8-2-常见非线性特性及其对系统运动的影响资料
- 格式:ppt
- 大小:193.50 KB
- 文档页数:10
自动控制原理第8章非线性控制系统在自动控制系统中,线性控制系统一直被广泛应用,因为线性系统的行为可预测且易于分析。
然而,在实际的控制系统中,往往存在着一些非线性特性,如非线性环节、非线性传感器和非线性负载等。
非线性系统的行为往往更为复杂,因此需要采用特殊的控制方法来进行控制。
8.1非线性系统的特性非线性系统与线性系统相比,具有以下几个特点:1.非线性特性:非线性系统的输入和输出之间的关系不符合线性定律,而是非线性关系。
这种非线性关系可能是由于系统内部的非线性元件或非线性行为导致的。
2.非线性行为:在非线性系统中,系统的行为经常出现不可预测的情况。
当输入信号的幅值较小时,系统的行为可能是线性的,但是当幅值增大时,系统的行为可能会发生剧烈的变化。
3.非线性耦合:在非线性系统中,不同输入变量之间可能存在耦合关系。
当一个输入变量发生改变时,可能会影响到其他输入变量的行为。
4.非线性稳定性:在非线性系统中,稳定性分析比线性系统更为困难。
非线性系统可能存在多个平衡点或者极限环,而且稳定性分析需要考虑到非线性因素的影响。
8.2非线性系统的建模对于非线性系统的控制,首先需要对系统进行建模,以便进行后续的分析和设计。
非线性系统的建模可以采用两种常用的方法:数学建模和仿真建模。
1.数学建模:数学建模是利用数学模型来描述非线性系统的行为。
非线性系统的数学建模可以采用微分方程、差分方程、泰勒级数展开、输入输出模型等多种方法。
2.仿真建模:仿真建模是利用计算机仿真软件来模拟非线性系统的行为。
通过建立系统的数学模型,并利用计算机进行仿真,可以得到系统的输出响应和稳定性分析。
8.3非线性控制方法在非线性控制系统中,常用的控制方法包括自适应控制、模糊控制和神经网络控制等。
1.自适应控制:自适应控制用于处理未知或难以测量的非线性系统。
自适应控制方法通过不断调整控制器的参数,以适应系统的变化。
2.模糊控制:模糊控制利用模糊逻辑和模糊推理来处理非精确和不确定的输入量。
非线性系统分析方法8-1 概述一、教学目的和要求了解研究非线性系统的意义、方法,常见非线性特性种类。
二、重点内容非线性概念,常见非线性特性。
三、教学内容:1 非线性系统概述非线性系统运动的规律,其形式多样,线性系统只是一种近似描述。
(1)非线性系统特征—不满足迭加原理1)稳定性:平衡点可能不只一个,系统的稳定性与系统结构参数、初始条件及输入有关。
2)自由运动形式,与初条件,输入大小有关。
3)自振,自振是非线性系统特有的运动形式,它是在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
(2)非线性系统研究方法1)小扰动线性化处理(第二章介绍)2)相平面法-----分析二阶非线性系统运动形式3)描述函数法-----分析非线性系统的稳定性研究及自振。
2、常见非线性因素对系统运动特性的影响:1)死区:(如:水表,电表,肌肉电特性等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ssσ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2) 饱和(如运算放大器,学习效率等等)3) 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性减小间隙的因素的方法:(1)提高齿轮精度 ; (2)采用双片齿轮; (3)用校正装置补偿。
5) 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性摩擦对系统运动的影响:影响系统慢速运动的平稳性6)继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)8-2 相平面法一、教学目的和要求:掌握相平面概念及分析方法。
机械系统的非线性特性分析与控制一、引言机械系统的非线性特性是指在机械系统的运动过程中出现的不符合线性关系的现象。
非线性特性普遍存在于许多实际的机械系统中,如摆钟、弹簧系统、车辆悬挂系统等。
非线性特性对机械系统的性能和运动稳定性具有重要影响,因此,对非线性特性进行分析和控制具有重要意义。
二、机械系统的非线性特性1. 非线性振动现象在机械系统的振动过程中,非线性现象经常出现。
比如,当弹簧系统受到较大振幅的激励时,弹簧的硬度可能发生变化,从而导致系统产生非线性振动。
非线性振动现象的存在使得系统的频率响应发生非线性变化,可能引起系统失稳甚至破坏。
2. 非线性摩擦摩擦是机械系统中常见的非线性因素之一。
在机械系统的运动过程中,摩擦力的大小和方向通常与速度和位移有关,呈非线性变化。
非线性摩擦力的存在会导致系统的运动速度发生改变,引起系统的摩擦磨损、能量损失和运动不稳定等问题。
3. 非线性刚度刚度是机械系统的重要参数之一,用于描述系统在受力作用下的变形程度。
在一些复杂的机械系统中,刚度的变化可能是非线性的。
比如,在某些材料的变形过程中,由于材料的非线性特性,刚度会随着变形程度的增加而发生变化。
非线性刚度的存在会影响系统的运动性能和稳定性。
三、非线性特性的分析方法对机械系统的非线性特性进行分析是理解系统行为的关键。
目前,有许多方法用于研究和描述机械系统的非线性行为。
1. 非线性模型为了描述机械系统的非线性特性,可以采用非线性数学模型。
非线性模型通过引入非线性函数来描述系统的动力学特性。
这些非线性函数可以基于数学理论或实验数据得出,如多项式、指数函数、对数函数等。
非线性模型可以通过数值计算或实验验证来进行验证。
2. 傅里叶分析傅里叶分析是一种常用的频域分析方法,用于将时域信号转化为频域信号。
对于非线性系统,可以通过傅里叶分析方法分析系统的频率响应特性。
这种方法可以帮助研究人员了解系统在不同频率下的行为。
3. 相图法相图法是一种用于描述非线性动力系统行为的可视化方法。
第八章非线性控制系统分析l、基本内容和要求(l)非线性系统的基本概念非线性系统的定义。
本质非线性和非本质非线性。
典型非线性特性。
非线性系统的特点。
两种分析非线性系统的方法——描述函数法和相平面法。
(2)谐波线性化与描述函数描述函数法是在一定条件下用频率特性分析非线性系统的一种近似方法。
谐波线性化的概念。
描述函数定义和求取方法。
描述函数法的适用条件。
(3)典型非线性特性的描述函数(4)用描述函数分析非线性系统非线性系统的一般结构。
借用奈氏判据的概念建立在奈氏图上判别非线性反馈系统稳定性的方法,非线性稳定的概念,稳定判据。
(5)相平面法的基本概念非线性系统的数学模型。
相平面法的概念和内容。
相轨迹的定义。
(6)绘制相轨迹的方法解析法求取相轨迹;作图法求取相轨迹。
(7)从相轨迹求取系统暂态响应相轨迹与暂态响应的关系,相轨迹上各点相应的时间求取方法。
(8)非线性系统的相平面分析以二阶系统为例说明相轨迹与系统性能间的关系,奇点和极限环的定义,它们与系统稳定性及响应的关系。
用相平面法分析非线性系统,非线性系统相轨迹的组成。
改变非线性特性的参量及线性部分的参量对系统稳定性的影响。
2、重点(l)非线性系统的特点(2)用描述函数和相轨迹分析非线性的性能,特别注重于非线性特性或线性部分对系统性能的影响。
8-1非线性控制系统分析1研究非线性控制理论的意义实际系统都具有程度不同的非线性特性,绝大多数系统在工作点附近,小范围工作时,都能作线性化处理。
应用线性系统控制理论,能够方便地分析和设计线性控制系统。
如果工作范围较大,或在工作点处不能线性化,系统为非线性系统。
线性系统控制理论不能很好地分析非线性系统。
因非线性特性千差万别,无统一普遍使用的处理方法。
非线性元件(环节):元件的输入输出不满足(比例+叠加)线性关系,而且在工作范围内不能作线性化处理(本质非线性)。
非线性系统:含有非线性环节的系统。
非线性系统的组成:本章讨论的非线性系统是,在控制回路中能够分为线性部分和非线性部分两部分串联的系统。