课题 二阶与三阶行列式,全排列及其逆序数,n阶行列式的定义,对换
- 格式:doc
- 大小:283.50 KB
- 文档页数:7
线性代数教案第(1)次课授课时间()1.教学内容: 二、三阶行列式的定义;全排列及其逆序数;阶行列式的定义2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.基本内容备注第一节 二、三阶行列式的定义一、二阶行列式的定义从二元方程组的解的公式,引出二阶行列式的概念。
设二元线性方程组 ⎩⎨⎧=+=+22222211212111b x a x a b x a x a用消元法,当021122211≠-a a a a 时,解得211222111212112211222112121221,a a a a b a b a x a a a a b a b a x --=--=令2112221122211211a a a a a a a a -=,称为二阶行列式 ,则如果将D 中第一列的元素11a ,21a 换成常数项1b ,2b ,则可得到另一个行列式,用字母1D 表示,于是有2221211a b a b D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
同理将 中第二列的元素a 12,a 22 换成常数项b1,b2 ,可得到另一个行列式,用字母 表示,于是有2121112b a b a D =按二阶行列式的定义,它等于两项的代数和: ,这就是公式(2)中 的表达式的分子。
于是二元方程组的解的公式又可写为⎪⎪⎩⎪⎪⎨⎧==D D x D D x 2211 其中0≠D例1. 解线性方程组 .1212232121⎪⎩⎪⎨⎧=+=-x x x x 同样,在解三元一次方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a 时,要用到“三阶行列式”,这里可采用如下的定义.二、三阶行列式的定义设三元线性方程组⎪⎩⎪⎨⎧=++=++=++333323213123232221211313212111bx a x a x a b x a x a x a b x a x a x a用消元法解得定义 设有9个数排成3行3列的数表333231232221131211a a a a a a a a a 记 333231232221131211a a a a a a a a a D =322113312312332211a a a a a a a a a ++=332112322311312213a a a a a a a a a ---,称为三阶行列式,则三阶行列式所表示的6项的代数和,也用对角线法则来记忆: 从左上角到右下角三个元素相乘取正号,从右上角到左下角三个元素取负号,即例2.计算三阶行列式 .(-14) 例3.求解方程 ( ) 例4.解线性方程组 解 先计算系数行列式573411112--=D 069556371210≠-=----+-= 再计算 321,,D D D515754101121-=--=D ,315534011222=--=D ,55730112123=---=D得 23171==D D x ,69312-==D D y ,6953-==D D z第( 2 )次课授课时间()第( 3 )次课授课时间()1.教学内容: 行列式按行(列)展开;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;教学手段: 黑板讲解与多媒体演示.基本内容备注第5节 行列式按行(列)展开定义 在 阶行列式中, 把元素 所处的第 行、第 列划去, 剩下的元素按原排列构成的 阶行列式, 称为 的余子式, 记为;而 称为 的代数余子式.引理 如果 阶行列式中的第 行除 外其余元素均为零, 即: .则: .证 先证简单情形:再证一般情形:定理 行列式等于它的任意一行(列)的各元素与对应的代数余子式乘积之和, 即按行: 按列: 证:(此定理称为行列式按行(列)展开定理)nnn n ini i n a a a a a a a a a D212111211000000+++++++++=nnn n in n nnn n i n nn n n i n a a a a a a a a a a a a a a a a a a a a a 21112112121121121111211000000+++=).,2,1(2211n i A a A a A a in in i i i i =+++=例1 : . 解:例2: 21122112----=n D解: 21122112----=n D 211221100121---=+++nr r)()()()()()21331122213311n n n n n n n x x x x x x x x x x x -----, 并提出因子 )()2321111--n n n x x x x x x()1-n 阶范德蒙行列式(1n x x -行列式一行(列)的各元素与另一行(列)对应各元素的代数余子式乘积之和为零第( 4 )次课授课时间()1.教学内容: 克拉默法则;2.时间安排: 2学时;教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示.4.教学手段:黑板讲解与多媒体演示.基本内容备注第(5)次课授课时间()1.教学内容: 矩阵;矩阵的运算;2.时间安排: 2学时;3.教学方法: 讲授与讨论相结合;4.教学手段: 黑板讲解与多媒体演示。
第一讲Ⅰ 授课题目(章节):§1.1 二阶、三阶行列式;§1.2 n 阶行列式 Ⅱ 教学目的与要求:理解排列的概念,以及逆序数的计算方法;了解行列式的定义和性质,会用行列式的定义及性质计算一些较简单的行列式; 掌握二、三阶行列式的计算法;Ⅲ 教学重点与难点:重点:n 阶行列式的定义 难点:n 阶行列式的定义 Ⅳ 讲授内容: §1.1 二阶、三阶行列式一、二元线性方程组与二阶行列式二元一次方程组的代入消元解法:⎩⎨⎧=+=+)2.....()1.....(2222111211b y a x a b y a x a 1211a a 、不可能同时为0,不妨设011≠a ,则: )()1(1121a a -⨯得:)3.........(1121111211221a ab y a a a x a -=-- )3()2(+得(消去x ):112111121121122211a ab a b y a a a a a -=-即:)4( (21)122211211211a a a a a b b a y --=将(4)代入(1)得:21122211212221a a a a b a a b x --=可见,方程组的解完全可由方程组中的未知数系数22211211,,,a a a a 以及常数项21,b b 表示出来⎪⎪⎩⎪⎪⎨⎧--=--=2112221121121121122211212221a a a a a b b a y a a a a b a a b x ,如果规定记号2112221122211211a a a a a a a a -=,则有:222121212221a b a b b a a b =-,221111211211b a b a a b b a =-因此二元一次方程组的解可以表示为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==2221121122111122211211222121a a a a b a b a y a a a a a b a b x定义1. 1 记号22211211a a a a 表示代数和21122211a a a a -,称为二阶行列式。
课题1 二阶与三阶行列式;全排列及其逆序数;
n 阶行列式的定义;对换.
1、二阶行列式
把二元线性方程组11112212112222
a x a x
b a x a x b +=⎧⎨+=⎩ (1)
的四个系数按它们在方程组(1)中的位置,排成二行二列的数表
111221
22
a a a a (2)
其运算表达式11221221a a a a -称为数表(2)的二阶行列式,
记为
11121122122121
22
a a D a a a a a a =
=- (3)
理解:(1)数(1,2;1,2)ij a i
j ==称为行列式(3)的元素
或元,即行列式(3)的元素可表为(1,2;1,2)ij a i j ==,
其中i 为行标,j 为列标。
元素ij a 位于该行列式(3)的第i 行
第j 列或称为行列式(3)的第(,
)i j 元.
(2)把11a 到22a 的联线称为主对角线,12a 到21a 的联线称为副对角线,二阶行列式等于各元素主对角线之积减去副对角线各元素之积.
(3)行列式表示按某种法则运算的结果.
利用行列式的概念,二元线性方程组(1)的求解过程
可写为
111221
22
0a a D a a =
≠,11212
22
b a D b a =
,
111222
2
a b D a b =
.
所以 11D x D =,2
2D x D
=.
自学P 2例1. 2、三阶行列式
定义:设有9个数排成3行3列的数表
11
1213
21222331
3233a a a a a a a a a (4) 记为
11
1213
21
222311223312233131
32
33
a a a D a a a a a a a a a a a a ==+ 132132132231112332122133a a a a a a a a a a a a +---. (5)
(5)式称为数表(4)所确定的行列式.
例1 计算三阶行列式
2
2
21
11a b c a
b
c
. 解 原式=2
22222bc
ca ab ba cb ac ++---
=()()()a b b c c a ---. □ 自学P 3例2。
例2 求解方程
2
11123
049x x =.
解 方程左端的三阶行列式可化为 2223418921256x x x x x x ++---=-+,
由
2
560x x -+=,解得 2x =或3x =. □
3、全排列及其逆序数
逆序数:对于n 个不同的元素,先规定各元素之间有一
个标准次序(通常规定由小到大为标准次序),然后由这n 个元素所组成的任一排列中,当某两个元素的先后次序与标准次序不同时,得到一个逆序,所有这些逆序的总数称为这个排列的逆序数,用字母t 表示.
逆序数为奇数的排列称为奇排列,逆序数为偶数的排列称为偶排列.
例3 求排列32514的逆序数.
解 规定标准次序为123450.于是在排列32514中,首位元素3的逆序数是0,第2位元素2的逆序数是1,第3位元素5的逆序数是0,第4位元素1的逆序数是3,末位元素4的逆序数是1. 所以它的逆序数为
t =0+1+0+3+1=5. □
例4 按自然数从小到大为标准次序,求下列排列的逆序数. 13
(21)24(2)n n -
解 在这个排列中有2n 个元素,其中前n 个元素组成的排列13
(21)n -的逆序数是0.第1n +位元素2与它前面
除元素1外的其它1n -个元素都构成逆序对,故它的逆序数是1n -.同理,第2n +位元素4的逆序数是1n +,…, 末位元素2n 的逆序数是0. 所以它的逆序数为
t =1
(1)(2)0(1)2
n n n n -+-+
+=-. □
根据逆序数,三阶行列还可以改写为
123111213
21222312331
32
33
(1)t p p p a a a a a a a a a a a a =-∑ (6) 其中,1p 、2p 、3p 在1~3中任取三个不同的数,t 为排列123p p p 的逆序数,∑表示对123123(1)t
p p p a a a -取代数
和.
4、n 阶行列式的定义
我们把(6)式推广到一般情形,得到n 阶行列式的定义
定义:设有2
n 个数,排成n 行n 列的数表
11121212221
2
n n n n nn
a a a a a a a a a
记
12
1112121222121
2
(1)n n n t p p np n n nn
a a a a a a D a a a a a a =
=-∑.
称为n 阶行列式,简记为det()ij a ,其中数ij a 为行列式D 的
(,)i j 元.
例 5 证明n 阶主对角行列式
1
2
12n n
λλλλλλ=.
证明
(1,2,,)i i n λ=为行列式的(,)i i 元,于是记为
i ii a λ=,所以
1
11
2
22
n
n n
a a a λλλ=
1112
12
(1)(1)t
t
nn n a a a λλλ=-=-,
其中t 为排列12
n 的逆序数,显然t =0. □
练习1 证明n 阶副对角行列式
1
(1)2
2
12(1)
n n n n
λλλλλλ-=-.
例6 证明行列式
1121221122
1
2
nn n n nn
a a a D a a a a a a =
=.
证明 由于当j i >时,0ij a =,所以在D 中不为0的
元素i
ip a ,其下标必有i p i ≤,即11p ≤,22p ≤,…,n p n ≤.
从而1
1p =,22p =,…,n p n =. 所以
12
n p p p =12…n ,此时,0t =.
所以 D 11221122(1)
t
nn nn a a a a a a =-=. □
注:主对角线以下(上)的元素都为0的行列式称为上(下)三角形行列式,它的值等于主对角线所有元素的积. 练习2 证明上三角形行列式
11
12122211220
n n nn nn
a a a a a D a a a a =
=.
5、对换
(1)定义 在排列中,将任意两个元素对调,其余的元素不动,这种作出新排列的手续叫做对换. (2)关于对换的几个重要结论
结论1 一个排列中的任意两个元素对换,排列改变奇偶性.
结论2 奇排列变成标准排列的对换次数为奇数,偶排列变成标准排列的对换次数为偶数.
结论3 行列式依副对角线翻转、旋转180°
所得到行列式的值不变.
6、作业 P 25-27 1、2(2)(4)(6)、5(1).。