信中的一个关键元,开创了无线电通信时代。
20世纪50年
代,人们发现了硅单晶,导致了电视、电子表、计算机、电话、无线电通信的诞生。
硅单晶的发现,表明了电子时代的来临。
20世纪60年代,人造红宝石晶体问世,产生了激光,为人类迎来了光电子时代。
从某中意义上来说,人工晶体不仅是划时代的标志,还使人类进步与繁荣的阶梯。
随着更为神奇的人工晶体的诞生,人类文明将走向一个更加美好的高科技时代。