第6章 马尔可夫预测方法
- 格式:ppt
- 大小:1.16 MB
- 文档页数:57
马尔可夫逻辑网络(MLN)是一种用于建模和预测复杂系统行为的强大工具。
它可以应用于各种领域,包括金融、医疗、气象和社交网络等。
通过分析系统中的状态转移,并结合概率推理,MLN可以帮助我们理解系统的演变规律,从而进行趋势预测。
MLN的基本原理是基于马尔可夫过程的概率图模型。
它通过将系统中的状态抽象为节点,状态之间的转移关系抽象为边,然后利用概率推理算法来学习系统的演化规律。
MLN中的节点可以代表系统中的任何状态,比如股票价格、疾病状态、气象变化等,而边则表示状态之间的转移概率。
通过对这些状态和转移关系进行建模,我们可以利用MLN来预测未来的状态变化。
在实际应用中,利用MLN进行趋势预测通常包括以下几个步骤。
首先,我们需要对系统中的状态进行抽象和建模。
这包括选择合适的状态变量,确定状态之间的转移关系,以及对状态转移概率进行建模。
在金融领域,我们可以选择股票价格、利率、汇率等作为状态变量,然后通过历史数据来学习它们之间的转移关系。
其次,我们需要利用概率推理算法来学习系统的演化规律。
常用的算法包括逻辑回归、朴素贝叶斯、马尔可夫链蒙特卡洛等。
这些算法可以帮助我们从历史数据中学习状态之间的转移规律,并建立MLN模型。
通过对模型进行训练和验证,我们可以得到一个较为准确的系统演化模型。
最后,我们可以利用学习到的MLN模型来进行趋势预测。
这可以通过模拟系统的演化过程,根据当前状态推断未来的状态变化。
在金融领域,我们可以利用学习到的股票价格模型来预测未来的股价走势,从而指导投资决策。
在医疗领域,我们可以利用疾病模型来进行疾病预测,帮助医生制定治疗方案。
除了单独利用MLN进行趋势预测外,还可以将MLN与其他技术结合起来,以提高预测的准确性。
比如,我们可以将MLN与深度学习模型相结合,利用深度学习来提取更高级别的特征,然后将这些特征输入到MLN模型中进行预测。
这样可以充分发挥各自的优势,提高预测的准确性和鲁棒性。
另外,MLN还可以应用于一些特定的问题,比如社交网络分析和推荐系统。
马尔可夫预测算法综述马尔可夫预测法以系统状态转移图为分析对象,对服从给定状态转移率、系统的离散稳定状态或连续时间变化状态进行分析马尔可夫预测技术是应用马尔可夫链的基本原理和方法研究分析时间序列的变化规律,并预测其未来变化趋势的一种技术。
方法由来马尔可夫是俄国的一位著名数学家 (1856—1922),20世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状况有关,而与事物的过去状态无关。
针对这种情况,他提出了马尔可夫预测方法,该方法具有较高的科学性,准确性和适应性,在现代预测方法中占有重要地位。
基础理论在自然界和人类社会中,事物的变化过程可分为两类:一类是确定性变化过程;另一类是不确定性变化过程。
确定性变化过程是指事物的变化是由时间唯一确定的,或者说,对给定的时间,人们事先能够确切地知道事物变化的结果。
因此,变化过程可用时间的函数来描述。
不确定性变化过程是指对给定的时间,事物变化的结果不止一个,事先人们不能肯定哪个结果一定发生,即事物的变化具有随机性。
这样的变化过程称为随机过程一个随机试验的结果有多种可能性,在数学上用一个随机变量(或随机向量)来描述。
在许多情况下,人们不仅需要对随机现象进行一次观测,而且要进行多次,甚至接连不断地观测它的变化过程。
这就要研究无限多个,即一族随机变量。
随机过程理论就是研究随机现象变化过程的概率规律性的。
客观事物的状态不是固定不变的,它可能处于这种状态,也可能处于那种状态,往往条件变化,状态也会发生变化状态即为客观事物可能出现或存在的状况,用状态变量表示状态:⎪⎪⎭⎫⎝⎛⋅⋅⋅=⋅⋅⋅==,2,1,,2,1t N i i X t 它表示随机运动系统,在时刻),2,1( =t t 所处的状态为),2,1(N i i =。
状态转移:客观事物由一种状态到另一种状态的变化。
设客观事物有N E E E E ...,,321共 N 种状态,其中每次只能处于一种状态,则每一状态都具有N 个转向(包括转向自身),即由于状态转移是随机的,因此,必须用概率来描述状态转移可能性的大小,将这种转移的可能性用概率描述,就是状态转移概率。
预测⽅法——马尔可夫预测马尔可夫预测若某⼀系统在已知现在情况的条件下,系统未来情况只与现在有关,与历史⽆直接关系,则称描述这类随机现象的数学模型为马尔可夫模型(马⽒模型)。
时齐马尔可夫链:系统由状态i转移到状态j的转移概率只与时间间隔长短有关,与初始时刻⽆关。
状态转移概率矩阵及柯尔莫哥洛夫定理:概率矩阵:若系统在时刻 t0 处于状态 i,经过 n 步转移,在时刻 tn 处于状态 j 。
那么,对这种转移的可能性的数量描述称为 n 步转移概率。
记为:P(xn =j|x=i)=P(n)ij令P(n)=P11(n)P12(n)⋯P1N(n) P21(n)P22(n)⋯P2N(n)⋯⋯⋯P N1(n)P N2(n)⋯P NN(n)为n部转移概率矩阵。
(P0为初始分布⾏向量)性质:1. P(n)=P(n−1)P2. P(n)=P n转移概率的渐进性质——极限概率分布正则矩阵:若存在正整数k,使得p k的每⼀个元素都是正数,则称该马尔可夫链的转移矩阵P是正则的。
马克可夫链正则阵的性质:1. P有唯⼀的不动点向量W,W的每个分量为正,满⾜WP=W;2. P的n次幂P n随n的增加趋近于矩阵V, V的每⼀⾏向量均等于不动点向量W。
马尔可夫链预测法步骤:1. 划分预测对象可能出现的状态;2. 计算初始概率,由此计算⼀步状态转移概率;3. 计算多步状态转移概率;4. 根据状态转移概率进⾏预测。
()实例:eg:由于公路运输的发展,⼤量的短途客流由铁路转向公路。
历年市场调查结果显⽰,某铁路局发现今年⽐上年相⽐有如下规律:原铁路客流有85%仍由铁路运输,有15%转由公路运输,原公路运输的客流有95%仍由公路运输,有5%转由铁路运输。
已知去年公、铁客运量合计为12000万⼈,其中铁路10000万⼈,公路2000万⼈。
预测明年总客运量为18000万⼈。
运输市场符合马⽒链模型假定。
试预测明年铁、公路客运市场占有率各是多少?客运量是多少?最后发展趋势如何?解:1. 计算去年铁路、公路客运市场占有率将旅客由铁路运输视为状态1,由公路运输视作状态2,则铁、公占有率就是处于两种状态的概率,分别记作a1,a2.以去年作为初始状态,则初始状态概率向量:A(0)=(a1(0),a2(0))=(0.83,0.17)2. 建⽴状态转移矩阵PP=0.850.15 0.050.953. 预测明年铁路,公路客运市场占有率A(2)=(a1(2),a2(2))=A(0)P2=(0.83,0.17)0.850.150.050.952=(0.62,0.38)4. 进后发展趋势lim ()()Loading [MathJax]/jax/element/mml/optable/BasicLatin.js。
利用马尔可夫模型进行天气预测的方法随着气候变化的加剧,天气预测成为了如今人们生活中不可或缺的一部分。
而天气预测准确性的提高对于人们的生产生活有着重要的意义。
随着技术的发展,利用马尔可夫模型进行天气预测的方法逐渐受到了人们的关注。
一、马尔可夫模型简介马尔可夫模型是一种时间序列模型,其基本思想是假设未来的状态只与当前的状态有关,与过去的状态无关。
马尔可夫模型在天气预测中的运用,是基于天气的状态在短期内是相对稳定的这一特点。
通过建立天气状态之间的转移概率矩阵,可以实现对未来天气状态的预测。
二、数据收集在利用马尔可夫模型进行天气预测时,首先需要收集历史的天气数据。
这些数据包括温度、湿度、气压、风速等多种气象要素。
在收集完数据后,需要对数据进行预处理,包括去除异常值、填补缺失值等操作,以确保数据的准确性和完整性。
三、状态空间的确定在建立马尔可夫模型时,需要确定天气的状态空间。
通常情况下,可以将天气状态分为晴天、多云、阴天、小雨、中雨、大雨等几种状态。
根据实际情况和需求,也可以对状态空间进行扩展,例如考虑雾霾、大风等特殊天气情况。
四、转移概率矩阵的建立在确定了状态空间后,需要建立天气状态之间的转移概率矩阵。
这一矩阵反映了不同天气状态之间的转移概率,可以通过历史数据进行统计得到。
转移概率矩阵的建立是马尔可夫模型的核心,直接影响着模型的预测准确性。
五、模型的预测与评估建立好马尔可夫模型后,可以利用该模型对未来的天气状态进行预测。
预测的过程通常采用迭代算法,根据当前的天气状态和转移概率矩阵,计算出未来几天的天气状态。
预测结果可以与实际观测数据进行对比,评估模型的准确性和稳定性。
六、模型的改进与应用随着数据和算法的不断进步,马尔可夫模型在天气预测中也在不断改进和应用。
一些学者通过引入更多的气象要素、考虑气象要素之间的相互影响等方式,对传统的马尔可夫模型进行了改进,提高了模型的预测准确性。
此外,马尔可夫模型在气象灾害预警、农业生产等领域也有着广泛的应用。