三角形全等sss练习题
- 格式:doc
- 大小:27.50 KB
- 文档页数:6
11.2 三角形全等的判定(SSS)题号一1 二2 三3 四4 五5 六6 七7 八8 得分度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。
◆课堂测控测试点边边边1.如图,点B,E,C,F在同一直线上,AB=DE,AC=DF,BE=CF,∠A=•43°,求∠D的度数,下面是小红同学的求解过程,请你说明每一步的理由.解:因为BE=CF,所以BE+EC=CF+EC,即BC=EF.在△ABC与△DEF中,,,AB DEAC DFBC EF=⎧⎪=⎨⎪=⎩所以△ABC≌△DEF().所以∠D=∠A=43°().2.已知:如图,C是AB的中点,AD=CE,CD=BE,求证:△ACD≌△CBE.◆课后测控3.如图,AC=BD,AB=DC,求证:∠B=∠C.4.已知:如图,点A,C,B,D都在一条直线上,AC=BD,AM=CN,BM=DN.求证:AM∥CN.5.三月三放风筝,下图是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学知识给予证明.◆拓展测控6.有一块三角形的厚铁板(如图),根据实际生产需要,工人师傅要把∠MAN平分开,现在他手边只有一把尺子(没有刻度)和一根细绳,•你能帮助工人师傅想个办法吗?并说明你这样做的理由.答案:1.SSS 全等三角形对应角相等2.∵C是AB的中点,∴AC=BC.在△ACD与△CBE中,,,,AC CBAD CECD BE=⎧⎪=⎨⎪=⎩∴△ACD≌△CBE(SSS).[总结反思]三条边对应相等的两个三角形全等,•运用此结论可证明两个三角形全等.3.证明:在△ABD与△DCA中,,,,AB DCDB ACAD DA=⎧⎪=⎨⎪=⎩∴△ABD≌△DCA(SSS),∴∠B=∠C.[解题规律]证明线段相等或角相等时,常证明它们所在的两个三角形全等,本题中证明两个三角形全等已具备两个条件,运用公共边这个隐含条件是解题关键.4.∵AC=BD,∴AC+CB=BD+CB,即AB=CD.在△AMB和△CND中,,,,AM CNBM DNAB CD=⎧⎪=⎨⎪=⎩∴△AMB≌△CND(SSS).∴∠A=∠NCD,∴AM∥CN.[解题技巧]题目中条件AC=BD不能直接用来证明,可运用等式的性质变为AB=CD.5.证明:连结DH.在△DEH和△DFH中,,,.DE DFEH FHDH DH=⎧⎪=⎨⎪=⎩∴△DEH≌△DFH(SSS),∴∠DEH=∠DFH.[解题规律]连结EH即将原图形分成一对三角形,利用公共边运用SSS可得两个三角形全等.6.用绳子的一定长度在AM,AN边上截取AB=AC,再选取适当长度的绳子,将其对折,得绳子的中点D,把绳子的两端点固定在B,C两点,拽住绳子中点D,向外拉直BD和CD,•再在铁板上点出D的位置,作射线AD,则AD平分∠MAN.理由如下:如图,∵在△ABD和△ACD中,,,,AB ACBD CDAD AD=⎧⎪=⎨⎪=⎩∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,即AD平分∠MAN.[解题技巧]这是一道实际应用问题,通过构造两个三角形全等将∠MAN平分,•解题关键是得到绳子的中点并拉直绳子,从而可知DB=DC.可以编辑的试卷(可以删除)This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.。
全等三角形判定一(SSS SAS (提高)【巩固练习】-、选择题1.如图,已知 AB= AC, D为BC的中点,结论:①④厶ABC是等边三角形.其中正确的是()F分别是AD和AD延长线上的点,且DE DF ,连接BF、CE,下列说法:①CE BF :②ABD和ACD的面积相等;③BF//CE;④ BDF也CDE,其中正确的有()•3.AD ABC中BC边上的中线,若AB= 2, AC = 4,贝U AD的范围是()4.(2015?杭州模拟)用直尺和圆规作已知角的平分线的示意图如下,则说明/ CADM DAB5.根据下列条件能唯一画出△ABC的是()A.AB= 3, BC= 4, AC= 8B.AB = 4, BC= 3,M A= 30°C.AB= 5, AC= 6,M A= 45°D. M A= 30°,/ B= 60°,/ C= 90 °6.( 2016?洛阳模拟)已知:如图,在长方形ABCD中,AB=4 , AD=6 .延长BC到点E,使CE=2,连接DE ,动点P从点B出发,以每秒2个单位的速度沿 BC - CD - DA向终点A 运动,设点P的运A.①② B. ②③ C. ①②③ D. ③④AD丄 BC ② AD平分/ BAC ③/ B=Z C;2 •如图,AD是ABC的中线,E、B.2 个C.3 个D.4 个A .AD V 6 B. AD > 2 C.2 V ADV 6 D.1 V ADV 3C. ASAD. AASA.1个SAS动时间为t秒,当t的值为()秒时,△ ABP和厶DCE全等.如图,△ ABC 是三边均不等的三角形, 使所作的三角形与△ ABC 全等,这样的三角形最多可以画△ABC 和△FED 中,AD=FC ,AB=FE ,当添加条件(只需填写一个即可)12. 把两根钢条AA', BB'的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)A . 1B . 1 或 3C . 1 或 7 D.二、填空题如图,AB= CD AC= DB,Z ABD= 25° 7. ,/ AOB= 82° ,则/ DCB=DE= BC,以D E 为两个顶点画位置不同的三角形,个•C Dr(2016?微山县二模)如图,四边形 9. 使厶 ABC ◎△ CDA .ABCD 中,/ 1 = / 2,请你补充一个条件8.B» ED,若/ ABC= 54°,则/ E=10. (2014春?鹤岗校级期末)如图:在如图,若测得 AB= 5厘米,则槽宽为 厘米.三、解答题13. (2014秋?天津期末)如图在 △ ABE 中,已知 AB=AE , AD=AC , /仁/ 2 .求证:△ ABC 也△ AED .14. 如图, B= C, BD = CE, CD = BF.1求证:EDF = 90 - - A 215. 已知:如图,BE CF 是厶ABC 的高,且 BP= AC, CQ= AB, 求证:API AQ.【答案与解析】 一.选择题1.【答案】C【解析】由SSS 证全等可得①②③是正确的2.【答案】D;3.【答案】D;【解析】用倍长中线法;4.【答案】A;【解析】解:从角平分线的作法得出,△ AFD与厶AED的三边全部相等,则厶 AFD^A AED故选A.5.【答案】C;【解析】A不能构成三角形,B没有SSA定理,D没有AAA定理.6.【答案】C;【解析】解:因为 AB=CD,若/ ABP= / DCE=90 ° BP=CE=2,根据SAS证得△ ABP◎△ DCE,由题意得:BP=2t=2,所以 t=1 ,因为 AB=CD,若/ BAP= / DCE=90 ° AP=CE=2,根据 SAS 证得△ BAP◎△ DCE,由题意得:AP=16 - 2t=2,解得t=7 .所以,当t的值为1或7秒时.△ ABP和厶DCE全等. 故选C.二.填空题7.【答案】66°;82【解析】可由 SSS证明厶AB3A DCB / OBC=Z OCB^ —41,所以/ DCB=/ ABG= 25°+ 41 °= 66 °8.【答案】4;【解析】在DE的两侧可以各画2个.9.【答案】AD=BC ;【解析】由题意知,已知条件是△ABC与厶CDA对应角/ 1 = / 2、公共边AC=CA,所以根据全等三角形的判定定理SAS来证△ ABC ◎△ CDA时,需要添加的条件是 AD=BC.10. 【答BC=ED 或/ A= / F.11. 【答27;【解可证△ ADB^A CDB^A CDE.12. 【答5;_ -解答题13. 【解证明:•••/仁/ 2,••• / 1 + / DAC= / 2+ / DAC ,••• / BAC= / EAD ,在厶ABC和厶AED中,\ ZBAC=ZEAD ,I AC=AB•••△ ABC ◎△ AED ( SAS).14.【解析】证明:在厶 ABC中,/ B=Z C,1•••/ B = 90/ A2在厶 DBF和△ ECD中BD CEB CBF CD•••△ DBF^A ECD( SAS•••/ BFD=Z CDE1 •••/ EDM 180°—/ BD1/ CDE= 180° -(Z BDF^Z BFD) =Z B = 90 —/ A .215.【解析】证明:T BEX AC CF丄AB(已知)•Z ACF+Z BAC= 90°,/ ABE^Z BAC= 90°,(三角形内角和定理)/ ACF=Z ABE(等式性质)在厶ACQ^n^ PBA中CQ ABACF ABPAC BP• △ ACQ^ PBA( SAS•Z Q=Z BAP (全等三角形对应角相等)•/ CFX AB (已知)•Z Q+Z QAF= 90°,(垂直定义)•Z BAP+Z QAF= 90°,(等量代换)•AP丄AQ.(垂直定义)。
1.判定两个三角形全等的基本事实:边边边(SSS)(1)基本事实:三边分别相等的两个三角形全等,简写成“__________”或“SSS”.(2)这个基本事实告诉我们:当三角形的三边确定后,其形状、大小也随之确定.这也是三角形具有稳定性的原因.2.判定两个三角形全等的基本事实:边角边(SAS)(1)基本事实:两边和它们的夹角分别相等的两个三角形全等,简写成“边角边”或“__________”.(2)此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【注意】(1)此方法是证明两个三角形全等最常用的方法之一,应用时,可以从图形上直接观察到三个对应元素必须符合“两边夹角”,即“SAS”,不要误认为有两边一角就能判定两个三角形全等.(2)在书写时也要按照“边→角→边”的顺序排列条件,必须牢记“边边角”不能作为判定两个三角形全等的条件.3.判定两个三角形全等的基本事实:角边角(ASA)(1)基本事实:两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“__________”.(2)用“ASA”来判定两个三角形全等,一定要证明这两个三角形有两个角以及这两个角的夹边分别相等,证明时要加强对夹边的认识.4.判定两个三角形全等的基本事实:角角边(AAS)(1)基本事实:两角和其中一个角的对边分别相等的两个三角形全等,简写成“角角边”或“__________”.(2)这一结论很容易由“ASA”推得,将这一结论与“ASA”结合起来,即可得出:两个三角形如果具备两角和一条边对应相等,就可判定其全等.5.直角三角形全等的判定方法:斜边、直角边(HL)(1)基本事实:斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“________”.(2)“HL ”定理是直角三角形所独有的,对于一般三角形不成立. 【归纳】判定两个三角形全等常用的思路方法如下: HL SAS SSS AAS SAS ASA AAS ASA AAS ⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎪⎧⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎪⎨⎪⎩⎪⎩一直角边一斜边—已知两边找夹角—找另一边—边为角的对边—找任一角—找夹角的另一边—已知一边一角边为角的邻边找夹边的另一角—找边的对角—找夹边—已知两角找任一角的对边—K 知识参考答案:1.(1)边边边2.(1)SAS 3.(1)ASA4.(1)AAS5.(1)HLK —重点 三角形全等的判定K —难点 三角形全等的判定和性质的综合运用 K —易错三角形全等的判定一、用边边边(SSS )证明三角形全等明确要证明全等的两个三角形,在书写两个三角形全等时,“≌”左边三角形的三边与“≌”右边三角形的三边的前后顺序要保持一致.【例1】如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可判定A .ABD △≌ACD △B .ABE △≌ACE △△D.以上答案都不对C.BDE△≌CDE【答案】B二、用边角边(SAS)证明三角形全等此方法包含“边”和“角”两种元素,必须是两边夹一角才行,而不是两边及一边对角分别相等,一定要注意元素的“对应”关系.【例2】如图,AB=AC,添加下列条件,能用SAS判断△ABE≌△ACD的是A.∠B=∠C B.∠AEB=∠ADC C.AE=AD D.BE=DC【答案】C【解析】∵AB=AC(已知),∠A=∠A(公共角),∴只需要AE=AD,∴△ABE≌△ACD,故选C.三、用角边角、角角边(ASA、AAS)证明三角形全等1.不能说“有两角和一边分别相等的两个三角形全等”,这是因为:假设这条边是两角的夹边,则根据角边角可知正确;假设一个三角形的一边是两角的夹边,而与另一个三角形相等的边是其中一等角的对边,则两个三角形不一定全等.2.有三个角对应相等的两个三角形不一定全等.【例3】如图,要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,可以证明△EDC≌△ABC,得ED=AB,因此,测得ED的长,就得出AB的长,判定△EDC≌△ABC的理由是A.SSS B.SASC.SAA D.ASA【答案】D【解析】∵BF⊥AB,DE⊥BD,∴∠ABC=∠BDE.又∵CD=BC,∠ACB=∠DCE,∴△EDC≌△ABC(ASA).故选D.【例4】如图,已知点B、C、F、E在同一直线上,∠A=∠D,BF=EC,AB∥DE,若∠1=80°,求∠BFD 的度数.四、用斜边、直角边(HL)证明直角三角形全等1.当证明两个直角三角形全等时,若不适合应用“HL”,也可考虑用“SAS”“ASA”或“AAS”来证明.2.在用一般方法证明时,因为两个直角三角形中已具备一对直角相等的条件,故只需找另外两个条件即可,在实际证明中可根据条件灵活选用不同的方法.【例5】如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌△Rt△DCF,则还需要添加一个条件是A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【答案】D五、全等三角形的判定和性质的综合寻找解决问题的思路方法可以从求证的结论出发,结合已知条件,逐步寻求解决问题所需要的条件.同时要注意对图形本身隐含条件的挖掘,如对顶角、公共角、公共边等.【例6】如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为A.50°B.30°C.80°D.100°【答案】B【解析】∵OA=OC,OD=OB,∠AOD=∠COB,∴△AOD≌△COB(SAS),∴∠D=∠B=30°.故选B.【例7】如图,已知∠CAB=∠DBA,∠CBD=∠DAC.求证:BC=AD.【解析】∵∠CAB=∠DBA,∠CBD=∠DAC,∴∠DAB=∠CBA.在△ADB与△BCA中,CAB DBA AB ABDAB CBA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADB≌△BCA(ASA),∴BC=AD.。
最新七年级下册三角形全等的证明试题1、如图,AB=DE,AC=EF,BE=CF,证明∠A=∠D。
2、如图,AB=CD,BE=DF,AF=EC,证明AB∥CD。
3、如图,AC=DF,EF=BC,AD=BE,证明∠F=∠C。
4、如图,AB=AC,AD=AE,BE=DC,证明∠ABD=∠AEC。
5、如图,AB=AD,AE=AC,BC=ED,证明∠ABE=∠ACD。
6、如图,AD=AB,DC=BC,证明∠B=∠D。
7、如图,AB=AC,BD=DC,证明∠1=∠2.8、如图,∠C=90°,AD=BD,DE=DC,AE=BC,说明AB和DE的关系。
9、如图,AB=DE,BC=EF,AF=CD,证明AB∥DE。
10、如图,AB=AC,D是BC的中点,证明AD⊥BC。
11、如图,AE=DF,AB=CD,CE=BF,证明AE∥DF。
12、如图,AB=AD,AE=AC,BC=DE,证明∠E=∠C。
13、如图,BC=BE,DE=DC,∠C=90°,证明(1)DE⊥AB(2)BD是∠ABC的角平分线。
14、如图,AB=EF,AD=CF,DE=BC,证明∠B=∠E。
15、如图,OA=OB,AC=BD,AD=BC,证明∠ACB=∠ADB。
16、如图,AD=BC,A0=OB,OC=OD,证明∠BAD=∠ABC。
17、如图,AD=BD,BE=AC,AD+DE=BC,AD⊥BC,证明BE⊥AC。
18、如图,AD=BC,AF=EC,DE=BF,证明DE∥BF,AD∥BC。
19、如图,AB=DC,AC=BD,AO=OD,证明∠B=∠C。
20、如图,AB=AD,AE=AC,BC=DE,证明∠1=∠2.21、如图,AC⊥CE,AC=CE,AB=CD,且AB+DE=BD,AB∥DE。
22、如图,AE=AB,AC=AF,EC=BF,证明∠BAE=∠CAF。
23、如图,AD=BC,AC=BD,证明∠ADO=∠BCO。
24、如图,AB=AC,BD=CE,AD=AE,证明∠ABC=∠ADE。
【巩固练习】-、选择题2.如图,已知AB= CD AD- BC,则下列结论中错误的是()A.AB // DCB. / B=Z DC. / A=Z CD.AB = BC3. 下列判断正确的是()A. 两个等边三角形全等B. 三个对应角相等的两个三角形全等C. 腰长对应相等的两个等腰三角形全等D. 直角三角形与锐角三角形不全等4. 如图,AB CD EF相交于O,且被O点平分,DF= CE BF= AE则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对B.角边角C.边边边AB丄BD于B, ED± BD于D, AB= CD1. (2015?莆田)女口图,AE// DF, AE=DF 要使△ EA3A FDB 需要添加下列选项中的B. EC=BFC. / A=ZDD. AB=BC5. 如图,将两根钢条AA' , BB'的中点O连在一起,就做成了一个测量工件,则A'B'的长等于内槽宽使AA', BB'可以绕着点O自由转动,AB,那么判定厶OAB^A OA'B'的理A.边角边6.如图,已知A.EC 丄ACA. AB=CDB.EC = ACC.ED + AB = DBD.角角边BC= ED,以下结论不正确的是(D.DC = CB12.、填空题如图,AB= CD AC= DB,Z ABD= 25°,/ AOB= 82°,则/ DCB=点D在AB上,点E在AC上, CD与BE相交于点0,且AD= AE, AB= AC,若/ B = 贝y C= .,△ AD®7.AC BD互相平分,则图中全等三角形共有(2015?虎林市校级二模)如图,已知BD=AC,那么添加一个条件后,能得11.8.9.,/ 3= 26°,则/ CBBAC= ABC^如图,20°,12.三、解答题13. (2014春?章丘市校级期中)如图A B两点分别位于一座小山脚的两端,小明想要测量A、B两点间的距离,请你帮他设计一个测量方案,测出AB的距离.并说明其中的道理.14•已知:如图,AB // CD , AB = CD .求证:AD // BC .分析:要证AD// BC只要证/ ________ =Z __________ ,又需证______ 也_______ .证明:••• AB // CD ( ),二 / ________ =/ _________ ( ),在厶 ______ 和厶_____ 中,_____ 二____ ( ),< _____ = _____ (),、---- = -------- ()‘•••△_______ A___________ ( ).二 / ________ =/ ______ ( ).•- _____ // ______ ( ).15.如图,已知AB= DC AC= DB, BE= CE求证:AE= DE.【答案与解析】一. 选择题1. 【答案】A;【解析】解:••• AE// FD,•••/ A=Z D,•/ AB=CD•AC=BD在厶AEC和厶DFB中,f AE=DF-ZA=ZD,AC=DBk•△EAC^A FDB( SAS ,故选:A.2. 【答案】D;【解析】连接AC或BD证全等.3. 【答案】D;4. 【答案】C;【解析】△ DOF^A COE △ BOF^A AOE △ DOB^A COA.5. 【答案】A;【解析】将两根钢条AA' , BB'的中点O连在一起,说明OA= OA', OB= OB',再由对顶角相等可证•6. 【答案】D;【解析】△ ABC^^ EDC Z ECD^Z ACB=Z CA聊/ ACB= 90°,所以ECL AC, ED + AB = BC+ CD= DB.二. 填空题7. 【答案】66°;82 °【解析】可由SSS证明厶ABC^A DCB Z OBC=Z OCB= 41 , 所以Z DCB=2Z ABC= 25°+ 41 °= 66°8. 【答案】4;【解析】△ AOD^A COB △ AOB^A COD △ ABD^A CDB △ ABC^A CDA.9. 【答案】BC=AD ;【解析】解:添加BC=AD ,r AC=BD•••在△ ABC 和厶BAD 中」BC=AD ,i AB 二AB•△ ABC ◎△ BAD ( SSS),故答案为:BC=AD .10. 【答案】56°;【解析】Z CBE= 26°+ 30°= 56° .11. 【答案】20°;【解析】△ ABE^A ACD( SAS12. 【答案】△ DCB △ DAB【解析】注意对应顶点写在相应的位置上.三. 解答题13. 【解析】解:如图所示:在AB下方找一点O,连接BO并延长使BO=B O,连接AQ并延长使AO=A O,在厶AOB和厶A OB中:f AO=OA?“ ZAOB=ZA V0B y,QB 二OB'•••△AOB2A A OB ( SAS, ••• AB=A B ,量出A B'的长即可.14. 【解析】3, 4;ABD CDB已知;1, 2;两直线平行,内错角相等;ABD CDBAB, CD已知;/ 1 = 7 2,已证;BD= DB公共边;ABD CDB SAS3 , 4,全等三角形对应角相等;AD, BC内错角相等,两直线平行15. 【解析】证明:在厶ABC^n^ DCB中AB = DCAC = DBBC =CB• △ABC^A DCB(SSS•••7 ABC=7 DCB 在厶ABE和△ DCE中AB = DCABC = DCBBE =CE•••△ ABE^A DCE( SAS ••• AE= DE.。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。
120°B.125°C。
127° D。
104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。
∠CAB=∠DBA C.OB=OC D。
∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。
5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。
4 C.5 D。
6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。
∠1=∠2B .∠B=∠C C.∠D=∠ED 。
∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。
AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。
全等三角形的性质与判断(SSS、SAS、ASA 、AAS )练习题1.如图,在△2.如图,把△则∠ A=A ABC中,∠ A=90°, D、 E 分别是 AC、 BC上的点,若△ ADB≌△ EDB≌△ EDC,则∠ C= ABC 绕点 C 顺时针旋转35°,获得△ A′ B′ C, A′ B′交 AC 于点 D,若∠ A′ DC=90°,A' BEDAD D A' C FCB'B'AB E CB CO A B1题图2题图3题图4题图3.如图,△ AOB 中,∠ B=3 0°,将△ AOB 绕点 O 顺时针旋转 52°,获得△ A′ OB′,边 A′B′与边OB交于点 C( A′不在 OB上),则∠ A′ CO=4.如图,△ AB C≌△ ADE , BC 的延伸线过点 E,∠ ACB= ∠ AED=10 5°,∠ CAD=1 0°,∠ B=50°,则∠ DEF=5.如图, Rt △ ABC中,∠ BAC=90°, AB=AC,分别过点 B、 C 作过点 A 的垂线 BC、CE,垂足分别为 D、E,若 BD=3 , CE=2 ,求 DE 的长 .BCD A E6.如图, AD 是△ ABC的角均分线, DE⊥AB, DF⊥AC,垂足分别是 E、 F,连结 EF,交 AD 于 G,试判断AD与 EF的关系,并证明你的结论。
AEGFBDC7.如下图,在△ ABC 中, AD 为∠ BAC 的角均分线, DE⊥ AB 于 E, DF⊥ AC 于 F,△ ABC 的面积是28cm2,AB=20cm,AC=8cm,求 DE的长。
AE FB D C8.如图, AD=BD , A D⊥ BC于 D, BE⊥ AC于 E, AD与 BE 订交于点 H,则 BH与 AC相等吗?为何?AEH- 1 -B D C1 / 49.已知: BD 、 CE 是△ ABC 的高,点 F 在 BD 上, BF=AC ,点 G 在 CE 的延伸线上, CG=AB ,求证: A G⊥AFG AE DFB C10.如图:在△ ABC中, BE、 CF 分别是 AC、AB 两边上的高,在 BE 上截取 BD=AC,在 CF 的延伸线上截取CG=AB,连结 AD、 AG.试判断 AD与 AG的关系怎样?并证明之.AGF EDHB C11.已知,如图:AB=AE,∠ B=∠ E,∠ BAC=∠ EAD,∠ CAF=∠ DAF,求证:AF⊥ CDAEBC F DA12.已知:∠ B=∠ E,且AB=AE。
三角形全等的条件练习1. 如图,ABC △中,AB AC =,EB EC =,则由“SSS ”可以判定( ) A.ABD ACD △≌△ B.ABE ACE △≌△ C.BDE CDE △≌△ D.以上答案都不对2. 如图,ABC △中,AB AC =,AE CF =,BE AF =,则E ∠=∠________,CAF ∠=∠__________.1题 2题第3题. 如图,AD BC =,DC AB =,AE CF =,找出图中的一对全等三角形,并说明你的理由..第4题. 如图,ABC △是等边三角形,若在它边上的一点与这边所对角的顶点的连线恰好将ABC △分成两个全等三角形,则这样的点共有( ) A.1个 B.3个 C.6个 D.9个第5题. 如图,已知A D ∠=∠,AB CD =.求证:ABO DCO △≌△.第6题. 如图,点D E ,分别在AB AC ,上,且AD AE =,BDC CEB ∠=∠.求证:BD CE =.AB D CA E FC BA C F D EB AB C A D O BC ADE BC求证:(1)ADC ABE ∠=∠;(2)DC BE =.第8题. 如图,已知ABC △为等边三角形,QR AB ⊥,垂足为R ,PQ AC ⊥,垂足为Q ,RP BC ⊥,垂足为P ,且AR BP CQ ==.求证:RPQ △为等边三角形.第9题. 如图,已知点A C ,在EF 上,AD BC =,AD BC ∥,DE BF ∥.求证:DE BF =.第10题. 如图,在ABC △和DEF △中,已知AB DE =,BC EF =,根据(SAS )判定ABC DEF △≌△,还需的条件是( ) A.A D ∠=∠ B.B E ∠=∠ C.C F ∠=∠D.以上三个均可以A BED C1 23 4ARB PC QF CD E A B A D B C E FA.两边一夹角 B.两角一夹边 C.三边 D.三角 第12题. 如图,已知AB BD ⊥,垂足为B ,ED BD ⊥,垂足为D ,AB CD =,BC DE =,则A C E ∠=___________.第13题. 如图,已知AB AC =,AD AE =,BAC DAE ∠=∠.求证:BD CE =.第14题. 下列各命题中,真命题是( )A.如果两个三角形面积不相等,那么这两个三角形不可能全等 B.如果两个三角形不全等,那么这两个三角形面积一定不相等C.如果MNP EFG △≌△,M N P E F G ''''''△≌△,那么MNP △与EFG △的面积的和等于M N P '''△与E F G '''△面积的和D.如果MNP EFG △≌△,M N P E F G ''''''△≌△,那么MNP M N P EFG E F G ''''''△+△≌△+△ 第15题. 如图,已知AF BE =,A B ∠=∠,AC BD =.求证:F E ∠=∠.第16题. 如图,点P 是AOB ∠的平分线上的一点,作PD OA ⊥,垂足为D ,PE OB ⊥垂足为E ,DE 交OC 于点F .(1)你能找到几对全等三角形?请说明理由;(2)你能确定图中共有几个直角吗?请说明理由.AE C B D A E DB C CD A BEF O E B A CD F P的延长线于F .求证:OE OF =.第18题. 如图,已知AB CD =,AE DF =,CE BF =.求证:AF DE =.第19题. 对于下列各组条件,不能判定ABC A B C '''△≌△的一组是( ) A.A A '∠=∠,B B '∠=∠,AB A B ''= B.A A '∠=∠,AB A B ''=,AC A C ''= C.A A '∠=∠,AB A B ''=,BC B C ''= D.AB A B ''=,AC A C ''=,BC B C ''=第21题. 如图,已知在ABC △和A B C '''△中,AM 与A M ''分别是BC B C '',上的中线,AB A B ''=,AC A C ''=,AM A M ''=.求证:ABC A B C '''△≌△. .第22题. 如图,已知在ABC △中,AB AC =,12∠=∠.求证:AD BC ⊥,BD DC =.A BF E C DA B M C A ' B ' M ' C ' A B C D 21 3 4B ',使OB BO '=,延长CO 到C ',使OC CO '=,得到A B C '''△,A B C '''△与ABC △是否全等?这两个三角形的对应边是否平行?为什么?第24题. 如图,在ABC △中,90C ∠=,D E ,分别为AC AB ,上的点,且AD BD =,AE BC =,DE DC =.求证:DE AB ⊥.第25题. 如图,AB AC =,要使△ABE ≌△ACD ,应添加的条件是 ,(添加一个条件即可)第26题. 如图,四边形ABCD 中,AC 垂直平分BD ,垂足为点O . (1)图中有多少对全等三角形?请把它们都写出来;(2)任选(1)中的一对全等三角形加以证明.OABCC 'A 'B 'EADBC AD B OECA B D C O件( )A .AB ED = B .AB FD =C .AC FD = D .A F ∠=∠第28题. 小明用四根竹棒扎成如图所示的风筝框架,已知AB CD =,AD CB =,你认为小明的风筝两脚大小相同吗(即B ∠,D ∠相等吗)?请说明理由.第29题. 小民用五根木条钉成了如图所示的两个三角形,且AB AC =,BD CD =,若ABD △为锐角三角形,则ACD △中的最大角α的取范围是( )A.3060<α≤ B.4560<α≤ C.4590<α≤D.6090<α≤第30题. 已知:ABC △的三边分别为a b c ,,,A B C '''△的三边分别为a b c ''',,,且有222222222a a b b c c a b b c ca ''''''+++++=++,则ABC △与A B C '''△( ) A.一定全等 B.不一定全等 C.一定不全等 D.无法确定第31题. 如图,已知12∠=∠,34∠=∠.求证:BE CD =.第32题. 你见过形如图所示的风筝吗?开始制作时,AB CD =,AC DB =,后来为了加固,又过点O 加了一根竹棒EF ,分别交AB CD ,于点E F ,,且AOE DOF ∠=∠,你认为OE OF ,相等吗?请说明理由.A B DCO AC D B AB CDA1 2 3 4 D E B CA D F E OB C.第34题. 如图,已知12∠=∠,ABC DCB ∠=∠,AC DB =.求证:ABC DCB △≌△. .第35题. 在ABC △和A B C ''△中,①AB A B ''=;②BC B C ''=;③AC A C ''=;④A A '∠=∠;⑤B B '∠=∠则下列条件中不能保证ABC A B C '''△≌△的是( ) A.①②③ B.①②⑤ C.②④⑤ D.①③⑤第37题. 如图,AB AC BE =,与CF 交于点O ,EC FB 与相等吗?为什么?第38题. 如图,AB DC AB DC AC BD =∥,,与相交于点O ,你能找出两对全等的三角形吗?你能说明其中的道理吗?AB OCD 2 A D C B 1 ABCDO第39题. 已知:如图,D 是△ABC 的边AB 上一点,AB FC ∥,DF AC E 交于点,DE FE =.AE CE =求证:.第40题. 如图,给出五个等量关系:①AD BC =、②AC BD =、③CE DE =、④D C ∠=∠、⑤DAB CBA ∠=∠.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的命题(只需写出一种情况),并加以证明. 已知:求证:证明:第41题. 如图,A B ,两点分别位于池塘两端,小明和同伴用下面的方法测量AB 间的距离:先在地上取一个可以直接到达A 点和B 点的点C ,连接AC 并延长到D ,使CD AC =,连接BC 并延长到E ,使CE BC =,连接DE ,那么量出DE 的长,就是A B ,的距离,小明和同伴的测量方法对不对?为什么?第42题. 如图,要测量河两岸相对的两点A ,B 的距离,可以在AB 的垂线BF 上取两点C D ,,使CD BC =,再定出BF 的垂线DE ,使A C E ,,在一条直线上,这时测得的DE 的长就是AB 的长,为什么? AD B C FEA B C E DA B C E D C D F E A B第43题. 如图A B ,两个建筑分别位于河的两岸,要测得它们之间的距离,可以从B 出发沿河岸画一条射线BF ,在BF 上截取BC CD =,过D 作DE AB ∥,使E C A ,,在同一条直线上,则DE 的长就是A B ,之间的距离.请你说明道理.你还能想出其他方法吗?第44题. 如图,已知90B D ∠=∠=,AB AD =.求证:BC DC =..第45题. 如图,已知AD AF ,分别是两个钝角ABC △和ABE △的高,如果AD AF =,AC AE =. 求证:BC BE =.第46题. 使两个直角三角形全等的条件是( ) A.一个锐角对应相等 B.两个锐角对应相等 C.一条边对应相等 D.两条直角边对应相等第47题. 如图,有一正方形窗架,盖房时为了稳定,在上面钉了两个等长的木条GF 与GE E F ,,分别是AD BC ,的中点,G 是AB 的中点吗?AB C F E D A CD B A D C BE F A B CF E D G第48题. 如图,已知A F E B ,,,四点共线,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =. 求证:ACF BDE △≌△.第49题. 判定两个直角三角形全等的方法有 A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一条直角边对应相等 C.两个面积相等其中不正确的为( )第50题. 将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如下右图的形式,使点B ,F ,C ,D 在同一条直线上. (1)求证:AB ED ⊥;(2)若PB BC =,请找出图中与此条件有关的一对..全等三角形,并给予证明.A F DE BC AEPM BF CDNACBD FE。
三角形全等sss练习题
2.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB.要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?
E
A
BC
达标训练:
3.如图,若D为BC中点,那么用“SSS”判定△ABD≌△ACD需添加的一个条件是 ___________.
A
A
O
B
B
D
第 1 题
C
C
第题
4.如图,已知OA = OB,AC = BC,∠1=30°,则∠
ACB的度数是________.
5.如图,AB = AD,DC = BC,∠B与∠D相等吗?为什么?
6.已知如图,小明根据条件“AB = DC,AC = DB,AC、BD交于点O”,探索图形中的三角形全等关系时,他发现△ABC≌△DCB,请写出探索过程,并说明理由.
课后作业
7.如图,△ABC中,AB?AC,EB?EC,则由“SSS”可以判定
A.△ABD≌△ACD B.△ABE≌△ACE C.△BDE≌△CDE D.以上答案都不对
A
CD
B
A
D
B
C
△ABC中,AB?AC,AE?CF,BE?AF,8.如图,则?E??________,?CAF??__________.
9.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.
三角形全等的判定SSS练习题
1.如图,AC=DF,BC=EF,AD=BE,∠BAC=72°,∠F=32°,则∠
2.如图,已知AB=AC,BD=DC,那么下列结论中不正确的是
A.△ABD≌△ACD B.∠ADB=90°
C.∠BAD是∠B的一半D.AD平分∠BAC
3.如图,是一个风筝模型的框架,由DE=DF,EH=FH,就说明∠DEH=∠DFH。
试用你所学的知识说明理由。
4.如图,已知线段AB、CD相交于点O,AD、CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠
C.
中考
1.如图,AD=BC,AB=DC. 求证:∠A+∠D=180°
2.已知:如图,在四边形ABCD中,AB=CB,AD=CD.
求证:∠C=∠A.
参考答案:
随堂检测:
1、②①③.解析:本题是利用SSS画全等三角形的尺规作图步骤,“作直线BP,在BP上截取BC=a”也可表达为“画线段BC=a”
2、由全等可得 AD垂直平分BC
3、公共边相等是两个三角形全等的一个条件.
由于AC=AD,BC=BD,AB=AB,所以,△ABC≌△ABD,所以,∠CAB=∠DAB,即AB平分∠CAD. 拓展提高:
1、76.解析:先证明全等,再利用全等三角形的对应角相等和三角形内角和定理答案: 0
2、C.解析:利用SSS证明两个三角形全等
3、由于已知DE=DF,EH=FH,连结DH,这是两三
角形的公共边,于是,
?DE?DF?在△DEH和△DFH中, ?EH?FH
?DH?DH?
所以△DEH≌△DFH,所以∠DEH=∠DFH。
4、根据条件OA=OC,EA=EC,OA、EA和OC、EC恰好分别是△EAC和△EBC的两条边,故可以构造两个三角形,利用全等三角形解决
解:连结OE
在△EAC和△EBC中
?OA=OC??EA=EC
?OE=OE?
∴△EAC≌△EBC
∴∠A=∠C
体验中考:
1、由条件可构造两个全等三角形
证明:连结AC
∵AD=BC,AB=DC,AC=CA
∴△ABC≌△CDA
∴∠BAC=∠ACD
∴AB∥CD
∴∠A+∠D=180°
2、证明:连接BD.
在△ABD和△CBD中,
∵AB=CB,AD=CD,BD=BD,
∴△ABD≌△CBD.
∴∠C=∠A.
全等三角形的判定练习题
?ABE≌?DCF,1.如图,点A和点D、点E和点F分别是对应点,则AB= ,?A?,若AE?BC,则DF与BC的关系是. B
D
第1题图
第2题图
第
4题图
?ABC≌?AED,AB2.如图,若?B?40?,?E
?D?,?DAC?.
?30?,?C?45?,则?BAC?,
3.已知?ABC≌?DEF,若?ABC的周长为23,AB=8,BC=6,则AC= ,EF= .
4.如图,若AB=AC,BE=CD,AE=AD,则?ABE?ACD,所以
?AEB?,?BAE?,?BAD?
5.如图,?ABC≌?ADC,点B与点D是对应点,?BAC?26?,且?B?20?,
S?ABC?1,求?CAD,?D,?ACD的度数及?ACD的面积.
6.如图,?ABC≌?DEF,?A?50?,BC?9cm,CE?5cm,求?DEF 的度数及CF的长.
7.如图,已知:AB=AD,AC=AE,BC=DE,求证:?BAE??CAD 8.如图,在?ABC中?C?90?,D、E分别为AC、AB上的点,且BE=BC,DE=DC,求证:DE?AB;BD平分?ABC
D
9.如图,已知AB=EF,BC=DE,AD=CF,求证:
①?ABC≌?FED;②AB//EF
F
10.如图,已知AB=AD,AC=AE,BC=DE,求证:?BAD??CAE E。