关于晶体的化学知识点解析高中化学晶体知识点
- 格式:doc
- 大小:12.00 KB
- 文档页数:3
高中化学晶体结构知识点1、晶体类型判别:分子晶体:大部分有机物、几乎所有酸、大多数非金属单质、所有非金属氢化物、部分非金属氧化物。
原子晶体:仅有几种,晶体硼、晶体硅、晶体锗、金刚石、金刚砂(SiC)、氮化硅(Si3N4)、氮化硼(BN)、二氧化硅(SiO2)、氧化铝(Al2O3)、石英等;金属晶体:金属单质、合金;离子晶体:含离子键的物质,多数碱、大部分盐、多数金属氧化物;2、分子晶体、原子晶体、金属晶体、离子晶体对比表3、不同晶体的熔沸点由不同因素决定:离子晶体的熔沸点主要由离子半径和离子所带电荷数(离子键强弱)决定,分子晶体的熔沸点主要由相对分子质量的大小决定,原子晶体的熔沸点主要由晶体中共价键的强弱决定,且共价键越强,熔点越高。
4、金属熔沸点高低的比较:(1)同周期金属单质,从左到右(如Na、Mg、Al)熔沸点升高。
(2)同主族金属单质,从上到下(如碱金属)熔沸点降低。
(3)合金的熔沸点比其各成分金属的熔沸点低。
(4)金属晶体熔点差别很大,如汞常温为液体,熔点很低(-38.9℃),而铁等金属熔点很高(1535℃)。
5、原子晶体与金属晶体熔点比较:原子晶体的熔点不一定都比金属晶体的高,如金属钨的熔点就高于一般的原子晶体。
6、分子晶体与金属晶体熔点比较:分子晶体的熔点不一定就比金属晶体的低,如汞常温下是液体,熔点很低。
7、判断晶体类型的主要依据?一看构成晶体的粒子(分子、原子、离子);二看粒子间的相互作用;另外,分子晶体熔化时,化学键并未发生改变,如冰→水。
8、化学键:化学变化过程一定发生就化学键的断裂和新化学键的形成,但破坏化学键或形成化学键的过程却不一定发生化学变化,如食盐的熔化会破坏离子键,食盐结晶过程会形成离子键,但均不是化学变化过程。
9、判断晶体类型的方法?(1)依据组成晶体的微粒和微粒间的相互作用判断①离子晶体的构成微粒是阴、阳离子,微粒间的作用力是离子键。
②原子晶体的构成微粒是原子,微粒间的作用力是共价键。
高中化学知识点:晶体结构与性质晶体结构与性质是高中化学中重要的知识点之一。
晶体是由原子、分子或离子等微观粒子沿着空间做周期性重复排列所形成的固体物质,具有规则的几何外形和固定的熔点。
晶体结构与其性质有着密切的关系,了解晶体结构可以帮助我们更好地理解晶体的性质和特征。
一、晶体结构晶体结构是指晶体中原子或离子的排列方式以及它们之间的相互作用。
根据晶体中微观粒子的种类和排列方式,可以将晶体分为离子晶体、分子晶体、原子晶体等不同类型。
其中,离子晶体是最常见的晶体之一,其基本结构单元是正负离子,这些离子通过离子键相互结合。
分子晶体则是由分子通过范德华力相互结合形成的,而原子晶体则是原子通过共价键相互结合形成的。
在晶体结构中,晶胞是最基本的结构单元,它是一个重复单位,可以代表整个晶体结构。
晶胞具有规则的几何外形,并且具有对称性。
晶胞中的原子或离子的排列方式以及它们之间的相互作用,决定了晶体的物理和化学性质。
二、晶体的性质1、晶体的导电性晶体的导电性是指晶体在电场的作用下能够导电的能力。
离子晶体具有较好的导电性,因为离子晶体中存在可以自由移动的离子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其导电性相对较差。
2、晶体的热稳定性晶体的热稳定性是指晶体在温度变化时保持其结构的稳定性和物理性质的能力。
离子晶体具有较高的热稳定性,因为离子键的键能较大,而分子晶体和原子晶体由于分子或原子之间的相互作用比较弱,其热稳定性相对较差。
3、晶体的还原性晶体的还原性是指晶体在化学反应中失去电子的能力。
离子晶体具有较强的还原性,因为离子晶体中的离子容易失去电子。
而分子晶体和原子晶体由于分子或原子之间的相互作用比较强,其还原性相对较差。
此外,晶体的光学性质、磁性、机械性质等也是晶体性质的重要组成部分。
不同的晶体结构对应不同的物理和化学性质,理解和掌握晶体结构和性质之间的关系对于我们更好地认识化学世界具有重要的意义。
三、晶体结构与性质的关系晶体结构和性质之间存在着密切的关系。
高中化学晶体知识点高中化学教材中的晶体内容是微观分子、原子结构与宏观物质产生联系的桥梁。
为了帮助高中生掌握晶体知识点,下面店铺为高中生整理化学晶体知识点,希望对大家有所帮助。
高中化学晶体知识点石墨――混合型晶体石墨晶体为层状结构,层与层之间的作用力为范德华力,每一层内C原子间以共价键形成正六边形结构(见图8)。
由于层内C原子以较强的共价键相结合,所以石墨有较高的熔点。
但由于层间的范德华力较弱,层间可以滑动,故石墨的硬度较小。
因此石墨晶体又称为过渡型晶体或混合型晶体。
石墨品体中每个C原子只拥有其所连接的3个C-C键的1/2(3/2个),因此晶体中C原子与C-C键数之比为2:3。
干冰――分子晶体干冰晶体中的CO2分布在立方体的顶点和面心上,分子间由分子间作用力结合形成晶体(见图7)。
C02分子内存在共价键,因此晶体中既有分子间作用力,又有共价键,但熔、沸点的高低由分子间的作用力决定,影响分子间作用力的主要因素是相对分子质量,从晶胞的结构可知与一个CO2分子距离最近且相等的CO2分子共有12个。
金刚石、二氧化硅――原子晶体(1) 金刚石是一种具有空间网状结构的原子晶体。
每个C原子以共价键与其他4个C原子紧邻,由5个碳子形成正四面体的结构单元,由共价键构成的最小环结构中有6个碳原子(见图4),由于每个C原子拥有所连4个C-C键的1/2(2个),所以碳原子个数与C-C键数之比为1:2。
(2) 二氧化硅晶体可以看成是金刚石结构中,C原子被Si原子代替,且在C-C键之间插入O原子后形成的,即每个硅原子与周围的四个氧原子构成一个正四面体,构成二氧化硅晶体结构的最小环是由12个原子构成椅式环,键角∠(O-Si-O)=109°28'(见图5)。
每个Si原子拥有所连4个O原子的1/2(2个)(见图6),因此si、O原子个数比为1:2,即化学式表示为SiO2。
氯化钠、氯化铯晶体——离子晶体由于离子键无饱和性与方向性,所以离子晶体中无单个分子存在。
晶体的常识分子晶体与原子晶体【学习目标】1、初步了解晶体的知识,知道晶体与非晶体的本质差异,学会识别晶体与非晶体的结构示意图;2、知道晶胞的概念,了解晶胞与晶体的关系,学会通过分析晶胞得出晶体的组成;3、了解分子晶体和原子晶体的特征,能以典型的物质为例描述分子晶体和原子晶体的结构与性质的关系;4、知道分子晶体与原子晶体的结构粒子、粒子间作用力的区别。
【要点梳理】要点一、晶体与非晶体【分子晶体与原子晶体#晶体与非晶体】1、概念:①晶体:质点(分子、离子、原子)在空间有规则地排列成的、具有整齐外型、以多面体出现的固体物质。
晶体具有的规则的几何外形源于组成晶体的微粒按一定规律周期性的重复排列。
②非晶体:非晶态物质内部结构没有周期性特点,而是杂乱无章地排列,如:玻璃、松香、明胶等。
非晶体不具有晶体物质的共性,某些非晶态物质具有优良的性质要点诠释:晶体与非晶体的区分:晶体是由原子或分子在空间按一定规律周期性地重复排列构成的固体物质。
周期性是晶体结构最基本的特征。
许多固体的粉末用肉眼是看不见晶体的,但我们可以借助于显微镜观察,这也证明固体粉末仍是晶体,只不过晶粒太小了。
晶体的熔点较固定,而非晶体则没有固定的熔点。
区分晶体和非晶体最可靠的科学方法是对固体,进行X—射线衍射实验,X射线透过晶体时发生衍射现象。
特别注意:一种物质是否晶体,是由其内部结构决定的,而非由外观判断。
2、分类:说明:①自范性:晶体能自发性地呈现多面体外形的性质。
所谓自范性即“自发”进行,但这里要注意,“自发”过程的实现仍需一定的条件。
例如:水能自发地从高处流向低处,但若不打开拦截水流的闸门,水库里的水不能下泻;②晶体自范性的条件之一:生长速率适当;③晶体自范性的本质:是晶体中粒子微观空间里呈现周期性的有序排列的宏观表象。
4、晶体形成的途径:①熔融态物质凝固,例:熔融态的二氧化硅,快速冷却得到玛瑙,而缓慢冷却得到水晶。
②气态物质冷却不经液态直接凝固(凝华);③溶质从溶液中析出。
化学金属晶体知识点总结一、金属晶体的基本概念金属晶体是由金属原子以一定规律排列组成的固体结构。
金属晶体具有一些特点,如具有金属典型的电性能、热性能和光学性能,同时还具有良好的延展性、韧性和导电性。
二、金属晶体的结构金属晶体的结构是由金属原子通过化学键相互连接而形成的。
金属晶体的结构有多种类型,其中最常见的是面心立方晶体结构和体心立方晶体结构。
金属晶体的结构对金属的性能具有重要影响,比如面心立方晶体结构使得金属具有优良的导电性和导热性,而体心立方晶体结构使得金属具有良好的韧性和延展性。
三、金属晶体的性能1. 导电性:金属晶体中的自由电子能够在晶体结构中自由传导,因此金属具有良好的导电性能。
2. 导热性:金属晶体中的自由电子能够在晶体结构中迅速传递热量,因此金属具有良好的导热性能。
3. 延展性:金属晶体中的金属原子之间的化学键相对较弱,因此金属具有良好的延展性能,可以被拉伸成细丝或者铺展成薄片。
4. 韧性:金属晶体中的金属原子之间的化学键相对较强,因此金属具有良好的韧性能,可以经受一定的外力而不易断裂。
5. 耐腐蚀性:金属晶体中的化学键特点使得金属具有一定的抗腐蚀性能,可以抵御外界腐蚀物质的侵蚀。
四、金属晶体的制备金属晶体的制备方法有多种,常见的包括熔融法、沉淀法、溶胶-凝胶法等。
熔融法是通过将金属加热至熔点后冷却凝固成固体晶体;沉淀法是通过将金属盐溶液中加入适量还原剂使金属物质析出,然后经过洗涤、干燥等处理制备金属晶体;溶胶-凝胶法是通过将金属盐加入溶液中形成凝胶后再经过热处理的方法制备金属晶体。
五、金属晶体的应用金属晶体广泛应用于工业生产中,主要包括金属材料、金属合金、金属催化剂等。
金属材料广泛用于航空航天、汽车制造、机械加工等领域;金属合金具有优异的物理性能和化学性能,用于制备高强度、高耐热、高耐腐蚀的材料;金属催化剂广泛用于化工生产中的有机合成、空气净化等领域。
总的来说,金属晶体是由金属原子组成的固体结构,在工业生产和科研领域有重要应用。
高中化学知识点详解晶体结构晶体结构是高中化学中重要的知识点之一,它涉及到晶体的组成、排列和结构等方面。
本文将详细解析晶体结构的相关概念和特征。
晶体是由一定数量的原子、离子或分子按照一定的规律结合在一起形成的具有规则外观的固体物质。
晶体的结构对其性质和应用具有重要影响。
晶体结构可以通过实验方法和理论模型来研究和解释。
1. 晶体的基本组成晶体的基本组成单位分为晶体胞和晶胞内的基本组织。
晶体胞是晶格的最小重复单位,可以通过平移操作来无限重复整个晶体结构。
晶胞内的基本组织是晶体内的原子、离子或分子的排列方式。
2. 晶体的晶格类型晶体的晶格类型可以分为立方晶系、四方晶系、单斜晶系、正交晶系、三斜晶系、五类三方晶系和六斜晶系。
不同的晶格类型对应着晶胞的不同形状,给晶体带来了不同的结构和性质。
3. 晶体的点阵晶体的点阵是晶格具有的一个特征,它描述了晶体内的原子、离子或分子的排列方式。
点阵可以分为简单点阵、面心立方点阵和密堆积点阵。
不同的点阵结构给晶体带来了不同的物理和化学性质。
4. 晶体的组成晶体的组成可以分为离子晶体、共价晶体、金属晶体和分子晶体四种类型。
离子晶体由阳离子和阴离子按照一定的配位比例组成,共价晶体由原子通过共用电子而形成,金属晶体则是由金属原子通过金属键连接在一起,而分子晶体则是由分子通过范德华力相互作用形成。
5. 晶体的结构特征晶体的结构特征包括晶胞参数、平均密度、元素比例和晶胞中原子、离子或分子的具体排列方式等。
通过实验和理论模型的分析,可以确定晶体的结构特征,并进一步研究其性质和应用。
总结起来,晶体结构是由晶体胞和胞内基本组织构成的,晶格类型和点阵类型直接影响晶体的结构和性质。
晶体的组成类型包括离子晶体、共价晶体、金属晶体和分子晶体。
通过对晶体的结构特征的研究和分析,可以进一步揭示其性质和应用。
通过本文的详解,我们对高中化学中的晶体结构有了更深入的了解,希望对学习和掌握该知识点有所帮助。
总结:四大晶体晶体类型离子晶体原子晶体分子晶体金属晶体概念离子间离子键原子间共价键分子间分子力金属离子和e金属键晶体质点阴、阳离子原子分子金属离子原子和e作用力离子键共价键分子间力金属键物理性质熔沸点较高很高很低一般高少数低硬度较硬很硬硬度小多数硬少数软溶解性易溶于水难溶任何溶剂相似相溶难溶导电性溶、熔可硅、石墨可部分水溶液可固、熔可实例盐MOH MO C Si SiO2SiC HX XO n HXO n金属或合金1.各种晶体中的化学键⑴离子晶体:一定有离子键,可能有共价键(极性键、非极性键、配位键)⑵分子晶体:一定没有离子键,可能有极性键、非极性键、配位键;也可能根本没有化学键。
⑶原子晶体:一定没有离子键,可能有极性键、非极性键。
⑷金属晶体:只有金属键2、物质熔沸点高低比较规律(1)晶体内微粒间作用力越大,熔沸点越高,只有分子晶体熔化时不破坏化学键。
(2)不同晶体(一般情况下):原子晶体>离子晶体>分子晶体熔点:上千度~几千度〉近千度~几百度〉多数零下最多几百度(3)相同条件下一般地说熔沸点:固态>液态>气态2、物质熔沸点高低比较规律(4)同种晶体离子晶体:比较离子键强弱,离子半径越小,电荷越多,熔沸点越高MgO〉MgCl2>NaCl〉KCl>KBr原子晶体:比较共价键强弱(看键能和键长)金刚石(C)> 水晶(SiO2) > SiC > Si分子晶体:比较分子间力(和分子内的共价键的强弱无关)1)组成和结构相似时,分子量越大熔沸点越高F2〈Cl2〈Br2〈I2;HCl〈HBr 〈HI;CF4〈CCl4 < CBr4 < CI4;N2〈O2 ;同系物熔沸点的比较2)同分异构体:支链越多熔沸点越低正戊烷>异戊烷〉新戊烷金属晶体:比较金属键,金属原子半径越小,价电子数越多,熔沸点越高。
熔沸点同族从上到下减小,同周期从左到右增大.Li>Na>K〉Rb>Cs ; Na〈Mg〈Al3、晶体类型的判断◆从物质的分类上判断:●离子晶体:强碱、大多数盐类、活泼金属氧化物;●分子晶体:大多数非金属单质(金刚石、石墨、晶体硅、晶体硼除外)及氧化物(SiO2除外),所有的酸及非金属氢化物,大多数有机物等。
高中化学晶体高中化学中晶体是一个重要的知识点,它涉及物质的微观结构、物理性质以及化学反应等方面。
一、晶体定义晶体是一种内部质点(如原子、离子或分子)按照一定的空间周期性排列而成的固体物质,这种有序排列形成了晶格结构。
晶体具有确定的熔点和规则的几何外形,且在不同的方向上可能表现出不同的物理性质,即各向异性。
1.晶体类型根据构成粒子的不同,晶体主要分为以下几类:2.离子晶体由阳离子和阴离子通过离子键紧密结合形成的晶体,如食盐(NaCl)。
3.原子晶体由相同或不同类型的原子通过共价键形成的空间网状结构,例如金刚石(C)、石墨(混合型晶体,既有共价键又有范德华力)。
4.分子晶体由独立的分子通过分子间作用力(主要是范德华力)结合在一起,如冰(H ₂O)、碘(I₂)等。
5.金属晶体由金属阳离子与“海洋”中的自由电子共同组成,金属离子之间以金属键相连,具有良好的导电性和导热性,如铜、铁等。
二、晶体特性1.结构特点晶体拥有清晰的X射线衍射图案,这是判断物质是否为晶体的重要依据。
2.物理性质硬度、熔点、沸点、导电性、光学性质等均与其内部结构密切相关。
例如,离子晶体通常有较高的熔点和硬度,而分子晶体则往往熔点低、硬度小,但某些情况下溶于水后会因形成自由离子而导电;金属晶体具有良好的导电和导热性能。
3.实际应用晶体的理论研究和实际应用广泛,包括但不限于半导体工业、建筑材料、药物制造、超导材料等领域。
三、案例分析如前所述,石墨是典型的混合型晶体,其层状结构决定了它具有良好的润滑性和导电性,同时也解释了石墨为何容易剥离成薄片(如石墨烯)。
而金刚石由于其紧密的四面体共价键网络结构,赋予了它极高的硬度和良好的热传导性。
高中化学晶体知识点晶体是高中化学中的重要知识点之一,涉及到物质的结构和性质。
本文将以晶体的定义、分类、晶体结构和晶体的性质为主线进行论述。
晶体是指由原子、离子或分子经过周期性排列形成的有规则结构的固体。
它们具有高度有序的排列方式,因此晶体呈现出很多独特的特性。
首先,晶体可以根据其成分进行分类。
根据晶体组成的粒子不同,晶体分为分子晶体、离子晶体和金属晶体。
其中,分子晶体是由分子构成的,例如甘蔗糖;离子晶体是由离子构成的,例如氯化钠;金属晶体则是由金属原子构成的,例如铁。
其次,晶体的结构是晶体化学的核心内容之一。
晶体的结构种类多样,常见的有点阵、面心立方等多种结构。
其中,点阵结构是最简单的晶体结构,它是由相同大小的正方形或者三角形网格构成的,例如钻石。
而面心立方结构则是最常见的晶体结构之一,它由离子或者原子以一定的方式排列而成,例如金刚石。
不同的晶体结构决定了晶体的物理和化学性质。
接下来,晶体的性质也是学习晶体化学时需要了解的重要内容。
晶体的性质包括光学性质、物理性质和化学性质。
光学性质是指晶体对光的传输、反射、吸收和偏振等现象的规律。
物理性质是指晶体的硬度、密度、热导率等物理性质的特性。
化学性质则是指晶体在化学反应中的表现和反应特点。
此外,晶体的应用也是学习晶体化学时需要了解的一部分内容。
晶体具有很多重要的应用价值,在材料科学、电子工程、光学等领域有着广泛的应用。
例如,硅晶体在半导体工业中起着重要的作用;锌硫晶体可用于制备太阳能电池等。
总而言之,高中化学中的晶体知识点涵盖了晶体的定义、分类、结构和性质等方面。
晶体是物质世界中非常有趣和重要的一部分,它们的特性和应用广泛影响着科学技术的发展。
通过深入学习和理解晶体知识,我们可以更好地理解和掌握物质的结构和性质,为今后的学习和研究奠定坚实的基础。
高中化学晶体知识点总结晶体是由原子、分子或离子按照一定的规律排列而成的固体,具有规则的几何形状和明显的面、棱、角。
晶体是化学中的重要概念,其研究对于理解物质的性质和反应机理具有重要意义。
本文将从晶体的结构、性质和制备等方面进行总结。
一、晶体的结构晶体的结构是由原子、分子或离子的排列方式决定的。
晶体的结构可以分为离子晶体、共价晶体和分子晶体三种类型。
1.离子晶体离子晶体是由阳离子和阴离子按照一定的比例排列而成的晶体。
离子晶体的结构可以分为简单离子晶体和复合离子晶体两种类型。
简单离子晶体的结构比较简单,如氯化钠晶体。
氯化钠晶体的结构是由钠离子和氯离子按照一定的比例排列而成的,钠离子和氯离子交替排列,形成一个立方晶系的晶体。
复合离子晶体的结构比较复杂,如硫酸铜晶体。
硫酸铜晶体的结构是由铜离子和硫酸根离子按照一定的比例排列而成的,铜离子和硫酸根离子交替排列,形成一个六方晶系的晶体。
2.共价晶体共价晶体是由原子之间共用电子形成的晶体。
共价晶体的结构可以分为分子共价晶体和网络共价晶体两种类型。
分子共价晶体的结构比较简单,如冰晶体。
冰晶体的结构是由水分子按照一定的方式排列而成的,水分子之间通过氢键相互连接,形成一个六方晶系的晶体。
网络共价晶体的结构比较复杂,如金刚石晶体。
金刚石晶体的结构是由碳原子按照一定的方式排列而成的,每个碳原子与周围四个碳原子通过共价键相互连接,形成一个立方晶系的晶体。
3.分子晶体分子晶体是由分子按照一定的方式排列而成的晶体。
分子晶体的结构比较简单,如葡萄糖晶体。
葡萄糖晶体的结构是由葡萄糖分子按照一定的方式排列而成的,葡萄糖分子之间通过氢键相互连接,形成一个六方晶系的晶体。
二、晶体的性质晶体具有一些特殊的性质,如光学性质、电学性质和热学性质等。
1.光学性质晶体具有双折射现象,即光线在晶体中传播时会分成两束光线,这两束光线的振动方向垂直于彼此。
双折射现象是由于晶体的结构不对称所引起的。
2.电学性质晶体具有电学性质,即晶体可以产生电场和电荷。
【高中化学】高中化学知识点:原子晶体原子晶体:相邻原子间以共价键相结合而形成空间网状结构的晶体,熔沸点高,导热性、延展性不良,导电性差,硬度大。
如:金刚石、石英。
晶体的基本类型与性质:晶体熔、沸点高低的比较规律:(1)相同类型晶体的熔、沸点多寡规律:通常,原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点有的很高,例如钨、铂等;有的则很低,例如汞、铯等。
(2)同种类型晶体,晶体内粒子间的作用力越大,熔、沸点越高。
①分子晶体:分子间作用力越大,物质的熔、沸点越高,反之越高。
a.组成和结构相似的分子,相对分子质量越大,范德华力越大,熔、沸点越高。
如沸点:o2>n2、hi>hbi>hcl(含氢键的除外)。
b.相对分子质量成正比或相似的分子,极性分子的范德华力大,熔、沸点低。
例如沸点:co>n2。
c.含有氢键的分子熔、沸点比较高。
如沸点:h2o>h2te>h2se>h2s,hf>hcl,nh3>ph3。
d.在烷烃的同分异构体中,一般来说,支链越多,熔、沸点越高。
例如沸点:正戊烷>异戊烷>崭新戊烷。
芳香烃及其衍生物苯环上的同分异构体熔、沸点大小通常按照“邻位>问位>对位”的顺序。
e.在高级脂肪酸形成的油脂中,油的熔、沸点比脂肪低,烃基部分的不饱和程度越大(碳碳双键越多),熔、沸点越低,如:(c17h35coo)3c3h5>(c17h33coo)3c3h5硬脂酸甘油酯油酸甘油酯②原子晶体:必须比较共价键的高低。
一般来说,原子半径越大,键长愈长,键能够越大,共价键越稳固,晶体的熔、沸点越高.例如熔点:金刚石(c―c)>金刚砂(si―c)>晶体硅(si―si)>锗(ge―ge)。
③离子晶体:要比较离子键的强弱。
一般来说,阴、阳离子电荷数越多,离子半径越小,离子键越强,熔、沸点越高,如熔点:mgo>nacl,kf>kcl>kbr>ki。
高中化学晶体知识点高中化学晶体知识点:一.晶体常识1.晶体与非晶体比较2.获得晶体的三条途径①熔融态物质凝固。
②气态物质冷却不经液态直接凝固(凝华)。
③溶质从溶液中析出。
3.晶胞晶胞是描述晶体结构的基本单元。
晶胞在晶体中的排列呈“无隙并置”。
4.晶胞中微粒数的计算方法——均摊法如某个粒子为n个晶胞所共有,则该粒子有1/n属于这个晶胞。
中学中常见的晶胞为立方晶胞立方晶胞中微粒数的计算方法如下:注意:在使用“均摊法”计算晶胞中粒子个数时要注意晶胞的形状二.四种晶体的比较晶体熔、沸点高低的比较方法(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
(2)原子晶体由共价键形成的原子晶体中,原子半径小的键长短,键能大,晶体的熔、沸点高.如熔点:金刚石>碳化硅>硅(3)离子晶体一般地说,阴阳离子的电荷数越多,离子半径越小,则离子间的作用力就越强,相应的晶格能大,其晶体的熔、沸点就越高。
(4)分子晶体①分子间作用力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常的高。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高。
③组成和结构不相似的物质(相对分子质量接近),分子的极性越大,其熔、沸点越高。
④同分异构体,支链越多,熔、沸点越低。
(5)金属晶体金属离子半径越小,离子电荷数越多,其金属键越强,金属熔、沸点就越高。
三.几种典型的晶体模型高中化学知识点:晶体:一、结构1.晶体按其结构粒子和作用力的不同可分为四类:离子晶体、原子晶体、分子晶体和金属晶体。
固体可分为晶体、非晶体和准晶体三大类。
2.具有整齐规则的几何外形、固定熔点和各向异性的固态物质,是物质存在的一种基本形式。
固态物质是否为晶体,一般可由X射线衍射法予以鉴定。
3.晶面角不变原理:晶体内部结构中的质点(原子、离子、分子、原子团)有规则地在三维空间呈周期性重复排列,组成一定形式的晶格,外形上表现为一定形状的几何多面体。
高中化学知识点:晶体结构与性质晶体常识1.晶体与非晶体晶体非晶体结构特征结构微粒在三维空间里呈周期性有序排列结构微粒无序排列性质特征自范性有无熔点固定不固定异同表现各向异性无各向异性区别方法熔点法有固定熔点无固定熔点X射线对固体进行X-射线衍射实验2.晶胞(1)概念:描述晶体结构的基本单元。
(2)晶体中晶胞的排列——无隙并置。
①无隙:相邻晶胞之间没有任何间隙;②并置:所有晶胞平行排列、取向相同。
分子晶体和原子晶体1.分子晶体(1)结构特点①晶体中只含分子。
②分子间作用力为范德华力,也可能有氢键。
③分子密堆积:一个分子周围通常有12个紧邻的分子。
(2)典型的分子晶体①冰:水分子之间的主要作用力是氢键,也存在范德华力,每个水分子周围只有4个紧邻的水分子。
②干冰:CO2分子之间存在范德华力,每个CO2分子周围有12个紧邻的CO2分子。
2.原子晶体(1)结构特点①晶体中只含原子。
②原子间以共价键结合。
③三维空间网状结构。
(2)典型的原子晶体——金刚石①碳原子取sp3杂化轨道形成共价键,碳碳键之间夹角为109°28′。
②每个碳原子与相邻的4个碳原子结合。
金属晶体1.“电子气理论”要点(1)该理论把金属键描述为金属原子脱落下来的价电子形成遍布整块晶体的“电子气”,被所有原子所共用,从而把所有金属原子维系在一起。
(2)金属晶体是由金属阳离子、自由电子通过金属键形成的一种“巨分子”。
(3)金属键的强度差异很大。
2.金属晶体的构成、通性及其解释金属晶体结构微粒作用力名称导电性导热性延展性金属阳离子、自由电子金属键自由电子在电场中定向移动形成电流电子气中的自由电子在热的作用下与金属原子碰撞而导热当金属受到外力作用时,金属晶体中的各原子层就会相对滑动,但不会改变其体系的排列方式,而弥漫在金属原子间的电子气可以起到类似轴承中滚珠之间润滑剂的作用3.金属晶体的常见堆积结构型式常见金属配位数晶胞面心立方最密堆积A1Cu、Ag、Au 12体心立方堆积A2Na、K、Fe 8六方最密堆积A3Mg、Zn、Ti 12离子晶体1.离子晶体(1)概念①离子键:阴、阳离子间通过静电作用(指相互排斥和相互吸引的平衡)形成的化学键。
关于晶体的化学知识点解析高中化学晶体知识
点
晶体具有规则的几何外形、固定的熔沸点、各向异性(如云母的解离性各个方向不同)。
其原因是组成晶体的质点(分子、原子、离子)以确定位置的点在空间作有规则的排列,这些点群具有一定的几何形状,称为结晶格子(简称晶格)。
每个质点在晶格中所占的位置称为晶格的结点。
晶体中含有晶体结构中具有代表性的最小部分称为单元晶体(简称晶胞)。
根据构成晶体的粒子种类及粒子之间的相互作用不同,可将晶体分为离子晶体、原子晶体、分子晶体和金属晶体等。
常见的盐、味精、雪化、宝石、石英、各种金属及合金制品是晶体,工业中的矿物岩石也是晶体,就连地上的泥土沙石也包含着许多晶体。
玻璃、珍珠、沥青、塑料等则是非体晶。
那才能快速鉴定某种物质是晶体还是非晶体呢?一种最常见的技术是X 射线技术。
如没有X线机,可以根据是否有固定的熔点来判断。
当温度升高到某一温度便开始熔解,而在熔解的过程中温度不变则为晶体。
晶体是怎么长出来呢?自然界中晶体的形成同食盐的结晶过程一样,从溶液中诞生。
比如,岩石的裂缝处充满了溶解的液态物质,一些晶体就逐渐沉积在岩石表面。
当岩石表面的水蒸发之
后,晶体也就随之形成了。
许多晶体是在令人难以置信的压力和温度下形成的。
比如,钻石就是在地壳深出高温高压的岩桨中产生的,这些钻石因地壳变动和火山喷发而被送到地球表面。
但是自然界蕴藏的晶体远远满足不了人们的需要,因此,科学家就师法自然,模拟自然界的成矿条培育晶体,这就是人工晶体。
海水里提炼出的食盐就是人工晶体之一。
现在,人们不仅能用人工方法合成出自然界没有的晶体,如水晶、金刚石、人工合成胰岛素等,也能用人工方法合成出自然界没有的晶体,如常见的单晶硅。
这些人工晶体不但能满足人们独特的审美需求,还能在工业生产中发挥重要作用。
比如,纯净的人工石英晶体(即人工冰晶)是一种优良的压电晶体,它既能把机械能转变成电能;也能把电能转变成机械能。
压电晶体被广泛应运在钟表和无线电工业上,遥控器、电子表、手机、声纳等都是利用压电晶体或其他压电材料来实现能量转换的。
人们利用闪烁晶体制造的探测器进行高能物理实验和宇宙射线的探测;利用激光晶体(如人造的红宝石晶体、石榴石晶体)制造的激光器产生各种激光。
自动化技术的日新月异,电子计算机的更新换代,广播电视的普及与提高,通信事业的迅猛发展等都离不开半导体晶体。
追溯人类近百年的历史,我们会发现,人工晶体为现代科技的发展立下了赫赫战功。
在第二次世界大战中,石英晶体作为无线电通信中的一个关键元,开创了无线电通信时代。
20世纪50年
代,人们发现了硅单晶,导致了电视、电子表、计算机、电话、无线电通信的诞生。
硅单晶的发现,表明了电子时代的来临。
20世纪60年代,人造红宝石晶体问世,产生了激光,为人类迎来了光电子时代。
从某中意义上来说,人工晶体不仅是划时代的标志,还使人类进步与繁荣的阶梯。
随着更为神奇的人工晶体的诞生,人类文明将走向一个更加美好的高科技时代。