高中数学必修平面向量测试试卷典型例题含详细答案
- 格式:docx
- 大小:451.70 KB
- 文档页数:16
A + 2 = 2mA2一cos2 a = m +22,设± = k代入方程组可得<mkm 4-2 = 2mk2m2 - cos2a = m + 2sina 平面向量高考经典试一、选择题1.(全国1文理)已知向量方=(-5,6),方= (6,5),则Z与方A.垂直B.不垂直也不平行C.平行且同向D.平行且反向解.己知向量a = (-5,6), & = (6,5), = —30 + 30 = 0,则U与片垂直,2、(山东文5)已知向量G = (1, 〃),b = (—1, 〃),若2a -b与b垂直,则a =( )A. 1B. y/2C. 2D. 4【分析】:2a-b = (3,n),由2a-b^jb垂直可得:(3,〃)・(—1,〃) = -3 + 〃2 =o=> 〃 = ±右,a = 2 o3、(广东文4理10)若向量履满足修|=|方|二1 3,5的夹角为60。
,则溢+混=解析:aa + a-b= l + lxlx—=—,2 24、(天津理10)设两个向量。
=(A + 2, /i? 一cos2Q)和方=(m, y + sin a),其中人,a为一一人实数.若。
=2上则-的取值范围是mA. [-6,1]B. [4,8]C. (-oo,l]D. [-1,6][分析】由« = (/! +2, A2 - cos2a) ,h = (tn,— + sin a = 2片,可得2去〃7化简得2k ] - cos2a = + 2sin cr,再化简得{2-kJ 2-k2 + 4 ] 一cos2a + ------ 2 sin。
= 0 再令一— = t代入上式得、k - 2) k — 2 k — 2(sin2。
一顶 + (16产 +18/ + 2) = 0 可得一(16产 +18, + 2)c [0,4]解不等式得Z G[-1,--]8(B)\bc^ = ba-bc则入= 2 (A)-■) 1 (B)- ■) (号2 (D)-- ■)解.在左ABC 中,己知D 是AB 边上一点,若AD=2DB , cB=-G5 + XCB,则3CD = CA + AD = CA+-^B = CA + -(CB-CA)=-CA^-CB , 4X=-,选 A 。
第二章 平面向量一、选择题1.在△ABC 中,AB =AC ,D ,E 分别是AB ,AC 的中点,则( ). A .AB 与AC 共线 B .DE 与CB 共线 C .AD 与AE 相等D .AD 与BD 相等2.下列命题正确的是( ). A .向量AB 与BA 是两平行向量 B .若a ,b 都是单位向量,则a =bC .若AB =DC ,则A ,B ,C ,D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C 满足OC =α OA +β OB ,其中 α,β∈R ,且α+β=1,则点C 的轨迹方程为( ).A .3x +2y -11=0B .(x -1)2+(y -1)2=5C .2x -y =0D .x +2y -5=0 4.已知a 、b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角是( ). A .6πB .3π C .23π D .56π 5.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP =( ). A .λ(AB +AD ),λ∈(0,1) B .λ(AB +BC ),λ∈(0,22) C .λ(AB -AD ),λ∈(0,1)D .λ(AB -BC ),λ∈(0,22) 6.△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,则DF =( ). A .EF +EDB .EF -DEC .EF +ADD .EF +AF7.若平面向量a 与b 的夹角为60°,|b |=4,(a +2b )·(a -3b )=-72,则向量a 的模为( ).(第1题)A.2 B.4 C.6 D.128.点O是三角形ABC所在平面内的一点,满足OA·OB =OB·OC=OC·OA,则点O是△ABC的().A.三个内角的角平分线的交点B.三条边的垂直平分线的交点C.三条中线的交点D.三条高的交点9.在四边形ABCD中,AB=a+2b,BC=-4a-b,DC=-5a-3b,其中a,b不共线,则四边形ABCD为().A.平行四边形B.矩形C.梯形D.菱形10.如图,梯形ABCD中,|AD|=|BC|,EF∥AB∥CD则相等向量是().A.AD与BC B.OA与OBC.AC与BD D.EO与OF(第10题)二、填空题11.已知向量OA=(k,12),OB=(4,5),OC=(-k,10),且A,B,C三点共线,则k=.12.已知向量a=(x+3,x2-3x-4)与MN相等,其中M(-1,3),N(1,3),则x =.13.已知平面上三点A,B,C满足|AB|=3,|BC|=4,|CA|=5,则AB·BC+BC·CA+CA·AB的值等于.14.给定两个向量a=(3,4),b=(2,-1),且(a+m b)⊥(a-b),则实数m等于.15.已知A,B,C三点不共线,O是△ABC内的一点,若OA+OB+OC=0,则O 是△ABC的.16.设平面内有四边形ABCD和点O,OA=a,OB=b,OC=c, OD=d,若a+c =b+d,则四边形ABCD的形状是.三、解答题17.已知点A(2,3),B(5,4),C(7,10),若点P满足AP=AB+λAC(λ∈R),试求λ为何值时,点P在第三象限内?18.如图,已知△ABC,A(7,8),B(3,5),C(4,3),M,N,D分别是AB,AC,BC的中点,且MN与AD交于F,求DF.(第18题)19.如图,在正方形ABCD中,E,F分别为AB,BC的中点,求证:AF⊥DE(利用向量证明).(第19题) 20.已知向量a=(cos θ,sin θ),向量b=(3,-1),则|2a-b|的最大值.参考答案一、选择题 1.B解析:如图,AB 与AC ,AD 与AE 不平行,AD 与BD 共线反向.2.A解析:两个单位向量可能方向不同,故B 不对.若AB =DC ,可能A ,B ,C ,D 四点共线,故C 不对.两向量相等的充要条件是大小相等,方向相同,故D 也不对.3.D解析:提示:设OC =(x ,y ),OA =(3,1),OB =(-1,3),α OA =(3α,α),β OB =(-β,3β),又αOA +β OB =(3α-β,α+3β),∴ (x ,y )=(3α-β,α+3β),∴⎩⎨⎧βαβα33+=-=y x ,又α+β=1,由此得到答案为D .4.B解析:∵(a -2b )⊥a ,(b -2a )⊥b ,∴(a -2b )·a =a 2-2a ·b =0,(b -2a )·b =b 2-2a ·b =0,∴ a 2=b 2,即|a |=|b |.∴|a |2=2|a ||b |cos θ=2|a |2cos θ.解得cos θ=21. ∴ a 与b 的夹角是3π. 5.A解析:由平行四边形法则,AB +AD =AC ,又AB +BC =AC ,由 λ的范围和向量数乘的长度,λ∈(0,1).6.D解析:如图,∵AF =DE , ∴ DF =DE +EF =EF +AF .(第6题)(第1题)7.C解析:由(a +2b )·(a -3b )=-72,得a 2-a ·b -6b 2=-72. 而|b |=4,a ·b =|a ||b |cos 60°=2|a |, ∴ |a |2-2|a |-96=-72,解得|a |=6. 8.D解析:由 OA ·OB =OB ·OC =OC ·OA ,得OA ·OB =OC ·OA , 即OA ·(OC -OB )=0,故BC ·OA =0,BC ⊥OA ,同理可证AC ⊥OB , ∴ O 是△ABC 的三条高的交点. 9.C解析:∵AD =AB +BC +D C =-8a -2b =2BC ,∴AD ∥BC 且|AD |≠|BC |. ∴ 四边形ABCD 为梯形. 10.D解析:AD 与BC ,AC 与BD ,OA 与OB 方向都不相同,不是相等向量. 二、填空题 11.-32. 解析:A ,B ,C 三点共线等价于AB ,BC 共线,AB =OB -OA =(4,5)-(k ,12)=(4-k ,-7),BC =OC -OB =(-k ,10)-(4,5)=(-k -4,5),又 A ,B ,C 三点共线,∴ 5(4-k )=-7(-k -4),∴ k =-32. 12.-1.解析:∵ M (-1,3),N (1,3), ∴ MN =(2,0),又a =MN ,∴ ⎩⎨⎧0=4-3-2=3+2x x x 解得⎩⎨⎧4=1=-1=-x x x 或∴ x =-1. 13.-25.解析:思路1:∵ AB =3,BC =4,CA =5,∴ △ABC 为直角三角形且∠ABC =90°,即AB ⊥BC ,∴AB ·BC =0, ∴ AB ·BC +BC ·CA +CA ·AB =BC ·CA +CA ·AB =CA ·(BC +AB ) =-(CA )2 =-2CA =-25.思路2:∵ AB =3,BC =4,CA =5,∴∠ABC =90°, ∴ cos ∠CAB =CA AB=53,cos ∠BCA =CABC=54.根据数积定义,结合图(右图)知AB ·BC =0, BC ·CA =BC ·CA cos ∠ACE =4×5×(-54)=-16, CA ·AB =CA ·AB cos ∠BAD =3×5×(-53)=-9. ∴ AB ·BC +BC ·CA +CA ·AB =0―16―9=-25. 14.323. 解析:a +m b =(3+2m ,4-m ),a -b =(1,5). ∵ (a +m b )⊥(a -b ),∴ (a +m b )·(a -b )=(3+2m )×1+(4-m )×5=0 m =323. 15.答案:重心.解析:如图,以OA ,OC 为邻边作□AOCF 交AC 于D(第13题)点E ,则OF =OA +OC ,又 OA +OC =-OB ,∴ OF =2OE =-OB .O 是△ABC 的重心. 16.答案:平行四边形.解析:∵ a +c =b +d ,∴ a -b =d -c ,∴BA =CD . ∴ 四边形ABCD 为平行四边形. 三、解答题 17.λ<-1.解析:设点P 的坐标为(x ,y ),则AP =(x ,y )-(2,3)=(x -2,y -3). AB +λAC =(5,4)-(2,3)+λ[(7,10)-(2,3)]=(3,1)+λ(5,7) =(3+5λ,1+7λ).∵ AP =AB +λAC ,∴ (x -2,y -3)=(3+5λ,1+7λ). ∴ ⎩⎨⎧+=-+=-λλ713532y x 即⎩⎨⎧+=+=λλ7455y x要使点P 在第三象限内,只需⎩⎨⎧<+<+074055λλ 解得 λ<-1.18.DF =(47,2). 解析:∵ A (7,8),B (3,5),C (4,3), AB =(-4,-3),AC =(-3,-5).又 D 是BC 的中点, ∴ AD =21(AB +AC )=21(-4-3,-3-5) =21(-7,-8)=(-27,-4). 又 M ,N 分别是AB ,AC 的中点, ∴ F 是AD 的中点, ∴ DF =-FD =-21AD =-21(-27,-4)=(47,2). (第18题)19.证明:设AB =a ,AD =b ,则AF =a +21b ,ED =b -21a . ∴ AF ·ED =(a +21b )·(b -21a )=21b 2-21a 2+43a ·b . 又AB ⊥AD ,且AB =AD ,∴ a 2=b 2,a ·b =0. ∴ AF ·ED =0,∴AF ⊥ED .本题也可以建平面直角坐标系后进行证明.20.分析:思路1:2a -b =(2cos θ-3,2sin θ+1),∴ |2a -b |2=(2cos θ-3)2+(2sin θ+1)2=8+4sin θ-43cos θ. 又4sin θ-43cos θ=8(sin θcos3π-cos θsin 3π)=8sin (θ-3π),最大值为8, ∴ |2a -b |2的最大值为16,∴|2a -b |的最大值为4.思路2:将向量2a ,b 平移,使它们的起点与原点重合,则|2a -b |表示2a ,b 终点间的距离.|2a |=2,所以2a 的终点是以原点为圆心,2为半径的圆上的动点P ,b 的终点是该圆上的一个定点Q ,由圆的知识可知,|PQ |的最大值为直径的长为4.(第19题)。
必修 4 第二章平面向量教学质量检测一.选择题( 5 分× 12=60 分) :1.以下说法错误的是()A .零向量与任一非零向量平行 B.零向量与单位向量的模不相等C.平行向量方向相同D.平行向量一定是共线向量2.下列四式不能化简为AD 的是()A .(AB+CD)+BC;B .(AD+MB)+(BC+CM);C.MB+AD-BM; D .OC-OA+CD;3.已知a =( 3, 4),b =( 5, 12),a与b则夹角的余弦为()A.63B.65C.13D.13 6554.已知 a、 b 均为单位向量 ,它们的夹角为60°,那么 |a+ 3b| =()A .7B.10C.13D. 45.已知 ABCDEF 是正六边形,且AB = a , AE = b ,则BC=()( A )12( a b) (B)12(b a ) (C) a +12b(D)12(a b)6.设a,b为不共线向量,AB=a+2b,BC=-4a-b,CD=-5 a- 3 b , 则下列关系式中正确的是()(A)AD=BC(B)AD=2BC(C)AD=-BC(D)AD=-2BC7.设e1与e2是不共线的非零向量,且k e1+e2与e1+ k e2共线,则 k 的值是()( A) 1(B)-1(C)1(D)任意不为零的实数8.在四边形ABCD中,AB=DC,且AC·BD= 0,则四边形ABCD是()( A)矩形(B)菱形(C)直角梯形(D)等腰梯形9.已知 M (- 2, 7)、 N( 10,- 2),点 P 是线段 MN 上的点,且PN =-2PM,则P点的坐标为()( A )(-14,16)(B)(22,-11)(C)(6,1)(D)(2,4)10.已知a=( 1,2),b=(- 2,3),且 k a + b与a- k b垂直,则k=()(A)12(B) 21(C) 2 3(D) 32r r(2 x 3, x) 互相平行,其中r r)11、若平面向量a(1, x) 和 b x R .则a b (A.2或0;B.25;C.2或2 5;D. 2或10.12、下面给出的关系式中正确的个数是()① 0 a0 ② a b b a ③a2 a 2④(a b )c a (b c)⑤a b a b(A) 0(B) 1(C) 2(D) 3二. 填空题 (5 分× 5=25 分 ):13.若AB(3,4), A点的坐标为(-2,-1),则B点的坐标为.14.已知a(3, 4), b (2,3) ,则 2 | a | 3a b.15、已知向量 a 3, b (1,2) ,且a b ,则a的坐标是_________________。
一、选择题1.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .162.己知平面向量,a b 满足1a a b =-=,则32a b a b -++的最大值为( ) A .4B .25C .35+D .63.已知向量()1,2a =,()2,3b =-,若向量c 满足()//c a b +,()c a b ⊥+,则c =( ) A .7793⎛⎫ ⎪⎝⎭,B .7739⎛⎫-- ⎪⎝⎭,C .7739⎛⎫ ⎪⎝⎭,D .7793⎛⎫-- ⎪⎝⎭,4.已知非零向量a →,b →夹角为45︒,且2a =,2a b -=,则b →等于( )A .2B .2C 3D .25.在ABC ∆中,5,6AB AC ==,若2B C =,则向量BC 在BA 上的投影是( ) A .75-B .77125-C .77125D .756.已知a ,b 是单位向量,a •b =0.若向量c 满足|c a b --|=1,则|c |的最大值为( ) A 21B 2C 21D .22+7.已知M 、N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则PM PN +的取值范围为( )A .53,53+⎡⎣B .103,103⎡-⎣C .5-+⎡⎣D .10-+⎡⎣8.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形B .钝角三角形C .直角三角形D .不确定9.在空间直角坐标系中,(3,3,0)A ,(0,0,1)B ,点(,1,)P a c 在直线AB 上,则 ( ) A .11,3a c ==B .21,3a c ==C .12,3a c ==D .22,3a c ==10.已知向量a ,b 满足||3,||2a b ==,且对任意的实数x ,不等式a xb a b +≥+恒成立,设a ,b 的夹角为θ,则tan θ的值为( )A B .2-C .D 11.已知ABC ∆为等边三角形,则cos ,AB BC =( )A .B .12-C .12D .212.在ABC ∆中,060BAC ∠=,5AB =,6AC =,D 是AB 上一点,且5AB CD ⋅=-,则BD 等于( )A .1B .2C .3D .4二、填空题13.已知平面向量a ,b 不共线,且1a =,1a b ⋅=,记b 与2a b +的夹角是θ,则θ最大时,a b -=_______.14.已知在ABC 中,AB =5AC =,6A π∠=.若()0BE AC λλ=<,AE BE =,则AE BC ⋅=_____.15.把单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,点C 在线段AB 上,若12AC CB =,则OC BA ⋅的值为__________. 16.已知圆22:1O x y +=,A 点为圆上第一象限内的一个动点,将OA 逆时针旋转90°得OB ,又1,0P ,则PA PB ⋅的取值范围为________.17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点5BA CA ⋅=,2BF CF ⋅=-,则BE CE ⋅的值是________.19.设λ是正实数,三角形ABC 所在平面上的另三点1A 、1B 、1C 满足:()1AA AB AC λ=+,()1BB BC BA λ=+,()1CC CA CB λ=+,若三角形ABC 与三角形111A B C 的面积相等,则λ的值为_____. 20.已知向量a =(1,0),b =(12-,3),向量c 满足2c =,且(c a b --)•c =0,则a 与c 的夹角为_____.三、解答题21.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.22.已知4a =,8b =,a 与b 的夹角是120(1)计算:①a b +,②42a b-;(2)当k 为何值时,2a b +()与ka b -()垂直? 23.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.24.(1)已知向量()1,3a =,(),2b m =,()3,4c =,且()3a b c -⊥,求实数m 的值;(2)已知(3,2)a =,(2,1)b =-,若a b λ+与a b λ+平行,求实数λ的值 25.(1)已知平面向量a 、b 的夹角为3π,且1a =,2b =,求2a b +与b 的夹角; (2)已知平面向量()1,2a =,()2,1b =-,()1,c λ=,若()a b c +⊥,求λ的值. 26.已知平面上三点A ,B ,C 的坐标依次为()1,2-,()3,2,(),1k . (1)若ABC ∆为直角三角形,且角A 为直角,求实数k 的值;(2)在(1)的条件下,设AE AB λ=,AD AC μ=,若//BC ED ,证明:λμ=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值. 【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-,AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=. 故选:D. 【点睛】方法点睛:求两个向量的数量积有三种方法: (1)利用定义:(2)利用向量的坐标运算; (3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.2.B解析:B 【分析】利用1a a b =-=得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,利用平面向量的运算法则得到29832a b a b t -+-=+,再利用基本不等式即可求解. 【详解】因为1a a b =-=, 所以22222cos ,1a a ba ab a b b =-=-〈〉+=,则2cos ,b a b =〈〉, 令[]cos ,,1,1t a b t =〈〉∈-, 所以2b t =, 则()23232a b a b-=-22124a a b t b =-+== ()2222a b a b a a b t b +=+=++22418t t =+=+,所以29832a b a b t -+-=+,利用基本不等式知:2a b a b +≤+≤,≤=,=此时2t =±.则32a b a b -++的最大值为 故选:B. 【点睛】思路点睛:利用已知条件得到2cos ,b a b =〈〉,令[]cos ,,1,1t a b t =〈〉∈-,则2b t =,把问题化为了单一变量的函数问题,再利用平面向量的运算法则得到29832a b a b t -+-=+,最后利用基本不等式即可解决.3.D解析:D 【分析】设出(,)c x y =,根据向量的共线与垂直的坐标运算,列出方程组,即可求解. 【详解】设(,)c x y =,向量()1,2a =,()2,3b =-,可得(1,2),(3,1)c a x y a b +=+++=-, 由()//c a b +,可得3(1)2(2)x y -⨯+=+,即3270x y ++=, 由()c a b ⊥+,可得30x y -=,联立方程组327030x y x y ++=⎧⎨-=⎩,解得77,93x y =-=-,即77(,)93c =--.故选:D. 【点睛】本题主要考查了向量的坐标表示,以及向量的共线与垂直的坐标运算及应用,其中解答中熟记向量的共线和垂直的坐标运算时解答的关键,着重考查推理与运算能力.4.A解析:A 【分析】根据数量积的运算,2a b →→-=两边平方即可求解. 【详解】2a b →→-=,=2a →,a →,b→夹角为45︒, 2222()24a b a b a a b b →→→→→→→→∴-=-=-⋅+=, 2422||cos||44b b π→→∴-⨯+=,解得:||b →= 故选:A 【点睛】本题主要考查了向量数量积的运算性质,数量积的定义,属于中档题.5.B解析:B 【解析】 由正弦定理得,653cos sin sin sin 2sin 5AC AB C B C C C =⇒=⇒=,由余弦定理得,22211cos 25BC AC AB C BC AC BC +-=⇒=⋅,则77cos 125BC θ=- ,故选B. 6.C解析:C 【分析】通过建立直角坐标系,利用向量的坐标运算和圆的方程及数形结合即可得出.【详解】∵|a |=|b |=1,且0a b ⋅=,∴可设()10a =,,()01b =,,()c x y ,=.∴()11c a b x y --=--,. ∵1c a b --=, ∴22(1)(1)1x y -+-=x ﹣1)2+(y ﹣1)2=1.∴c 的最大值2211121=+=.故选C . 【点睛】熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键.7.B解析:B 【分析】作出图形,可求得线段MN 的中点Q 的轨迹方程为2234x y +=,由平面向量加法的平行四边形法则可得出2PM PN PQ +=,求得PQ 的取值范围,进而可求得PM PN +的取值范围. 【详解】由1MN =,可知OMN 为等边三角形,设Q 为MN 的中点,且3sin 60OQ OM ==Q 的轨迹为圆2234x y +=,又()3,4P ,所以,33PO PQ PO -≤≤+,即3355PQ ≤≤+. 由平面向量加法的平行四边形法则可得2PM PN PQ +=,因此2103,103PM PN PQ ⎡+=∈+⎣.故选:B. 【点睛】本题考查平面向量模长的取值范围的计算,考查了圆外一点到圆上一点距离的取值范围的计算,考查数形结合思想的应用,属于中等题.8.C解析:C 【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论. 【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥,ABC ∴为直角三角形.故选:C . 【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.9.B解析:B 【解析】∵点P (a ,1,c )在直线AB 上, ∴存在实数λ使得AB BP λ=, ∴()()()0,0,13,3,0,1,1a c λ-=- , 化为()3,3,1(,,)a c λλλλ--=- ,∴3{31ac λλλλ-=-==- ,解得3{123a c λ=-==.本题选择B 选项.10.B解析:B 【分析】因为对任意实数x ,不等式a xb a b +≥+恒成立,所以242240x a bx a b +⋅-⋅-≥对任意实数x 恒成立,则0∆≤,即()2216(24)0a ba b ⋅+⋅+≤,结合已知可得cos θ的值,进而可求出sin θ的值,从而可求出答案. 【详解】由题意,a xb a b +≥⇔+22a xb a b +≥⇔+222220x b a bx a b b +⋅-⋅-≥,对任意实数x ,不等式a xb a b +≥+恒成立,且||3,||2a b ==,∴242240x a bx a b +⋅-⋅-≥对任意实数x 恒成立, ∴0∆≤,即()2216(24)0a ba b ⋅+⋅+≤,又cos 6cos a b a b θθ⋅==,∴2144cos 16(12cos 4)0θθ++≤,即29cos 12cos 40θθ++≤,∴2(3cos 2)0θ+≤,则2(3cos 2)0θ+=,解得2cos 3θ=-, 又0πθ≤≤,∴sin θ==,∴5sin53tan2cos3θθθ===--.故选:B.【点睛】本题主要考查了求三角函数值,考查向量数量积的运算,考查一元二次不等式的解与判别式的关系,考查了分析能力和计算能力,属于中档题.11.B解析:B【分析】判断,AB BC两向量夹角容易出错,是23π,而不是3π【详解】由图发现,AB BC的夹角不是B而是其补角23π,21cos,cos32AB BCπ<>==-【点睛】本题考查的是两向量夹角的定义,属于易错题,该类型题建议学生多画画图.12.C解析:C【解析】在ABC∆中,060BAC∠=,5,6AB AC==,D是AB是上一点,且5AB CD⋅=-,如图所示,设AD k AB=,所以CD AD AC k AB AC=-=-,所以21()2556251552AB CD AB k AB AC k AB AB AC k k ⋅=⋅-=-⋅=-⨯⨯=-=-,解得25k=,所以2(1)35BD AB=-=,故选C.二、填空题13.【分析】把表示为的函数利用函数的性质求出当最大时的值进而可求出的值【详解】设则所以易得当时取得最小值取得最大值此时故答案为:【点睛】本题考查平面向量的有关计算利用函数的思想求最值是一种常见思路属于中 3【分析】把cos θ表示为|b|的函数,利用函数的性质求出当θ最大时|b|的值,进而可求出a b -的值. 【详解】 设()0b x x =>,则()22·222b a b a b b x +=⋅+=+,222|2+|=448a b a a b b x +⋅+=+,所以()22·2cos 28b a bb a bx xθ+==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x x x θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值, 此时22||=21243a b a a b b --⋅+=-+= 3 【点睛】本题考查平面向量的有关计算,利用函数的思想求最值是一种常见思路.属于中档题.14.-1【分析】利用已知可得从而求得即可得再运算向量的数量积的运算律即可【详解】解:如图∵∴∵∴在中∵∴∵∴∴故答案为:-1【点睛】本题考查向量的线性关系向量的数量积运算律属于中档题解析:-1 【分析】利用已知可得//BE AC ,6ABE BAE π∠=∠=,从而求得2AE BE ==,即可得25BE AC =-,再运算向量的数量积的运算律即可.【详解】解:如图,∵()0BE AC λλ=<,∴//BE AC , ∵AE BE =,6A π∠=.∴在ABE △中,6ABE BAE π∠=∠=,∵23AB =,∴2AE BE ==,∵5AC =,∴25BE AC =-, ∴()()AE BC AB BEAC AB ⋅=+-()25AB AC AC AB ⎛⎫=-- ⎪⎝⎭227273223512255555AB AC AB AC =⋅--=⨯⨯⨯--⨯ 1=-.故答案为:-1.【点睛】本题考查向量的线性关系,向量的数量积运算律,属于中档题.15.【分析】由题意可得与夹角为先求得则再利用平面向量数量积的运算法则求解即可【详解】单位向量绕起点逆时针旋转再把模扩大为原来的3倍得到向量所以与夹角为因为所以所以故答案为【点睛】本题主要考查平面向量几何 解析:116-【分析】由题意可得3OB =,OA 与OB 夹角为120︒,先求得1(2)3OC OA AC OA OB =+=+,则1(2)()3OC BA OA OB OA OB ⋅=+⋅-,再利用平面向量数量积的运算法则求解即可. 【详解】单位向量OA 绕起点O 逆时针旋转120︒,再把模扩大为原来的3倍,得到向量OB ,所以3OB =,OA 与OB 夹角为120︒, 因为12AC CB =,所以111()(2)333OC OA AC OA AB OA OB OA OA OB =+=+=+-=+,所以()2211(2)()233OC BA OA OB OA OB OA OB OA OB ⋅=+⋅-=--⋅ 11291332⎡⎤⎛⎫=--⨯⨯- ⎪⎢⎥⎝⎭⎣⎦ 116=-,故答案为116-. 【点睛】 本题主要考查平面向量几何运算法则以及平面向量数量积的运算,属于中档题. 向量的运算有两种方法:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差;(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和).16.【分析】由题意可设即有结合应用数量积的坐标公式即可求的取值范围;【详解】由题意设则即有∴而即∴故答案为:【点睛】本题考查了向量数量积的坐标表示结合坐标的三角表示正弦函数的区间值域求数量积的范围; 解析:()0,2【分析】由题意可设(cos ,sin )A αα,02πα<<,即有(sin ,cos )B αα-,结合1,0P 应用数量积的坐标公式即可求PA PB ⋅的取值范围; 【详解】由题意,设(cos ,sin )A αα,02πα<<,则(sin ,cos )B αα-,即有(cos 1,sin )PA αα-,(sin 1,cos )PB αα--,∴(cos 1)(sin 1)sin cos sin cos 12)14PA PB πααααααα⋅=---+=-+=-+,而(,)444πππα-∈-,即2sin()4πα-∈, ∴(0,2)PA PB ⋅∈, 故答案为:()0,2 【点睛】本题考查了向量数量积的坐标表示,结合坐标的三角表示、正弦函数的区间值域求数量积的范围;17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n=解析:311【解析】 由13AN NC =,得14AN AC =. 设BP =n BN ,所以AP AB BP AB =+=+n BN =AB +n (AN AB -)=(1-n )14AB nAC +=m 211AB AC +. 由14n=211,得m=1-n=311. 18.【分析】将均用表示出来进而将表示成与相关可以求出同时可用表示即可求出结果【详解】因为因此故答案为:【点睛】研究向量的数量积一般有两个思路一是建立平面直角坐标系利用坐标研究向量的数量积;二是利用一组基解析:58【分析】将,,,BA CA BF CF 均用,BC AD 表示出来,进而将BA CA ⋅,BF CF ⋅表示成与,FD BC相关,可以求出 2223,827FD BC ==,同时BE CE ⋅可用,FD BC 表示,即可求出结果.【详解】因为222211436=52244AD BC FD BC BA CA BC AD BC AD ()()--⋅=-⋅--==, 2211114223234FD BCBF CF BC AD BC AD ()()-⋅=-⋅--==-,因此2223,827FD BC ==,222211416.224458ED BC FD BC BE CE BC ED BC ED ()()--⋅=-⋅--===故答案为:58. 【点睛】研究向量的数量积,一般有两个思路,一是建立平面直角坐标系,利用坐标研究向量的数量积;二是利用一组基底表示所有向量,两种思路实质相同,但坐标法更易理解和化简. 对于涉及中线的向量问题,一般利用向量加、减法的平行四边形法则进行求解.19.【分析】设的重心为点可知与关于点对称利用重心的向量性质可求得实数的值【详解】设的重心为点则由于和的面积相等则与关于点对称则解得故答案为:【点睛】本题考查了平面向量的数乘运算和线性运算涉及三角形重心向解析:23【分析】设ABC ∆的重心为点G ,可知ABC ∆与111A B C ∆关于点G 对称,利用重心的向量性质可求得实数λ的值. 【详解】设ABC ∆的重心为点G ,则3AB AC AG +=,()13AA AB AC AG λλ∴=+=, 由于ABC ∆和111A B C ∆的面积相等,则ABC ∆与111A B C ∆关于点G 对称, 则12AA AG =,32λ∴=,解得23λ=. 故答案为:23. 【点睛】本题考查了平面向量的数乘运算和线性运算,涉及三角形重心向量性质的应用,考查计算能力,属于中等题.20.或【分析】向量(10)设与的夹角为θ结合已知可得出坐标利用向量坐标运算建立关系式即可求解【详解】设与的夹角为θ则或且∴由得若∴∴且∴或∴或若且不存在∴或故答案为:或【点睛】本题考查向量的夹角向量的坐解析:12π或712π 【分析】向量a =(1,0),设a 与c 的夹角为θ,结合已知可得出c 坐标,利用向量坐标运算,建立θ关系式,即可求解. 【详解】设a 与c 的夹角为θ,则()2,2c cos sin θθ=, 或()2,2c cos sin θθ=-且132a b ⎛+= ⎝⎭,, ∴由()0c a b c --⋅=得,()2c a b c =+⋅, 若()2,c cos sin θθ=,∴11222226cos sin sin πθθθ⎫⎛⎫=+=+⎪ ⎪⎪⎝⎭⎝⎭,∴6sin πθ⎛⎫+= ⎪⎝⎭,且7666πππθ≤+≤, ∴64ππθ+=或34π, ∴12πθ=或712π. 若()2,c cos sin θθ=-,1122226cos sin sin πθθθ⎫⎛⎫==--⎪ ⎪⎪⎝⎭⎝⎭,62sin πθ⎛⎫-=-⎪⎝⎭且5666πππθ-≤-≤, θ不存在.∴12πθ=或712π.故答案为:12π或712π. 【点睛】本题考查向量的夹角、向量的坐标坐标运算,向量设为三角形式是解题的关键,属于中档题.三、解答题21.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得.【详解】(1)设向量a 与b 的夹角θ,()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴=(2)由向量的模长公式可得:()222a b a b-=-==.【点睛】本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.22.(1)①②2)7k =-. 【分析】利用数量积的定义求解出a b ⋅的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果. 【详解】由已知得:cos ,48cos12016a b a b a b ⋅=⋅=⨯⨯=- (1)①222216326448a b a a b b +=+⋅+=-+= 43a b ∴+=②2224216164256256256768a b a a b b -=-⋅+=++= 42163a b ∴-=(2)若2a b +与ka b -垂直,则()()20a b ka b +⋅-=()222120ka k a b b ∴+-⋅-=即:1616(21)2640k k ---⨯=,解得:7k =- 【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.23.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 24.(1)1m =-;(2)1λ=±. 【分析】(1)先求()313,3a b m -=--,再根据向量垂直的坐标运算即可求得1m =-; (2)先计算()32,21a b λλλ+=+-,()23,2a b λλλ+=+-+,再根据向量共线的坐标运算求解即可得1λ=±. 【详解】解:(1)根据题意有:()()()31,33,213,3a b m m -=-=--,∵ ()3a b c -⊥,∴ ()()3313120a b c m -⋅=⨯--=,解得1m =-,所以实数m 的值为:1m =-.(2)根据题意:()()()3,22,132,21a b λλλλλ+=+-=+-,()()()3,22,23,2a b λλλλλ+=+-=+-+,∵ a b λ+与a b λ+平行,∴ ()()()()32223210λλλλ+-+-+-=,解得:1λ=±. 【点睛】本题考查向量的坐标运算,向量垂直与平行的坐标表示,考查运算能力,是基础题. 25.(1)6π;(2)3λ=-. 【分析】(1)设2a b +与b 的夹角为θ,计算出()2a b b +⋅的值和2a b +的值,利用平面向量的数量积的运算求得cos θ,结合θ的取值范围可求得θ的值;(2)求得平面向量a b +的坐标,由()0a b c +⋅=,结合平面向量数量积的坐标运算可求得实数λ的值. 【详解】(1)设2a b +与b 的夹角为θ,由于1a =,2b =,且平面向量a 、b 的夹角为3π, ()22222cos63a b b a b b a b b π∴+⋅=⋅+=⋅+=,()22222224444cos23a b a b a a b b a a b b π+=+=+⋅+=+⋅+=,所以,()2cos 232a b b a b bθ+⋅===⨯+⋅,0θπ≤≤,因此,6πθ=;(2)平面向量()1,2a =,()2,1b =-,()1,c λ=,()3,1a b ∴+=,()a b c +⊥,()30a b c λ∴+⋅=+=,解得3λ=-.【点睛】本题考查利用平面向量的数量积计算向量的夹角,同时也考查可利用向量垂直的坐标表示求参数,考查计算能力,属于中等题. 26.(1)5k =-(2)证明见解析 【分析】(1)根据ABC ∆为直角三角形,且角A 为直角,可知AB AC ⊥,即0AB AC ⋅=,解得k 值;(2)利用向量三角形法则得出BC 和DE ,由//BC ED 知//BC DE ,利用向量平行性质即可证明λμ=.【详解】解:(1)因为A ,B ,C 的坐标依次为()1,2-,()3,2,(),1k . 所以()2,4AB =,()1,3AC k =-, 因为ABC ∆为直角三角形,且角A 为直角, 所以AB AC ⊥,所以()()2,41,32100AB AC k k ⋅=⋅-=+=, 所以5k =-(2)()()()6,32,48,1BC AC AB =-=--=--DE AE AD AB AC λμ=-=-()()()2,46,326,43λλμμλμλμ=--=+-,因为//BC ED ,所以//BC DE , 所以()()84326λμλμ--=-+, 整理得λμ=. 【点睛】本题考查向量垂直的充要条件,向量坐标的加法和数乘,平行向量的坐标关系,属于基础题.。
高一数学平面向量试题答案及解析1.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是;【答案】【解析】略2.已知平面向量,且∥,则()A.-3B.-9C.9D.1【答案】B【解析】由两向量平行坐标间的关系可知【考点】向量平行的性质3.(12分)已知向量,令且的周期为.(1)求函数的解析式;(2)若时,求实数的取值范围.【答案】(1)(2).【解析】(1)本题考察的是求函数解析式,本题中根据平面向量的数量积,再结合辅助角公式进行化简,又的周期为,可以求出从而求出的解析式.(2)本题考察的是求参数的取值范围问题,本题中根据所给的定义域求出的值域,再根据不等式恒成立问题即可求出参数的取值范围.试题解析:(1)∵的周期为∴(2),则【考点】(1)辅助角公式(2)三角函数的值域4.在边长为的正三角形中,设,,若,则的值为A.B.C.D.【答案】D【解析】由已知可得:D为BC中点,,又因为在边长为的正三角形中,所以,故解得,故选择D【考点】平面向量的线性运算5.若向量满足:,,,则 .【答案】【解析】【考点】向量垂直与向量的坐标运算6.设,向量,,且,∥,则______________.【答案】【解析】因为,∥,所以有即,,所以【考点】向量坐标运算7.向量a=,b=,则A.a∥bB.C.a与b的夹角为60°D.a与b的夹角为30°【答案】B【解析】根据两向量平行坐标表示公式“”可得A错误;根据两向量垂直的坐标表示公式“”可得B正确;根据B可知两向量夹角为,所以C,D错误,故选择B【考点】向量线性关系8.如图所示,D是△ABC的边AB上的中点,则向量A.B.C.D.【答案】A【解析】因为,故选择A【考点】向量的加减法运算9.设是平面上一定点,A、B、C是平面上不共线的三点,动点P满足,,则动点P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【答案】D【解析】,,,,则动点的轨迹一定通过的垂心.故C正确.【考点】1向量的加减法;2数量积;3向量垂直.10.已知向量则x=【答案】6【解析】由题意可得,解得.【考点】向量共线.11.(2015秋•友谊县校级期末)已知△ABC和点M满足+=﹣,若存在实数m使得m+m=成立,则m等于()A.B.2C.D.3【答案】C【解析】作出图象,由向量加法的平行四边形法则可知M是△ABC的重心,故,代入m+m=可解出m.解:以MB,MC为邻边作平行四边形MBEC,连结ME交BC于D,如图.则,∵+=﹣,∴M在线段AD上,且|MA|=2|MD|,∵D是BC中点,∴=2=3,∵m+m=,∴3m=,∴m=.故选C.【考点】平面向量的基本定理及其意义.12.已知点(1)求证:恒为锐角;(2)若四边形为菱形,求的值【答案】(1)证明见解析(2)2【解析】(1)只需证明且三点不在一条直线上即可;(2)利用菱形的定义可求得坐标,进而求出所求的值.试题解析:(1)∵点∴∴.若A,P,B三点在一条直线上,则,得到,此方程无解,∴∴∠APB恒为锐角.(2)∵四边形ABPQ为菱形,∴,即,化简得到解得设Q(a,b),∵,∴,∴【考点】平面向量数量积的运算13.如图所示,是的边上的中点,则向量= (填写正确的序号).①,②,③,④【答案】①【解析】.故选A.【考点】向量的线性运算.【名师】在向量线性运算时,要尽可能转化到平行四边形或三角形中,运用平行四边形法则、三角形法则,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.14. O为平面上的定点,A、B、C是平面上不共线的三点,若(﹣)•(+﹣2)=0,则△ABC是()A.以AB为底边的等腰三角形B.以AB为斜边的直角三角形C.以AC为底边的等腰三角形D.以AC为斜边的直角三角形【答案】C【解析】将条件式展开化简,两边同时加上,根据向量的线性运算的几何意义即可得出答案.解:∵(﹣)•(+﹣2)=0,∴+﹣2=+﹣2.即﹣2=﹣2.两边同时加,得()2=()2,即AB2=BC2.∴AB=BC.∴△ABC是以AC为底边的等腰三角形.故选:C.【考点】平面向量数量积的运算.15.已知,,,则=()A.﹣8B.﹣10C.10D.8【答案】B【解析】向量的数量积的运算和向量的模即可求出.解:,,,∴=+|+2=16+25+2=21,∴=﹣10,故选:B.【考点】平面向量数量积的运算.16.已知||=1,||=2,∠AOB=150°,点C在∠AOB的内部且∠AOC=30°,设=m+n,则=()A.B.2C.D.1【答案】B【解析】可画出图形,由可得到,根据条件进行数量积的运算便可得到,从而便可得出关于m,n的等式,从而可以求出.解:如图,由的两边分别乘以得:;∴;∴得:;∴;∴.故选:B.【考点】向量在几何中的应用.17.已知正方形的边长为2,点是边上的中点,则的值为()A.1B.2C.4D.6【答案】B【解析】以为原点,所在直线为轴建立直角坐标系,则,.【考点】向量数量积的坐标表示.18.=(2,3),=(﹣3,5),则在方向上的投影为.【答案】【解析】由已知向量的坐标求出与,代入投影公式得答案.解:∵=(2,3),=(﹣3,5),∴,,则=.故答案为:.【考点】平面向量数量积的运算.19.已知向量,满足||=1,||=2,与的夹角为120°.(1) 求及+;(2)设向量+与-的夹角为θ,求cosθ的值.【答案】(1);;(2).【解析】(1)根据向量的数量积的运算公式;以及;(2)根据公式,根据数量积公式,再根据公式试题解析:解析:(1)=||||cos 120°θ=1×2×(-)=-1,所以|+|2=(+)2=2+2+2=12+22+2×(-1)=3.所以|+|=(2)同理可求得|-|=.因为(+)(-)=2-2=12-22=-3,所以cosθ===-.所以向量+与-的夹角的余弦值为-.【考点】向量数量积20.(1)在直角坐标系中,已知三点,当为何值时,向量与共线?(2)在直角坐标系中,已知为坐标原点,,,当为何值时,向量与垂直?【答案】(1);(2).【解析】首先根据向量减法的线性运算得到向量与的坐标,当与共线时坐标交叉积的差等于零,当与垂直是数量积等于零,从而列出的方程,即可求得满足条件的的值.试题解析:(1)∵,又向量与共线,∴,解得(2),当向量与垂直时,,即,解得【考点】向量的线性运算及平行与垂直的坐标表示.21.已知a,b为非零向量,且|a+b|=|a|+|b|,则一定有()A.a=b B.a∥b,且a,b方向相同C.a=-b D.a∥b,且a,b方向相反【答案】B【解析】根据向量加法的几何意义, a,b方向相同,方向相同即是共线向量.【考点】向量加法的几何意义.22.已知向量.(1)若点三点共线,求的值;(2)若为直角三角形,且为直角,求的值.【答案】(Ⅰ)-19;(Ⅱ)1.【解析】(Ⅰ)根据向量的减法运算和向量平行的充要条件即可解得;(Ⅱ)根据向量的减法运算和向量垂直的充要条件即可解得.试题解析:解:(Ⅰ)∴,.(Ⅱ),则,∴,【考点】向量的减法运算;向量平行和垂直的充要条件.23.平面内有一个和一点,线段的中点分别为的中点分别为,设.(1)试用表示向量;(2)证明线段交于一点且互相平分.【答案】(1),,;(2)证明见解析.【解析】(1)根据向量的加法、数乘的几何意义,以及向量加法的平行四边形法则,并进行向量的数乘运算便可得到,从而同理可以用分别表示出;(2)设线段、的中点分别为,用分别表示出,从而可得,即证得线段交于一点且互相平分.试题解析:(1),.(2)证明:设线段的中点为,则,设中点分别为,同理:,,∴,即其交于一点且互相平分.【考点】1、向量的三角形法则;2、向量的线性运算.【方法点睛】本题考查向量加法、数乘的几何意义,向量加法的平行四边形法则,以及向量的数乘运算,三角形中位线的性质,平行四边形的判定,平行四边形的对角线相交于一点且互相平分,考查学生逻辑推理能力,属于中档题.另一种解法:(1);同理,;(2)证明:如图,连接,则,且,,且,∴,且,∴四边形为平行四边形,∴线段交于一点且互相平分,同理,线段交于一点且互相平分,∴线段交于一点且互相平分.24.已知是两个非零向量,当的模取最小值时.①求的值;②已知与共线且同向,求证:与垂直.【答案】①;②证明见解析.【解析】(1)设出两个向量的夹角,表示出两个向量的模长,对于模长形式,通常两边平方,得到与已知条件有关的运算,整理成平方形式,当底数为零时,结果最小;(2)本题要证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,求两个向量数量积,根据上一问做出的结果,代入数量积的式子,合并同类项,得到数量积为零.得到垂直.试题解析:①令,则.当时,.②证明:与共线且同向,,,,.【考点】(1)向量的模;(2)数量积判断两个向量的垂直关系.【方法点晴】本题主要考查模长形式,通常两边平方以及证明两个向量垂直,这种问题一般通过向量的数量积为零来证明,因为在本题中主要是数学符号的运算,所以对学生的运算能力要求较高,属于难题.启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质.25.已知,在方向上的投影为,则()A.3B.C.2D.【答案】B【解析】由在方向上的投影为,则,所以,故选B.【考点】向量的数量积及向量的投影的应用.26.给出下列命题:(1)若,则;(2)向量不可以比较大小;(3)若则;(4).其中真命题的个数为()A.1B.2C.3D.4【答案】B【解析】由题意得,(1)中,例如,此时,但,所以不正确;(2)中,向量是既有大小又有方向的量,所示向量不能比较大小,所以(2)是正确的;(3)中,根据相等向量的概念,可得“若则”是正确的;(4)中,由,则是成立的,但由,则与是相等向量或相反向量,所以不正确,综上所述,正确命题的个数为个,故选B.【考点】向量的基本概念.【方法点晴】本题主要考查了平面向量的基本的概念——向量的模、相等向量、向量的概念、共线向量及相反向量的概念,其中牢记平面向量的基本概念是判断此类问题的关键,试题很容易出错,属于易错题,本题的解答中,(4)中,,容易忽视相反向量的概念,造成错解,应牢记向量是既有大小又有方向的量这一基本概念,防止出错.27.已知向量,若,则=()A.B.C.D.【答案】A【解析】,.故选A.【考点】数量积的坐标运算.28.已知向量,.(1)若四边形ABCD是平行四边形,求的值;(2)若为等腰直角三角形,且为直角,求的值.【答案】(1);(2)或.【解析】(1)根据四边形为平行四边形,利用,即可求解的值;(2)利用为等腰直角三角形,且为直角,则且,列出方程,即可求解的值.试题解析:(1),,由得x=-2,y=-5.(2),若为直角,则,∴,又,∴,再由,解得或.【考点】向量的运算及向量的垂直关系的应用.29.(1)已知,,且与的夹角为60°,求的值;(2)在矩形中,,点为的中点,点在边上,若,求的值.【答案】(1);(2).【解析】(1)利用向量模的平方等于向量的平方,即可化简,即可求解的值;(2)设,利用,求得的值,又由,,即可运算的值.试题解析:(1) =169,得;(2)矩形ABCD中,∵点F在边CD上,∴设,,本小题也可建坐标系,用平面向量坐标运算解决.【考点】向量的模的计算及向量数量积的运算.30.已知三角形△ABC中,角A,B,C的对边分别为,若,则 =()A.B.C.D.【答案】C【解析】【考点】向量的坐标运算31.已知向量与的夹角为,||=2,||=3,记,(1)若,求实数k的值。
一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
高中数学必修二第六章平面向量及其应用专项训练题单选题1、定义空间两个向量的一种运算a⃑⊗b⃑⃑=|a⃑|⋅|b⃑⃑|sin⟨a⃑,b⃑⃑⟩,则关于空间向量上述运算的以下结论中恒成立的有()A.λ(a⃑⊗b⃑⃑)=(λa⃑)⊗b⃑⃑B.(a⃑⊗b⃑⃑)⊗c⃑=a⃑⊗(b⃑⃑⊗c⃑)C.(a⃑+b⃑⃑)⊗c⃑=(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则a⃑⊗b⃑⃑=|x1y2−x2y1|答案:D分析:A.按λ的正负分类讨论可得,B.由新定义的意义判断,C.可举反例说明进行判断,D.与平面向量的数量积进行联系,用数量积求出两向量夹角的余弦值,转化为正弦值,代入计算可判断.A.(λa⃑)⊗b⃑⃑=|λa⃑||b⃑⃑|sin<λa⃑,b⃑⃑>,λ>0时,<λa⃑,b⃑⃑>=<a⃑,b⃑⃑>,(λa⃑)⊗b⃑⃑=λ|a⃑||b⃑⃑|sin<a⃑,b⃑⃑>=λ(a⃑⊗b⃑⃑),λ=0时,λ(a⃑⊗b⃑⃑)=0,(λa⃑)⊗b⃑⃑=0,成立,λ<0时,<λa⃑,b⃑⃑>=π−<a⃑,b⃑⃑>,sin<λa⃑,b⃑⃑>=sin(π−<a⃑,b⃑⃑>)=sin<a⃑,b⃑⃑>(λa⃑)⊗b⃑⃑=−λ|a⃑||b⃑⃑|sin< a⃑,b⃑⃑>=−λ(a⃑⊗b⃑⃑),综上,A不恒成立;B.a⃑⊗b⃑⃑是一个实数,(a⃑⊗b⃑⃑)⊗c⃑无意义,B不成立;C.若a⃑=(0,1),b⃑⃑=(1,0),c⃑=(1,1),则a⃑+b⃑⃑=(1,1),<a⃑+b⃑⃑,c⃑>=0,(a⃑+b⃑⃑)⊗c⃑=|a⃑+b⃑⃑||c⃑|sin0=√2×√2×0=0,<a⃑,c⃑>=π4,<b⃑⃑,c⃑>=π4,(a⃑⊗c⃑)+(b⃑⃑⊗c⃑)=1×√2×sinπ4+1×√2×sinπ4=2,(a⃑+b⃑⃑)⊗c⃑≠(a⃑⊗c⃑)+(b⃑⃑⊗c⃑),C错误;D.若a⃑=(x1,y1),b⃑⃑=(x2,y2),则|a⃑|=√x12+y12,|b⃑⃑|=√x22+y22,cos <a ⃑,b ⃑⃑>=1212√x 12+y 12×√x 22+y 22,sin <a ⃑,b ⃑⃑>=√1−cos 2<a ⃑,b ⃑⃑>=√1−(x 1x 2+y 1y 2)2(x 12+y 12)(x 22+y 22)=1221√(x 1+y 1)(x 2+y 2), 所以a ⃑⊗b ⃑⃑=|a ⃑||b ⃑⃑|sin <a ⃑,b⃑⃑>=|x 1y 2−x 2y 1|,成立. 故选:D .小提示:本题考查向量的新定义运算,解题关键是理解新定义,并能运用新定义求解.解题方法一种方法是直接利用新定义的意义判断求解,另一种方法是把新定义与向量的数量积进行联系,把新定义中的sin <a ⃑,b ⃑⃑>用cos <a ⃑,b⃑⃑>,而余弦可由数量积进行计算. 2、若|AB⃑⃑⃑⃑⃑⃑|=5,|AC ⃑⃑⃑⃑⃑⃑|=8,则|BC ⃑⃑⃑⃑⃑⃑|的取值范围是( ) A .[3,8]B .(3,8)C .[3,13]D .(3,13)答案:C分析:利用向量模的三角不等式可求得|BC⃑⃑⃑⃑⃑⃑|的取值范围. 因为|BC⃑⃑⃑⃑⃑⃑|=|AC ⃑⃑⃑⃑⃑⃑−AB ⃑⃑⃑⃑⃑⃑|,所以,||AC ⃑⃑⃑⃑⃑⃑|−|AB ⃑⃑⃑⃑⃑⃑||≤|BC ⃑⃑⃑⃑⃑⃑|≤|AC ⃑⃑⃑⃑⃑⃑|+|AB ⃑⃑⃑⃑⃑⃑|,即3≤|BC ⃑⃑⃑⃑⃑⃑|≤13. 故选:C.3、已知非零平面向量a ⃗,b ⃑⃗,c ⃗,下列结论中正确的是( )(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则a ⃗=b ⃑⃗;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗//b⃑⃗ (3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则a ⃗⊥b ⃑⃗(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则a ⃗=b ⃑⃗或a ⃗=−b⃑⃗ A .(1)(2)B .(2)(3)C .(3)(4)D .(2)(3)(4)答案:B解析:根据向量的数量积运算,以及向量模的计算公式,逐项判断,即可得出结果.已知非零平面向量a ⃗,b ⃑⃗,c ⃗,(1)若a ⃗⋅c ⃗=b ⃑⃗⋅c ⃗,则(a ⃗−b ⃑⃗)⋅c ⃗=0,所以a ⃗=b ⃑⃗或(a ⃗−b ⃑⃗)⊥c ⃗,即(1)错;(2)若|a ⃗+b ⃑⃗|=|a ⃗|+|b ⃑⃗|,则a ⃗与b ⃑⃗同向,所以a ⃗//b⃑⃗,即(2)正确;(3)若|a ⃗+b ⃑⃗|=|a ⃗−b ⃑⃗|,则|a ⃗|2+|b ⃑⃗|2+2a ⃗⋅b ⃑⃗=|a ⃗|2+|b ⃑⃗|2−2a ⃗⋅b ⃑⃗,所以2a ⃗⋅b ⃑⃗=0,则a ⃗⊥b⃑⃗;即(3)正确;(4)若(a ⃗+b ⃑⃗)⋅(a ⃗−b ⃑⃗)=0,则|a ⃗|2−|b ⃑⃗|2=0,所以|a ⃗|=|b⃑⃗|,不能得出向量共线,故(4)错; 故选:B.小提示:本题主要考查向量数量积的运算,考查向量有关的判定,属于基础题型.4、已知向量a ⃑,b ⃑⃑满足|a ⃑|=√3,|b ⃑⃑|=2,且a ⃑⊥(a ⃑−b ⃑⃑),则a ⃑与b⃑⃑的夹角为( ) A .30°B .60°C .120°D .150°答案:A分析:利用数量积的定义,即可求解.解:a ⃑⊥(a ⃑−b ⃑⃑),所以a ⃑⋅(a ⃑−b ⃑⃑)=0,即|a →|2−|a →||b →|cos <a →,b →>=0,解得cos <a →,b →>=√32,又因为向量夹角的范围为[0°,180°],则a ⃑与b ⃑⃑的夹角为30°,故选:A. 5、在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,且(a +b )2−c 2=4,C =120°,则△ABC 的面积为( )A .√33B .2√33C .√3D .2√3 答案:C解析:利用余弦定理可求ab 的值,从而可求三角形的面积.因为C =120°,故c 2=a 2+b 2−2abcos120°=a 2+b 2+ab ,而(a +b )2−c 2=4,故c 2=a 2+b 2+2ab −4=a 2+b 2+ab ,故ab =4,故三角形的面积为12×ab ×sin120°=√34×4=√3,故选:C.6、△ABC 内角A,B,C 的对边分别为a,b,c ,已知b 2+c 2−a 2=bc ,则A =( )A .π6B .5π6C .π3D .2π3答案:C分析:利用余弦定理求出cosA ,再求出A 即可.∵b 2+c 2−a 2=bc ,∴cosA =b 2+c 2−a 22bc =bc 2bc =12,∵0<A <π,∴A =π3. 故选:C7、已知向量a ⃑=(−1,m ),b ⃑⃑=(m +1,2),且a ⃑⊥b⃑⃑,则m =( ) A .2B .−2C .1D .−1答案:C分析:由向量垂直的坐标表示计算.由题意得a ⃑⋅b⃑⃑=−m −1+2m =0,解得m =1 故选:C .8、已知直角三角形ABC 中,∠A =90°,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB⃑⃑⃑⃑⃑⃑⋅PC ⃑⃑⃑⃑⃑⃑的最大值为( )A .16+16√55B .16+8√55C .165D .565答案:D分析:建立如图所示的坐标系,根据PB ⃑⃑⃑⃑⃑⃑·PC⃑⃑⃑⃑⃑⃑=|PD ⃑⃑⃑⃑⃑⃑|2−5可求其最大值. 以A 为原点建系,B (0,2),C (4,0),BC:x 4+y 2=1,即x +2y −4=0,故圆的半径为r =√5 ∴圆A:x 2+y 2=165,设BC 中点为D (2,1),PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑=PD ⃑⃑⃑⃑⃑⃑2−14BC ⃑⃑⃑⃑⃑⃑2=|PD ⃑⃑⃑⃑⃑⃑|2−14×20=|PD ⃑⃑⃑⃑⃑⃑|2−5, |PD |max =|AD |+r =√5+√5=√5,∴(PB ⃑⃑⃑⃑⃑⃑·PC ⃑⃑⃑⃑⃑⃑)max =815−5=565, 故选:D.多选题9、下列说法正确的有( )A .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑B .若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑C .若a ⃑//b ⃑⃑,则a ⃑与b⃑⃑的方向相同或相反D .若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线,则A 、B 、C 三点共线 答案:BD分析:取b⃑⃑=0⃑⃑可判断AC 选项的正误;利用向量相等的定义可判断B 选项的正误;利用共线向量的定义可判断D 选项的正误.对于A 选项,若b ⃑⃑=0⃑⃑,a ⃑、c ⃑均为非零向量,则a ⃑//b ⃑⃑,b ⃑⃑//c ⃑成立,但a ⃑//c ⃑不一定成立,A 错;对于B 选项,若a ⃑=b ⃑⃑,b ⃑⃑=c ⃑,则a ⃑=c ⃑,B 对;对于C 选项,若b ⃑⃑=0⃑⃑,a ⃑≠0⃑⃑,则b⃑⃑的方向任意,C 错; 对于D 选项,若AB ⃑⃑⃑⃑⃑⃑、BC ⃑⃑⃑⃑⃑⃑共线且AB 、BC 共点B ,则A 、B 、C 三点共线,D 对.故选:BD.10、下列说法正确的是( )A .向量不能比较大小,但向量的模能比较大小B .|a ⃑|与|b ⃑⃑|是否相等与a ⃑与b⃑⃑的方向无关 C .若a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,则a ⃑//c ⃑D .若向量AB ⃑⃑⃑⃑⃑⃑与向量CD⃑⃑⃑⃑⃑⃑是共线向量,则A ,B ,C ,D 四点在一条直线上 答案:AB分析:根据向量的定义以及向量模的定义可判断A ,B ;举反例b⃑⃑=0⃑⃑时可判断C ;由共线向量的定义可判断D ,进而可得正确选项.对于A :向量即有大小又有方向不能比较大小,向量的模可以比较大小,故选项A 正确;对于B :|a ⃑|与|b ⃑⃑|分别表示向量a ⃑与b ⃑⃑的大小,与a ⃑,b⃑⃑的方向无关,故选项B 正确; 对于C :当b ⃑⃑=0⃑⃑时,向量a ⃑与c ⃑可以是任意向量都满足a ⃑//b ⃑⃑,b ⃑⃑//c ⃑,故选项C 不正确;对于D :若向量AB⃑⃑⃑⃑⃑⃑与向量CD ⃑⃑⃑⃑⃑⃑是共线向量,表示AB ⃑⃑⃑⃑⃑⃑与CD ⃑⃑⃑⃑⃑⃑方向相同或相反,得不出A ,B ,C ,D 四点在一条直线上,故选项D 不正确;故选:AB.11、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a 2cosAsinB =b 2sinAcosB ,则△ABC 的形状为( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:AC分析:根据正弦定理和二倍角公式进行求解.∵a 2cosAsinB =b 2sinAcosB∴由正弦定理得sin 2AcosAsinB =sin 2BsinAcosB ,∵sinAcosA ≠0∴sinAcosA =sinBcosB ,即sin2A =sin2B∴2A =2B 或2A +2B =π,即该三角形为等腰三角形或直角三角形.故选:AC.填空题12、已知a ⃗,b ⃑⃑是空间两个向量,若|a ⃗|=2,|b ⃑⃗|=2,|a ⃗−b ⃑⃗|=√7,则cos 〈a ⃗,b⃑⃑〉=________. 答案:18 分析:根据向量几何法的模长公式,可得向量数量积的值,根据向量夹角余弦值的公式,可得答案.由|a ⃑−b ⃑⃑|=√7,可知(a ⃑−b ⃑⃑)2=7,则|a ⃑|2−2a ⃑⋅b⃑⃑+|b ⃑⃑|2=7, ∵|a ⃑|=2,|b ⃑⃑|=2,∴a ⃑⋅b ⃑⃑=12,则cos⟨a ⃑⋅b ⃑⃑⟩=a ⃑⃑⋅b ⃑⃑|a ⃑⃑|⋅|b ⃑⃑|=18. 所以答案是:18. 13、如图,在矩形ABCD 中,AB =3,AD =2,DE =2EC ,M 为BC 的中点,若点P 在线段BD 上运动,则PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗的最小值为______.答案:2352 分析:构建直角坐标系,令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗求P 的坐标,进而可得PE ⃑⃑⃑⃑⃑⃗,PM ⃑⃑⃑⃑⃑⃑⃗,由向量数量积的坐标表示及二次函数的性质求最值即可.以A 为坐标原点,AB ,AD 分别为x ,y 建系,则E(2,2),M(3,1),又AB ⃑⃑⃑⃑⃑⃗=(3,0),AD ⃑⃑⃑⃑⃑⃗=(0,2),令AP⃑⃑⃑⃑⃑⃗=λAB ⃑⃑⃑⃑⃑⃗+(1−λ)AD ⃑⃑⃑⃑⃑⃗=(3λ,2−2λ),0≤λ≤1, 故P(3λ,2−2λ),则PE⃑⃑⃑⃑⃑⃗=(2−3λ,2λ),PM ⃑⃑⃑⃑⃑⃑⃗=(3−3λ,2λ−1), PE⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗=(2−3λ)(3−3λ)+2λ(2λ−1) =13λ2−17λ+6, 所以λ=1726时,PE ⃑⃑⃑⃑⃑⃗⋅PM ⃑⃑⃑⃑⃑⃑⃗取最小值2352. 所以答案是:2352.14、海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A ,B 两点间的距离,现在珊瑚群岛上取两点C ,D ,测得CD =45m ,∠ADB =135°,∠BDC =∠DCA =15°,∠ACB =120°,则AB 两点的距离为______m .答案:45√5分析:先将实际问题转化为解三角形的问题,再利用正、余弦定理求解。
一、选择题1.如图,B 是AC 的中点,2BE OB =,P 是平行四边形BCDE 内(含边界)的一点,且(),OP xOA yOB x y R =+∈,则下列结论正确的个数为( )①当0x =时,[]2,3y ∈②当P 是线段CE 的中点时,12x =-,52y =③若x y +为定值1,则在平面直角坐标系中,点P 的轨迹是一条线段 ④x y -的最大值为1- A .1 B .2C .3D .42.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .3.若12,e e 是夹角为60︒的两个单位向量,则向量1212,2a e e b e e =+=-+的夹角为( ) A .30B .60︒C .90︒D .120︒4.在AOB ∆中,0,5,25,OA OB OA OB AB ⋅===边上的高为,OD D 在AB 上,点E 位于线段OD 上,若34OE EA ⋅=,则向量EA 在向量OD 上的投影为( ) A .12或32B .1C .1或12D .325.已知1a ,2a ,1b ,2b ,()*k b k ⋅⋅⋅∈N是平面内两两互不相等的向量,121a a-=,且对任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈,则k 最大值为( ) A .3B .4C .5D .66.在矩形ABCD 中,|AB |=6,|AD |=3.若点M 是CD 的中点,点N 是BC 的三等分点,且BN =13BC ,则AM ·MN =( ) A .6B .4C .3D .27.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A B .1C .2D .8.已知向量,a b 满足2(1,2),(1,)+==a b m b m ,且a 在b ,则实数m =( )A .2±B .2C .5±D 9.已知两个非零向量a ,b 的夹角为23π,且=2a b -,则·ab 的取值范围是( ) A .2,03⎛⎫- ⎪⎝⎭B .[)2,0-C .2,03⎡⎫-⎪⎢⎣⎭D .[)1,0-10.在直角梯形ABCD 中,0AD AB ⋅=,30B ∠=︒,AB =,2BC =,13BE BC =,则( )A .1163AE AB AD =+ B .1263AE AB AD =+ C .5163AE AB AD =+ D .5166AE AB AD =+ 11.已知向量a 、b 、c 满足0a b c ++=,且a b c <<,则a b ⋅、b c ⋅、a c ⋅中最小的值是( ) A .a b ⋅B .a c ⋅C .b c ⋅D .不能确定12.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23π C .3π D .6π 二、填空题13.已知平面向量a ,b ,c ,d 满足1a b ==,2c =,0a b ⋅=,1c d -=,则2a b d ++的取值范围为______.14.已知向量1e ,2e 是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当12OP xe ye =+时,则称有序实数对(),x y 为点P 的广义坐标,若点A 、B 的广义坐标分别为()11,x y 、()22,x y ,对于下列命题: ① 线段A 、B 的中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭;② A 、B③ 向量OA 平行于向量OB 的充要条件是1221x y x y =; ④ 向量OA 垂直于向量OB 的充要条件是12120x x y y +=. 其中的真命题是________(请写出所有真命题的序号)15.如图,在Rt ABC ∆中,2,60,90AB BAC B =∠=︒∠=︒,G 是ABC ∆的重心,则GB GC ⋅=__________.16.在平面内,定点,,A B C 满足DA DB DC ==,2DA DB DB DC DC DA ⋅=⋅=⋅=-,动点,P M 满足1AP PM MC ==,则2BM 的最大值为________.17.如图,设圆M 的半径为2,点C 是圆M 上的定点,A ,B 是圆M 上的两个动点,则CA CB ⋅的最小值是________.18.如图,在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒,E F 、分别是边AB AC 、上的点,且,AE AB AF AC λμ==,其中(),0,1λμ∈且41λμ+=,若线段EF BC 、的中点分别为M N 、,则MN 的最小值是_____.19.已知O 为ABC 内一点,且满足305OA OB OC =++,延长AO 交BC 于点D .若BD DC λ=,则λ=_____.20.已知平面向量a ,b 满足3a b +=,3a b -=,则向量a 与b 夹角的取值范围是______.三、解答题21.平面内给定三个向量(3,2),(1,2),(4,1)a b c ==-=. (1)求32a b c +-;(2)求满足a mb nc =+的实数m 和n ; (3)若()(2)a kc b a +⊥-,求实数k . 22.已知向量a 与b 的夹角为3π,且1a =,2b =. (1)求a b +;(2)求向量a b +与向量a 的夹角的余弦值. 23.已知向量,a b 满足:16,()2a b a b a ==⋅-=,. (1)求向量a 与b 的夹角; (2)求2a b -.24.如图,正六边形ABCDEF 的边长为1.M ,N 分别是BC ,DE 上的动点,且满足BM DN =.(1)若M ,N 分别是BC ,DE 的中点,求AM AN ⋅的值; (2)求AM AN ⋅的取值范围.25.已知向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭且函数()f x u v =⋅,若函数f (x )的图象上两个相邻的对称轴距离为2π. (1)求函数f (x )的解析式; (2)将函数y =f (x )的图象向左平移12π个单位后,得到函数y =g (x )的图象,求函数g (x )的表达式并其对称轴;(3)若方程f (x )=m (m >0)在0,2x π⎡⎤∈⎢⎥⎣⎦时,有两个不同实数根x 1,x 2,求实数m 的取值范围,并求出x 1+x 2的值.26.在ABC 中,D 是线段AB 上靠近B 的一个三等分点,E 是线段AC 上靠近A 的一个四等分点,4DF FE =,设AB m =,BC n =. (1)用m ,n 表示AF ;(2)设G 是线段BC 上一点,且使//EG AF ,求CG CB的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用向量共线的充要条件判断出①错,③正确;利用向量的运算法则求出OP ,求出x ,y 判断出②正确,利用三点共线解得④正确 【详解】当0x =时,OP yOB =,则P 在线段BE 上,故13y ≤≤,故①错 当P 是线段CE 的中点时,13()2OP OE EP OB EB BC =+=++ ()11153(2)32222OB OB AB OB OB OB OA OA OB =+-+=-+-=-+,故②对x y +为定值1时,A ,B ,P 三点共线,又P 是平行四边形BCDE 内(含边界)的一点,故P 的轨迹是线段,故③对如图,过P 作//PM AO ,交OE 于M ,作//PN OE ,交AO 的延长线于N , 则:OP ON OM =+;又OP xOA yOB =+;0x ∴≤,1y ≥;由图形看出,当P 与B 重合时:01OP OA OB =⋅+⋅;此时x 取最大值0,y 取最小值1;所以x y -取最大值1-,故④正确 所以选项②③④正确. 故选:C 【点睛】结论点睛:若OC xOA yOB =+,则,,A B C 三点共线1x y ⇔+=.2.C解析:C 【解析】,,又,,则,故选3.B解析:B 【分析】首先分别求出12a e e =+与122b e e =-+的数量积以及各自的模,利用数量积公式求之. 【详解】 由已知,1212e e ⋅=,所以(()1212)2e e e e +-+=32,|12e e +3,|122e e -+3, 设向量1212,2a e e b e e =+=-+的夹角为α,则312cos ,2333παα==∴=⋅.故答案为B 【点睛】(1)本题主要考查向量的夹角的求法,意在考查学生对该知识的掌握水平和分析推理计算能力.(2) 求两个向量的夹角一般有两种方法,方法一:·cos ,ab a b a b=,方法二:设a =11(,)x y ,b =22(,)x y ,θ为向量a 与b 的夹角,则121222221122cos x y x yθ=+⋅+.4.A解析:A 【解析】Rt AOB 中,0OA OB ⋅=,∴2AOB π∠=,∵5OA =,25OB =,∴225AB OA OB += , ∵AB 边上的高线为OD ,点E 位于线段OD 上,建立平面直角坐标系,如图所示; 则)5,0A、(025B ,、设(),D m n ,则OAD BAO ∽,∴OA ADAB OA=, ∴1AD =,∴15AD AB =, 即()(155,255m n =-,,求得45m =, ∴4525D ⎝⎭;则45254525OE OD λλ⎫===⎪⎪⎝⎭⎝⎭, 45255,EA ⎛⎫= ⎪ ⎪⎭;∵34OE EA ⋅=, ∴2454525354⎫⎫⋅-=⎪⎪⎪⎪⎭⎝⎭, 解得34λ=或14λ=;∴向量EA 在向量OD 上的投影为))452511ED OD OE λλ⎛⎫=-=-- ⎪⎪⎝⎭, 当34λ=时,5512ED ⎛== ⎝⎭;当14λ=时,353532ED ==⎝⎭. 即向量EA 在向量OD 上的投影为12或32,故选A.5.D解析:D 【分析】根据向量的几何意义把抽象问题具体化,转化到圆与圆的位置关系问题. 【详解】如图所示,设11OA a =,22OA a =,此时121A A =,由题意可知:对于任意的1,2i = 及1,2,,j k =⋅⋅⋅,{}1,2i j a b -∈, 作j j OB b =则有1j A B 等于1或2,且2j A B 等于1或2, 所以点(1,2,,)j B j k =同时在以(1,2)i A i =为圆心,半径为1或2的圆上,由图可知共有6个交点满足条件,故k 的最大值为6.故选:D. 【点睛】本题主要考查平面向量的线性运算和平面向量的应用.6.C解析:C 【分析】根据向量的运算法则,求得12AM AD AB =+,2132MN AD AB =-+,再结合向量的数量积的运算公式,即可求解. 【详解】由题意,作出图形,如图所示:由图及题意,根据向量的运算法则,可得12AM AD DM AD AB =+=+, 2132MN CN CM CB CD =-=-21213232BC DC AD AB =-+=-+,所以2212121||||23234AM MN AD AB AD AB AD AB ⎛⎫⎛⎫⋅=+⋅-+=-⋅+⋅ ⎪ ⎪⎝⎭⎝⎭21936334=-⨯+⨯=.故选C .【点睛】本题主要考查了向量的运算法则,以及平面向量的数量积的运算,其中解答中熟练应用向量的运算法则和向量的数量积的运算公式是解答的关键,着重考查推理与运算能力.7.B解析:B 【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值. 【详解】 如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B. 【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.8.A解析:A 【分析】根据2(1,2),(1,)+==a b m b m 可得0,2m a ⎛⎫= ⎪⎝⎭,结合||cos a θ=,列出等式,即可解出答案. 【详解】因为向量,a b 满足2(1,2),(1,)a b m b m +==,22(0,)a a b b m =+-=,所以20,,22m m a a b ⎛⎫=⋅= ⎪⎝⎭,若向量,a b 的夹角为θ,则2225||(||cos )152m b a m a b θ=+⋅=⋅=, 所以42516160m m --=,即()()225440m m +-=,解得2m =±. 故选:A . 【点睛】本题主要考查向量的投影及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是||||cos a b a b θ⋅=,二是1212a b x x y y ⋅=+,主要应用以下几个方面:(1)求向量的夹角,cos ||||a ba b θ⋅=⋅(此时a b ⋅往往用坐标形式求解);(2)求投影,a 在b 上的投影是||a bb ⋅;(3),a b 向量垂直则0a b ⋅=;(4)求向量ma nb +的模(平方后需求a b ⋅). 9.C解析:C 【分析】对=2a b -两边平方后,结合2·cos 3a b a b π=⋅进行化简可得:224a b b +⋅+=;由基本不等式可得222a b a b +⋅,于是推出403a b<⋅,再结合平面向量数量积即可得解. 【详解】因为2a b -=,所以 2224a a b b -⋅+=,所以2222cos 43b b a a π-⋅+=,即224a a b b +⋅+=, 由基本不等式的性质可知,222a ba b +⋅,403a b∴<⋅, 所以212·cos ,0323a b a b a b π⎡⎫=⋅⋅=-⋅∈-⎪⎢⎣⎭. 故选:C . 【点睛】本题主要考查平面向量数量积运算,考查利用基本不等式求最值,难度一般.对于平面向量的模长问题,一般采用平方处理,然后结合平面向量数量积的运算公式求解即可.10.C解析:C 【分析】先根据题意得1AD =,CD =2AB DC =,再结合已知和向量的加减法运算求解即可得的答案. 【详解】由题意可求得1AD =,CD =所以2AB DC =, 又13BE BC =, 则()1133AE AB BE AB BC AB BA AD DC =+=+=+++ 1111333AB AD DC ⎛⎫=-++ ⎪⎝⎭1111336AB AD AB ⎛⎫=-++ ⎪⎝⎭115116363AB AD AB AD ⎛⎫=-+=+ ⎪⎝⎭.故选:C. 【点睛】本题考查用基底表示向量,考查运算能力,是基础题.11.C解析:C 【分析】由0a b c ++=,可得2222222().2()a b c a b b c a b c =-+=-+、2222()a c b a c =-+,利用||||||a b c <<,即可比较. 【详解】解:由0a b c ++=,可得()c a b =-+,平方可得2222()a b c a b =-+. 同理可得2222()b c a b c =-+、2222()a c b a c =-+,||||||a b c <<,∴222a b c <<则a b 、b c 、a c 中最小的值是b c . 故选:C . 【点睛】本题考查了向量的数量积运算,属于中档题.12.B解析:B 【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C . 【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-.()20,,3C C ππ∈∴=.故选:B. 【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.二、填空题13.【分析】用几何意义求解不妨设则在圆心在原点半径为2的圆上设则在以为圆心半径为1的圆上运动后形成的轨迹是圆心在原点大圆半径为3小圆半径为1的圆环表示圆环内的点与定点的距离由图形可得最大值和最小值【详解解析:3⎡⎤⎣⎦【分析】用几何意义求解.不妨设()1,0a =,()0,1b =,(),c x y =,则(,)C x y 在圆心在原点,半径为2的圆上,设(),d x y '=',则(,)D x y ''在以C 为圆心半径为1的圆上,C 运动后,D 形成的轨迹是圆心在原点,大圆半径为3,小圆半径为1的圆环,2a b d ++表示圆环内的点D 与定点()2,1P --的距离,由图形可得最大值和最小值.【详解】令()1,0a =,()0,1b =,(),c x y =,设C 的坐标为(),x y ,C 的轨迹为圆心在原点,半径为2的圆上.设(),d x y '=',D 的坐标为(),x y '',D 的轨迹为圆心在原点,大圆半径为3,小圆半径为1的圆环上.()22,1a b d d ++=---表示D 与点()2,1P --的距离,由图可知,故2a b d ++的取值范围为0,53⎡⎤+⎣⎦. 故答案为:0,53⎡⎤+⎣⎦【点睛】本题考查向量模的几何意义,考查模的最值,解题关键是设()1,0a =,()0,1b =,(),c x y =,(),d x y '=',固定,a b 后得出了,C D 的轨迹,然后由模2a b d ++的几何意义得出最值.14.①③【分析】根据点的广义坐标分别为利用向量的运算公式分别计算①②③④得出结论【详解】点的广义坐标分别为对于①线段的中点设为M 根据=()=中点的广义坐标为故①正确对于②∵(x2﹣x1)A 两点间的距离为解析:①③ 【分析】根据点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,利用向量的运算公式分别计算①②③④,得出结论.【详解】点A 、B 的广义坐标分别为()11,x y 、()22,x y ,1112OA x e y e ∴=+,2122OB x e y e =+,对于①,线段A 、B 的中点设为M ,根据OM =12(OA OB +)=12112211()()22x x e y y e +++∴中点的广义坐标为1212,22x x y y ++⎛⎫⎪⎝⎭,故①正确. 对于②,∵AB =(x 2﹣x 1)()1212e y y e +-,∴A 、B 12e ,故②不一定正确.对于③,向量OA 平行于向量OB ,则t OA OB =,即(11,x y )=t ()22,x y ,1221x y x y ∴=,故③正确.对于④,向量OA 垂直于向量OB ,则OA OB =0,221211221121220x x e x y x y e e y y e ∴+++=(),故④不一定正确.故答案为①③. 【点睛】本题在新情境下考查了数量积运算性质、数量积定义,考查了推理能力与计算能力,属于中档题.15.【解析】分析:建立平面直角坐标系结合平面向量数量积的坐标运算整理计算即可求得最终结果详解:建立如图所示的平面直角坐标系则:由中心坐标公式可得:即据此有:结合平面向量数量积的坐标运算法则可得:点睛:求 解析:209-【解析】分析:建立平面直角坐标系,结合平面向量数量积的坐标运算整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则:()0,2A ,()0,0B ,()C ,由中心坐标公式可得:2003G ⎫++⎪⎪⎝⎭,即23G ⎫⎪⎭, 据此有:233GB ⎛⎫=-- ⎪⎝⎭,4233GC ⎛⎫=-⎪⎭, 结合平面向量数量积的坐标运算法则可得:222203339GB GC ⎛⎛⎫⎛⎫⋅=--⨯-=- ⎪ ⎪⎝⎝⎭⎝⎭.点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.16.【分析】由可得为的外心又可得为的垂心则为的中心即为正三角形运用向量的数量积定义可得的边长以为坐标原点所在直线为轴建立直角坐标系求得的坐标再设由中点坐标公式可得的坐标运用两点的距离公式可得的长运用三角 解析:494【分析】由DA DB DC ==,可得D 为ABC ∆的外心,又DA DB DB DC DC DA ⋅=⋅=⋅,可得D 为ABC ∆的垂心,则D 为ABC ∆的中心,即ABC ∆为正三角形.运用向量的数量积定义可得ABC ∆的边长,以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy ,求得,B C 的坐标,再设(cos ,sin ),(02)P θθθπ≤<,由中点坐标公式可得M 的坐标,运用两点的距离公式可得BM 的长,运用三角函数的恒等变换公式,结合正弦函数的值域,即可得到最大值. 【详解】解: 由DA DB DC ==,可得D 为ABC ∆的外心, 又DA DB DB DC DC DA ⋅=⋅=⋅,可得()0,(DB DA DC DC DB ⋅-=⋅ )0DA -=,即0DB AC DC AB ⋅=⋅=, 即有,DB AC DC AB ⊥⊥,可得D 为ABC ∆的垂心, 则D 为ABC ∆的中心,即ABC ∆为正三角形, 由2DA DB ⋅=-,即有||||cos1202DA DB ︒⋅=-, 解得||2DA =,ABC ∆的边长为4cos3023︒=以A 为坐标原点,AD 所在直线为x 轴建立直角坐标系xOy , 可得B(3,3),C(3,3),D(2,0)-, 由||1AP =,可设(cos ,sin ),(02)P θθθπ≤<,由PM MC =,可得M 为PC 中点,即有3cos 3sin (2M θθ++,则2223cos3sin||3=3+2BMθθ⎛⎫++⎛⎫-+⎪⎪ ⎪⎝⎭⎝22(3cos)(33sin)376cos63sin4θθθθ-+-+=+=3712sin64πθ⎛⎫+-⎪⎝⎭=,当sin16πθ⎛⎫-=⎪⎝⎭,即23πθ=时,取得最大值,且为494.故答案为:494.【点睛】本题考查向量的定义和性质,以及模的最值的求法,注意运用坐标法,转化为三角函数的最值的求法,考查化简整理的运算能力,属于中档题.17.【分析】延长BC作圆M的切线设切点为A1切线与BD的交点D结合数量积的几何意义可得点A运动到A1时在上的投影最小设将结果表示为关于的二次函数求出最值即可【详解】如图延长BC作圆M的切线设切点为A1切解析:2-【分析】延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,结合数量积的几何意义可得点A运动到A1时,CA在CB上的投影最小,设CP x=,将结果表示为关于x的二次函数,求出最值即可.【详解】如图,延长BC,作圆M的切线,设切点为A1,切线与BD的交点D,由数量积的几何意义,CA CB⋅等于CA在CB上的投影与CB之积,当点A运动到A1时,CA在CB上的投影最小;设BC中点P,连MP,MA1,则四边形MPDA1为矩形;设CP=x,则CD=2-x,CB=2x,CA CB⋅=()()222224212x x x x x--⋅=-=--,[]02x∈,,所以当1x =时,CA CB ⋅最小,最小值为2-, 故答案为:2-. 【点睛】本题考查平面向量数量积的几何意义,考查了学生的作图能力以及分析问题解决问题的能力,属于中档题.18.【分析】根据条件及向量数量积运算求得连接由三角形中线的性质表示出根据向量的线性运算及数量积公式表示出结合二次函数性质即可求得最小值【详解】根据题意连接如下图所示:在等腰三角形中已知则由向量数量积运算 解析:77【分析】根据条件及向量数量积运算求得AB AC ⋅,连接,AM AN ,由三角形中线的性质表示出,AM AN .根据向量的线性运算及数量积公式表示出2MN ,结合二次函数性质即可求得最小值. 【详解】根据题意,连接,AM AN ,如下图所示:在等腰三角形ABC 中,已知1AB AC ==,120A ∠=︒则由向量数量积运算可知1cos 11cos1202AB AC AB AC A ⋅=⋅=⨯⨯=- 线段EF BC 、的中点分别为M N 、则()()1122AM AE AF AB AC λμ=+=+ ()12AN AB AC =+ 由向量减法的线性运算可得11112222MN AN AM AB AC λμ⎛⎫⎛⎫=-=-+-⎪ ⎪⎝⎭⎝⎭所以2211112222MN AB AC λμ⎡⎤⎛⎫⎛⎫=-+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦222211111111222222222AB AC AB AC λμλμ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭221111111112222222222λμλμ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⨯-⨯-⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭因为41λμ+=,代入化简可得22221312111424477MN μμμ⎛⎫=-+=-+ ⎪⎝⎭因为(),0,1λμ∈且41λμ+=10,4μ⎛⎫∴∈ ⎪⎝⎭所以当17μ=时, 2MN 取得最小值17因而minMN==故答案为: 7【点睛】本题考查了平面向量数量积的综合应用,向量的线性运算及模的求法,二次函数最值的应用,属于中档题.19.【分析】将已知条件转化为结合得到设列出关于的方程组由此求得【详解】由于所以所以即因为即化简得设所以解得故答案为:【点睛】本小题主要考查平面向量的基本定理考查平面向量的线性运算考查化归与转化的数学思想解析:53【分析】将已知条件转化为1539AO AB AC =+,结合BD DC λ=,得到111AD AB AC λλλ=+++,设AO k AD =,列出关于,k λ的方程组,由此求得λ. 【详解】 由于305OA OB OC =++,所以()()350OA AB AO AC AO +-+-=,所以935AO AB AC =+,即1539AO AB AC =+. 因为BD DC λ=,即()AD AB AC AD λ-=-, 化简得111AD AB AC λλλ=+++, 设11k k AO k AD AB AC λλλ==+++,所以1 13519kkλλλ⎧=⎪⎪+⎨⎪=⎪+⎩,解得53λ=.故答案为:53【点睛】本小题主要考查平面向量的基本定理,考查平面向量的线性运算,考查化归与转化的数学思想方法,属于中档题.20.【分析】由已知得由得由不等式可知再由得最后由可得解【详解】由得即由得即由得由得所以故答案为:【点睛】本题考查了向量及其模的运算考查了向量的夹角公式和基本不等式考查了计算能力属于中档题解析:0,3π⎡⎤⎢⎥⎣⎦【分析】由已知,得22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①,由+①②,得226a b+=,由不等式可知3a b ≤,再由-①②,得32a b⋅=,最后由cos,a ba ba b⋅=可得解.【详解】由3a b+=,3a b-=,得()()2239baab⎧⎪⎨⎪-==+⎩,即22222923a ab ba ab b+⋅⎧⎪⎨⎪+=-⋅+=⎩②①由+①②,得226a b+=,即226a b+=由-①②,得32a b⋅=由222a b a b +≥,得3a b ≤1cos ,2a b a b a b⋅=≥所以,0,3a b π≤≤.故答案为:0,3π⎡⎤⎢⎥⎣⎦【点睛】本题考查了向量及其模的运算,考查了向量的夹角公式和基本不等式,考查了计算能力,属于中档题.三、解答题21.(1)6;(2)58,99m n ==;(3)1118k =-.【分析】(1)利用向量加法的坐标运算得到()320,6a b c +-=,再求模长即可;(2)先写mb nc +的坐标,再根据a mb nc =+使对应横纵坐标相等列方程组,解方程组即得结果;(3)利用向量垂直则数量积为零,再利用数量积的坐标运算列关系求出参数即可. 【详解】解:(1)由(3,2),(1,2),(4,1)a b c ==-=,得3(9,6),(1,2),2(8,2)a b c ==-=∴()()32918,6220,6a b c +-=--+-=,∴23206a b c +-=+=;(2)()(),2,4,mb m m nc n n =-=, ∴()4,2mb nc n m m n +=-+,a mb nc =+,∴()4,2(3,2)a n m m n ==-+,故4322n m m n -=⎧⎨+=⎩,解得58,99m n ==;(3)(3,2),(4,)a kc k k ==,∴()34,2a kc k k +=++,(3,2),2(2,4)a b ==-,∴()25,2b a -=-,()()2a kc b a +⊥-,∴()()20a kc b a +⋅-=,即()()534220k k -+++=,解得1118k =-. 【点睛】 结论点睛:若()()1122,,,a x y b x y == ,则//a b 等价于12210x y x y -=;a b ⊥等价于12120x x y y +=.22.(1;(2. 【分析】(1)由已知利用平面向量数量积公式可得1a b ⋅=,平方后根据向量数量积的运算可求||a b +的值.(2)结合(1),根据已知条件,由向量夹角的余弦公式即可求解.【详解】(1)向量a 与b 的夹角为3π,且||1a =,||2b =, ∴||||cos a b a b a ⋅=<,112cos12132b π>=⨯⨯=⨯⨯=.222||()2142a b a b a b a b ∴+=+=++⋅=++=.(2)设向量a b +与向量a 的夹角θ,22()||27cos ||||||||||||71a b a a a b a a b a b a a b a a b a θ+⋅+⋅+⋅∴=====+⋅+⋅+⋅⨯. 【点睛】本题主要考查了向量数量积的运算及计算公式,向量夹角的余弦公式,属于中档题.23.(1)π3;(2) 【分析】(1)设向量a 与b 的夹角θ,利用向量的数量积公式计算()2a b a ⋅-=,可得向量的夹角;(2)利用向量的模长公式:2a a =,代入计算可得. 【详解】 (1)设向量a 与b 的夹角θ, ()16cos 12a b a a b θ⋅-=⋅-=-=,解得1cos 2θ=, 又[]0πθ∈,,π3θ∴= (2)由向量的模长公式可得:()222a b a b -=-==. 【点睛】 本题主要考查向量数量积公式的应用,向量模长的计算,求向量的模长需要熟记公式2a a =,考查学生的逻辑推理与计算能力,属于基础题.24.(1)118;(2)31.2⎡⎤⎢⎥⎣⎦. 【分析】 (1)首先以点A 为坐标原点建立平面直角坐标系.求AM ,AN 的坐标,再求数量积;(2)首先利用BM DN =,设BM DN t ==,表示向量AM ,AN ,利用数量积的坐标表示转化为二次函数求取值范围. 【详解】 (1)如图,以AB 所在直线为x 轴,以A 为坐标原点建立平面直角坐标系.因为ABCDEF 是边长为1的正六边形,且M ,N 分别是BC ,DE 的中点, 所以53,44M ⎛⎫ ⎪ ⎪⎝⎭,132N ⎛ ⎝, 所以5311848AM AN ⋅=+=. (2)设BM DN t ==,则[]0,1t ∈.所以31,22t M ⎛⎫+ ⎪ ⎪⎝⎭,(13N t -. 所以()()223113*********t AM AN t t t t t ⎛⎫⋅=+⋅-+=-++=--+ ⎪⎝⎭. 当0t =时,AM AN ⋅取得最小值1;当1t =时,AM AN ⋅取得最大值32. 所以AM AN ⋅的取值范围为31.2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查数量积的坐标表示,重点考查计算能力,属于基础题型.25.(1)()26f x sin x π⎛⎫=- ⎪⎝⎭;(2)()2g x sin x =, 对称轴为,42k x k Z ππ=+∈;(3)112m ≤<,,1223x x π+=. 【分析】 (1) 根据向量()1,1,3,(0)2u sin x v sin x cos x ωωωω⎛⎫=-=+> ⎪⎝⎭和函数()f x u v =⋅,利用数量积结合倍角公式和辅助角法得到,()26πω⎛⎫=-⎪⎝⎭f x sin x ,再根据函数f (x )的图象上两个相邻的对称轴距离为2π求解. (2)依据左加右减,将函数y =f (x )的图象向左平移12π个单位后,得到函数()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦,令2,2ππ=+∈x k k Z 求其对称轴. (3)作出函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上图象,根据函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点求解.再令2,62x k k Z πππ-=+∈,求对称轴. 【详解】(1)()()21122ωωωωωω=-=-f x sin x sin x x sin x xcos x ,1222226πωωω⎛⎫=-=- ⎪⎝⎭sin x cos x sin x ∵函数f (x )的图象上两个相邻的对称轴距离为2π, ∴22T π=, ∴2(0)2ππωω=>, ∴ω=1, 故函数f (x )的解析式为()sin 26f x x π⎛⎫=-⎪⎝⎭; (2)依题意,()22126g x sin x sin x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦, 令2,2ππ=+∈x k k Z ,则,42ππ=+∈k x k Z , ∴函数g (x )的对称轴为,42ππ=+∈k x k Z ;(3)∵0,2x π⎡⎤∈⎢⎥⎣⎦, ∴52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, ∴12,162sin x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦, 函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的草图如下,依题意,函数y =f (x )与直线y =m 在0,2π⎡⎤⎢⎥⎣⎦上有两个交点,则112m ≤<, 令2,62x k k Z πππ-=+∈,则,32k x k Z ππ=+∈, ∴函数f (x )在0,2π⎡⎤⎢⎥⎣⎦上的对称轴为3x π=,则1223x x π+=. 【点睛】 本题主要考查了平面向量和三角函数,三角函数的图象和性质及其应用,还考查了数形结合的思想和运算求解的能力,属于中档题.26.(1)1135AF m n =+(2)310CG CB = 【分析】(1)依题意可得23AD AB =、14AE AC =,再根据DE AE AD =-,AF AD DF =+计算可得;(2)设存在实数λ,使得(01)CG CB λλ=<<,由因为//EG AF ,所以存在实数μ, 使AF EG μ=,再根据向量相等的充要条件得到方程组,解得即可;【详解】解:(1)因为D 是线段AB 上靠近B 的一个三等分点,所以23AD AB =.因为E 是线段AC 上靠近A 的一个四等分点,所以14AE AC =, 所以1243DE AE AD AC AB =-=-. 因为4DF FE =,所以4185515DF DE AC AB ==-, 则2183515AF AD DF AB AC AB =+=+- 2111()15535AB AB BC AB BC =++=+. 又AB m =,BC n =. 所以11113535AF AB BC m n =+=+. (2)因为G 是线段BC 上一点,所以存在实数λ,使得(01)CG CB λλ=<<, 则33()44EG EC CG AC CB AB BC BC λλ=+=+=+- 3333()()4444AB BC m n λλ=+-=+- 因为//EG AF ,所以存在实数μ,使AF EG μ=,即1133[()]3544m n m n μλ+=+-, 整理得31,4331(),45μμλ⎧=⎪⎪⎨⎪-=⎪⎩解得310λ=, 故310CGCB =. 【点睛】本题考查平面向量的线性运算及平面向量共线定理的应用,属于中档题.。
高中数学必修平面向量测试试卷典型例题含详细答案IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高中数学平面向量组卷一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.22.已知,为单位向量,其夹角为60°,则(2﹣)=()A.﹣1 B.0C.1D.23.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣4.向量,,且∥,则=()A.B.C.D.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形9.已知点G是△ABC的重心,若A=,=3,则||的最小值为()A.B.C.D.210.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=()A.﹣B.C.﹣D.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()的值为()A.B.C.1D.212.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3 18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.10二.解答题(共6小题)19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA.(1)求∠AOB的余弦值;(2)求点C的坐标.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.22.已知向量,,其中A、B是△ABC的内角,.(1)求tanA?tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.高中数学平面向量组卷(2014年09月24日)参考答案与试题解析一.选择题(共18小题)1.已知向量与的夹角为θ,定义×为与的“向量积”,且×是一个向量,它的长度|×|=||||sinθ,若=(2,0),﹣=(1,﹣),则|×(+)|=()A.4B.C.6D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用数量积运算和向量的夹角公式可得=.再利用平方关系可得,利用新定义即可得出.解答:解:由题意,则,∴=6,==2,=2.∴===.即,得,由定义知,故选:D.点评:本题考查了数量积运算、向量的夹角公式、三角函数的平方关系、新定义,考查了计算能力,属于基础题.2.已知,为单位向量,其夹角为60°,则(2﹣)=()A.﹣1 B.0C.1D.2考点:平面向量数量积的运算.专题:平面向量及应用.分析:由条件利用两个向量的数量积的定义,求得、的值,可得(2﹣)的值.解答:解:由题意可得,=1×1×cos60°=,=1,∴(2﹣)=2﹣=0,故选:B.点评:本题主要考查两个向量的数量积的定义,属于基础题.3.已知向量=(1,),=(3,m),若向量,的夹角为,则实数m=()A.2B.C.0D.﹣考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:由条件利用两个向量的夹角公式、两个向量的数量积公式,求得m的值.解答:解:由题意可得cos===,解得m=,故选:B.点评:本题主要考查两个向量的夹角公式、两个向量的数量积公式的应用,属于基础题.4.向量,,且∥,则=()A.B.C.D.考点:平行向量与共线向量;同角三角函数间的基本关系;诱导公式的作用.专题:计算题;三角函数的求值.分析:根据向量平行的条件建立关于α的等式,利用同角三角函数的基本关系与诱导公式,化简即可得到的值.解答:解:∵,,且∥,∴,即,得sinα=,由此可得=﹣sinα=.故选:B点评:本题给出向量含有三角函数的坐标式,在向量互相平行的情况下求的值.着重考查了同角三角函数的基本关系、诱导公式和向量平行的条件等知识,属于基础题.5.如图,在△ABC中,BD=2DC.若,,则=()A.B.C.D.考点:向量的加法及其几何意义.专题:平面向量及应用.分析:由题意可得=,而,,代入化简可得答案.解答:解:由题意可得=====故选C点评:本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.6.若向量=(2cosα,﹣1),=(,tanα),且∥,则sinα=()A.B.C.D.考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:直接由向量共线的坐标表示列式计算.解答:解:∵向量=(2cosα,﹣1),=(,tanα),且∥,则2cosα?tanα﹣(﹣1)×=0,即2sinα=.∴.故选:B.点评:共线问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若=(a1,a2),=(b1,b2),则⊥a1a2+b1b2=0,∥a1b2﹣a2b1=0.是基础题.7.已知点A(3,0),B(0,3),C(cosα,sinα),O(0,0),若,则的夹角为()A.B.C.D.考点:平面向量数量积的坐标表示、模、夹角.专题:计算题.分析:根据题意求出的坐标,再由它的模求出角α,进而求出点C的坐标,利用数量积的坐标表示求出和夹角的余弦值,再求出夹角的度数.解答:解:∵A(3,0),C(cosα,sinα),O(0,0),∴=(3+cosα,sinα),∵,∴(3+cosα)2+sin2α=13,解得,cosα=,则α=,即C(,),∴和夹角的余弦值是==,∴和的夹角是.故选:D.点评:本题考查向量线性运算的坐标运算,以及数量积坐标表示的应用,利用向量坐标形式进行运算求出对应向量的模,以及它们的夹角的余弦值,进而结合夹角的范围求出夹角的大小.8.设向量=,=不共线,且|+|=1,|﹣|=3,则△OAB的形状是()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形考点:平面向量数量积的运算.专题:计算题;平面向量及应用.分析:对|+|=1,|﹣|=3分别平方并作差可得,由其符号可判断∠AOB为钝角,得到答案.解答:解:由|+|=1,得=1,即①,由|﹣|=3,得,即②,①﹣②得,4=﹣8,解得<0,∴∠AOB为钝角,△OAB为钝角三角形,故选:D.点评:本题考查平面向量数量积运算,属基础题.9.已知点G是△ABC的重心,若A=,=3,则||的最小值为()A.B.C.D.2考点:平面向量数量积的运算.专题:不等式的解法及应用;平面向量及应用.分析:由A=,=3,可求得=6,由点G是△ABC的重心,得=,利用不等式则||2==(+6)≥,代入数值可得.解答:解:∵A=,=3,∴=3,即=6,∵点G是△ABC的重心,∴=,∴||2==(+6)≥==2,∴||≥,当且仅当=时取等号,∴||的最小值为,故选B.点评:本题考查平面向量数量积的运算、不等式求最值,注意不等式求最值时适用的条件.10.如图,各棱长都为2的四面体ABCD中,=,=2,则向量=()A.﹣B.C.﹣D.考点:平面向量数量积的运算.专题:平面向量及应用.分析:由向量的运算可得=(),=,由数量积的定义可得.解答:解:∵=,=2,∴=(),=,∴=====,∴=()()===故选:B点评:本题考查向量数量积的运算,用已知向量表示未知向量是解决问题的关键,属中档题.11.已知函数f(x)=sin(2πx+φ)的部分图象如图所示,点B,C是该图象与x轴的交点,过点C的直线与该图象交于D,E两点,则()的值为()A.B.C.1D.2考点:平面向量数量积的运算;正弦函数的图象;正弦函数的定义域和值域.专题:平面向量及应用.分析:根据三角函数的图象和性质,求出函数的周期,利用向量的基本运算和向量的数量积定义即可得到结论.解答:解:∵函数f(x)=sin(2πx+φ)的周期T=,则BC=,则C点是一个对称中心,则根据向量的平行四边形法则可知:=2∴()==2×=.点评:本题主要考查向量的数量积运算,利用三角函数的图象和性质是解决本题的关键.12.已知P为三角形ABC内部任一点(不包括边界),且满足(﹣)(+﹣2)=0,则△ABC的形状一定为()A.等边三角形B.直角三角形C.钝三角形D.等腰三角形考点:平面向量数量积的运算.专题:平面向量及应用.分析:利用向量的三角形法则和平行四边形法则、向量垂直于数量积的关系即可得出.解答:解:∵,=,(﹣)(+﹣2)=0,∴=0.而一定经过边AB的中点,∴垂直平分边AB,即△ABC的形状一定为等腰三角形.点评:本题考查了向量的三角形法则和平行四边形法则、向量垂直于数量积的关系、等腰三角形的定义,考查了推理能力,属于难题.13.如图所示,设P为△ABC所在平面内的一点,并且=+,则△ABP与△ABC的面积之比等于()A.B.C.D.考点:向量在几何中的应用.专题:计算题;压轴题.分析:本题考查的知识点是向量在几何中的应用,及三角形面积的性质,由△ABP与△ABC为同底不等高的三角形,故高之比即为两个三角面积之间,连接CP并延长后,我们易得到CP与CD长度的关系,进行得到△ABP的面积与△ABC面积之比.解答:解:连接CP并延长交AB于D,∵P、C、D三点共线,∴=λ+μ,且λ+μ=1设=k,结合=+,得=+由平面向量基本定理解之,得λ=,k=3且μ=,∴=+,可得=,∵△ABP的面积与△ABC有相同的底边AB高的比等于||与||之比∴△ABP的面积与△ABC面积之比为,故选:C点评:三角形面积性质:同(等)底同(等)高的三角形面积相等;同(等)底三角形面积这比等于高之比;同(等)高三角形面积之比等于底之比.14.在△ABC中,|AB|=3,|AC|=2,=,则直线AD通过△ABC的()A.垂心B.外心C.重心D.内心考点:向量在几何中的应用.专题:综合题;平面向量及应用.分析:首先根据已知条件可知||=||=,又因为=,设=,=,由向量加法的平行四边形法则可知四边形AEDF为菱形,从而可确定直线AD通过△ABC的内心.解答:解:∵|AB|=3,|AC|=2∴||=||=.设=,=,则||=||,∴==+.由向量加法的平行四边形法则可知,四边形AEDF为菱形.∴AD为菱形的对角线,∴AD平分∠EAF.∴直线AD通过△ABC的内心.故选:D.点评:本题考查向量加法的平行四边形法则及其几何意义,属于中档题.15.在△ABC中,∠BAC=60°,AB=2,AC=1,E,F为边BC的三等分点,则=()A.B.C.D.考点:向量在几何中的应用;平面向量数量积的运算.专题:计算题.分析:先判定三角形形状,然后建立直角坐标系,分别求出,向量的坐标,代入向量数量积的运算公式,即可求出答案.解答:解:∵在△ABC中,∠BAC=60°,AB=2,AC=1,∴根据余弦定理可知BC=由AB=2,AC=1,BC=满足勾股定理可知∠BCA=90°以C为坐标原点,CA、CB方向为x,y轴正方向建立坐标系∵AC=1,BC=,则C(0,0),A(1,0),B(0,)又∵E,F分别是Rt△ABC中BC上的两个三等分点,则E(0,),F(0,)则=(﹣1,),=(﹣1,)∴=1+=故选A.点评:本题考查的知识点是平面向量数量积的运算,其中建立坐标系,将向量数量积的运算坐标化可以简化本题的解答过程.16.已知空间向量满足,且的夹角为,O为空间直角坐标系的原点,点A、B满足,,则△OAB的面积为()A.B.C.D.考点:平面向量数量积的运算;三角形的面积公式.专题:平面向量及应用.分析:由向量的运算可得,,以及,代入夹角公式可得cos∠BOA,由平方关系可得sin∠BOA,代入三角形的面积公式S=,计算可得.解答:解:由题意可得====,同理可得====,而=()()==6×12﹣12=,故cos∠BOA===,可得sin∠BOA==,所以△OAB的面积S===.故选B点评:本题考查平面向量的数量积和三角形面积的求解,熟练掌握公式是解决问题的关键,属中档题.17.已知点P为△ABC内一点,且++3=,则△APB,△APC,△BPC的面积之比等于()A.9:4:1 B.1:4:9 C.3:2:1 D.1:2:3考点:向量在几何中的应用.专题:计算题;压轴题.分析:先将已知向量式化为两个向量共线的形式,再利用平行四边形法则及向量数乘运算的几何意义,三角形面积公式确定面积之比解答:解:∵++3=,∴+=﹣+),如图:∵,∴∴F、P、G三点共线,且PF=2PG,GF为三角形ABC的中位线∴====2而S△APB=S△ABC∴△APB,△APC,△BPC的面积之比等于3:2:1故选C点评:本题考查了向量式的化简,向量加法的平行四边形法则,向量数乘运算的几何意义等向量知识,充分利用向量共线是解决本题的关键18.在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=()A.2B.4C.5D.10考点:向量在几何中的应用.专题:计算题;综合题.分析:以D为原点,AB所在直线为x轴,建立坐标系,由题意得以AB为直径的圆必定经过C点,因此设AB=2r,∠CDB=α,得到A、B、C和P各点的坐标,运用两点的距离公式求出|PA|2+|PB|2和|PC|2的值,即可求出的值.解答:解:以D为原点,AB所在直线为x轴,建立如图坐标系,∵AB是Rt△ABC的斜边,∴以AB为直径的圆必定经过C点设AB=2r,∠CDB=α,则A(﹣r,0),B(r,0),C(rcosα,rsinα)∵点P为线段CD的中点,∴P(rcosα,rsinα)∴|PA|2=+=+r2cosα,|PB|2=+=﹣r2cosα,可得|PA|2+|PB|2=r2又∵点P为线段CD的中点,CD=r∴|PC|2==r2所以:==10故选D点评:本题给出直角三角形ABC斜边AB上中线AD的中点P,求P到A、B距离的平方和与PC平方的比值,着重考查了用解析法解决平面几何问题的知识点,属于中档题.二.解答题(共6小题)19.如图示,在△ABC中,若A,B两点坐标分别为(2,0),(﹣3,4)点C在AB上,且OC平分∠BOA.(1)求∠AOB的余弦值;(2)求点C的坐标.考点:向量在几何中的应用.专题:综合题.分析:(1)由题意可得,把已知代入可求(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC即=;再由点C在AB即共线,建立关于x,y的关系,可求解答:解:(1)由题意可得,,∴==(2)设点C(x,y),由OC平分∠BOA可得cos∠AOC=cos∠BOC∵,∴=∴,∴y=2x①又点C在AB即共线,∴4x+5y﹣8=0②由①②解得,∴点C的坐标为点评:本题注意考查了向量的夹角公式的坐标表示的应用,向量共线的坐标表示在三角形中的应用,解题的关键是借助于已知图象中的条件,灵活的应用向量的基本知识.20.已知向量=(cosθ,sinθ)和.(1)若∥,求角θ的集合;(2)若,且|﹣|=,求的值.考点:平面向量的坐标运算.专题:计算题.分析:(1)由题意和共线向量的等价条件,列出关于角θ的方程,求出θ的一个三角函数值,再根据三角函数求出角θ的集合.(2)由题意先求出﹣的坐标,根据此向量的长度和向量长度的坐标表示,列出方程求出cos(θ﹣),由余弦的二倍角公式和θ的范围求出的值.解答:解:(1)由题意知∥,则cosθ×cosθ﹣sinθ×(﹣sinθ)=0,∴sinθ=1,sinθ=,∴角θ的集合={θ|θ=+2kπ或θ=+2kπ,k∈Z};(2)由题意得,﹣=(cosθ﹣+sinθ,sinθ﹣cosθ),∴|﹣|===2=,即cos(θ﹣)=,由余弦的二倍角公式得,=①,∵,∴<<,∴<﹣<,即cos(﹣)<0,∴由①得cos(﹣)=﹣.点评:本题考查了共线向量的坐标表示和向量长度的坐标表示,利用两角正弦(余弦)和差公式和二倍角公式进行变形求解,注意由已知条件求出所求角的范围,来确定所求三角函数值的符号.21.如图所示,若D是△ABC内的一点,且AB2﹣AC2=DB2﹣DC2.求证:AD⊥BC.考点:向量在几何中的应用.专题:计算题;证明题;平面向量及应用.分析:设=,=,=,=,=,将=+、=+代入2﹣2的式子,化简整理2﹣2=2+2﹣2﹣2,结合题意2﹣2=2﹣2化简,可得(﹣)=0,再结合向量的加减法法则得到=0,由此结合数量积的性质即可得到AD⊥BC.解答:解:设=,=,=,=,=,则=+,=+.∴2﹣2=(+)2﹣(+)2=2+2﹣2﹣2.∵由已知AB2﹣AC2=DB2﹣DC2,得2﹣2=2﹣2,∴2+2﹣2﹣2=2﹣2,即(﹣)=0.∵=+=﹣,∴=(﹣)=0,因此,可得⊥,即AD⊥BC.点评:本题给出三角形ABC内满足平方关系的点D,求证AD⊥BC.着重考查了平面向量的加减法则、向量的数量积及其运算性质等知识,属于中档题.22.已知向量,,其中A、B是△ABC的内角,.(1)求tanA?tanB的值;(2)若a、b、c分别是角A、B、C的对边,当C最大时,求的值.考点:平面向量的综合题.专题:计算题.分析:(1)根据推断出=0,利用向量的数量积运算结合二倍角公式求得tanA?tanB;(2)由于tanA?tanB=>0,利用基本不等式得出当且仅当时,c取得最大值,再利用同角公式求出sinC,sinA,最后由正弦定理求的值.解答:解:(Ⅰ)由题意得=0即,﹣5cos(A+B)+4cos(A﹣B)=0cosAcosB=9sinAsinB∴tanA?tanB=.(2)由于tanA?tanB=>0,且A、B是△ABC的内角,∴tanA>0,tanB>0∴=﹣当且仅当取等号.∴c为最大边时,有,tanC=﹣,∴sinC=,sinA=由正弦定理得:=.点评:本题是中档题,考查三角函数的化简与求值,正弦定理的应用,基本不等式的知识,是一道综合题,考查学生分析问题解决问题的能力,公式的熟练程度决定学生的能力的高低.23.已知向量且,函数f(x)=2(I)求函数f(x)的最小正周期及单调递增区间;(II)若,分别求tanx及的值.考点:平面向量数量积的坐标表示、模、夹角;复合三角函数的单调性.专题:平面向量及应用.分析:(I)化简函数f(x)=2=2sin(2x+),可得函数的周期,令2kπ﹣≤2x+≤2kπ+,k∈z,求得x的范围,即可得到函数的单调递增区间.(II)由,求得tanx=,再由==,运算求得结果.解答:(I)解:函数f(x)=2=2sinxcosx+2cos2x﹣1=sin2x+cos2x=2sin(2x+),故函数的周期为=π,令2kπ﹣≤2x+≤2kπ+,k∈z,求得kπ﹣≤x≤kπ+,故函数的单调递增区间为[kπ﹣,kπ+],k∈z.(II)解:若,则sinx=cosx,即tanx=.∴====﹣.点评:本题主要考查两个向量的数量积的定义,三角函数的恒等变换及化简求值,正弦函数的增区间,三角函数的周期性和求法,属于中档题.24.已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)求函数f(x)的单调减区间;(3)当时,求函数f(x)的值域.考点:平面向量的综合题;三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:综合题.分析:(1)根据向量的数量积公式,结合二倍角公式、辅助角公式化简函数,利用周期公式,可求函数f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,从而可得f(x)的单调减区间;(3)由,可得,从而可求函数f(x)的值域.解答:解:(1)∵,,∴函数f(x)==5sinxcosx+sin2x+6cos2x===5sin(2x+)+∴f(x)的最小正周期;(2)由2kπ+≤2x+≤2kπ+得kπ+≤x≤kπ+,k∈Z∴f(x)的单调减区间为[kπ+,kπ+](k∈Z)(3)∵∴∴∴1≤f(x)≤即f(x)的值域为[1,].点评:本题考查向量知识的运用,考查三角函数的化简,考查函数的单调性与值域,化简函数是关键.。