川大版高数第三册答案
- 格式:doc
- 大小:4.96 MB
- 文档页数:122
第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。
∴偶排列与奇排列各占一半。
4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。
高等数学3教材答案解析本文将对高等数学3教材中的题目进行答案解析和详细讲解,以帮助读者更好地理解和掌握相关知识。
1. 极限和连续在高等数学3教材中,极限和连续是一项重要的内容。
在解答相关题目时,我们需要掌握极限的定义和性质,以及连续函数和间断点的判定方法。
通过具体的例题演练,可以更好地理解这些概念,并掌握运用的技巧。
2. 一元函数的微分学微分学是高等数学中的一个重要分支,它研究了函数的变化率和极值问题。
在解答微分学相关题目时,我们需要运用导数的定义和性质,掌握求导法则和常用函数的导数公式。
通过例题的分析和解答,可以帮助读者更好地理解微分学的概念和方法。
3. 一元函数的积分学积分学是微分学的逆运算,它研究了曲线下面积和函数的原函数问题。
在解答积分学相关题目时,我们需要了解不定积分和定积分的定义和性质,掌握常用函数的积分公式和积分换元法。
通过具体的例题演练和积分公式的推导,可以帮助读者深入理解积分学的原理和应用。
4. 二元函数的微分学与积分学在高等数学3教材中,还介绍了二元函数的微分学和积分学。
这部分内容需要读者了解偏导数和全微分的定义和计算方法,熟悉二元函数的求极值和最值问题。
同时,还需要了解二重积分的概念和计算方法,以及在几何和物理问题中的应用。
通过相关例题的分析和解答,可以帮助读者更好地理解二元函数的微分学与积分学。
5. 无穷级数无穷级数也是高等数学中的一项重要内容,在教材中也有相关的题目。
解答这类题目时,我们需要了解正项级数和一般级数的性质,掌握收敛级数和发散级数的判定方法。
同时,还需要了解级数的运算法则和收敛级数的性质。
通过具体的例题分析和求解,可以帮助读者更好地理解无穷级数的概念和应用。
以上是对高等数学3教材中的题目进行答案解析和详细讲解的内容。
通过对这些题目的学习和掌握,读者可以更好地理解高等数学的概念和方法,提高解题能力,为日后的学习和应用奠定坚实的基础。
同时,希望读者在学习过程中能够注重基础知识的理解和扎实的练习,培养逻辑思维和问题解决能力,提升数学素养。
川大版高数_物理类专用_第三册1. 引言川大版高数是中国四川大学推出的一套高等数学教材,分为多册。
本文档将介绍川大版高数的物理类专用第三册内容。
2. 内容概述物理类专用第三册是川大版高数系列的一部分,主要介绍了与物理相关的高等数学知识。
本册主要包括以下几个方面的内容:1.微分方程2.矢量分析3.置换与反射4.复变函数5.特殊函数6.微分方程的初值问题7.应用题下面将对以上每个部分进行详细介绍。
3. 微分方程微分方程是物理学中常用的数学工具之一,用于描述自然界中的变化过程。
本册中的微分方程部分主要介绍了一阶和二阶微分方程的求解方法,包括常系数线性齐次微分方程、非齐次微分方程、欧拉方程等,同时还涉及到一些常见的应用问题。
4. 矢量分析矢量分析是研究矢量场的数学方法,广泛应用于物理学中。
本册中的矢量分析部分主要涵盖了矢量的基本概念,如数量积、矢量积等,同时还介绍了曲线、曲面的参数化表示,以及与曲线、曲面相关的重要公式和定理。
5. 置换与反射在物理学中,置换和反射是常见的几何变换。
本册中的置换与反射部分主要介绍了置换和反射的基本概念,如置换的定义、置换的合成以及反射的性质等。
6. 复变函数复变函数是研究复数域上的函数的数学分支,其在物理学中也有广泛的应用。
本册中的复变函数部分主要介绍了复数的基本概念、复变函数的导数和积分,以及一些与复变函数相关的定理和公式。
7. 特殊函数特殊函数是用于解决特殊类型问题的一类数学函数。
本册中的特殊函数部分主要介绍了常见的特殊函数,如贝塞尔函数、勒让德多项式、连带勒让德函数等,以及这些特殊函数的性质和应用。
8. 微分方程的初值问题微分方程的初值问题是指在已知微分方程的一个解的初始条件下,求解满足该条件的解。
本册中的微分方程的初值问题部分主要介绍了一阶微分方程和二阶线性齐次微分方程的初值问题的求解方法。
9. 应用题应用题是通过将数学方法应用于实际问题而得出的题目。
本册中的应用题部分主要涵盖了物理学中常见的应用问题,如运动学、力学、热学等问题,并结合微分方程、矢量分析和特殊函数等知识进行求解。
四川高等数学教材答案第一章:导数与微分1. 函数的导数2. 函数的微分3. 高阶导数4. 隐函数求导5. 参数方程与导数6. 扩展应用题第二章:极限与连续1. 极限的定义与性质2. 无穷大与无穷小3. 极限存在准则4. 极限的运算法则5. 连续的定义与性质6. 连续函数的运算法则7. 中值定理第三章:一元函数微分学1. 可导函数与微分2. 微分中值定理3. 泰勒公式与高阶导数4. 函数的单调性与曲线图5. 凸函数与凹函数6. 最值问题第四章:一元函数积分学1. 原函数与不定积分2. 定积分的定义与性质3. 积分的几何应用4. 积分与微分的关系5. 牛顿-莱布尼茨公式6. 定积分的计算方法第五章:多元函数微分学1. 多元函数的极限2. 多元函数的偏导数3. 多元函数的全微分与导数4. 隐函数求导5. 多元函数的泰勒公式6. 多元函数的最值问题第六章:多元函数积分学1. 二重积分的定义与性质2. 二重积分的计算方法3. 三重积分的定义与性质4. 三重积分的计算方法5. 曲线、曲面与曲面积分6. 矢量场与曲线积分7. 散度与旋度第七章:常微分方程1. 基本概念与初值问题2. 可分离变量的方程3. 齐次方程与一阶线性方程4. 高阶线性微分方程5. 解法的存在与唯一性6. 线性方程组与矩阵法第八章:级数与传递函数1. 数项级数的概念与性质2. 正项级数的审敛法3. 幂级数与泰勒级数4. 函数项级数5. 傅立叶级数6. 傅立叶变换与拉普拉斯变换总结:以上为《四川高等数学教材》的答案内容,根据章节分节论述了每一章的主要内容和题型。
使用整洁美观的排版并确保语句通顺,全文表达流畅,无影响阅读体验的问题。
希望这些答案能够对您的学习有所帮助。
川大版高数-物理类专用-第三册-答案————————————————————————————————作者:————————————————————————————————日期:第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。
∴偶排列与奇排列各占一半。
4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。
第一章 行列式1.()()[][][]23154110103631254=520010=8(1)3(1)321(1)(2)(3)2441(1)3214243(1)321012)4n n n n n n n n m n m n n n m n m n n m 1τ=++++=2τ+++++-τ-⋯=-+-+-+⋯+2+1+0===+τ-⋯=+=+τ-⋯=⋯()该数列为奇排列()该排列为偶排列() 当或时,为偶数,排列为偶排列当或时,为奇数,排列为奇排列(其中,,()[][][]12(1)13521)246(2)0123(1)244113521)246(2)424313521)246(2)012)2.(1)(2)(n n n n n n n m n m n n n m n m n n m i i i k n n n -τ⋯-⋯=++++⋯+-===+τ⋯-⋯=+=+τ⋯-⋯=⋯⋯-+-+( 当或时,(为偶数,排列为偶排列当或时,(为奇数,排列为奇排列(其中,,解:已知排列的逆序数为,这个数按从大到小排列时逆序数为()()111112(1)3)2(1)2x x x n x n x n n n n n n x i r i i i n x r i n x n n i i i i i i -+-+---+⋯+2+1+0=----τ⋯=-τ⋯个.设第数之后有个数比小,则倒排后的位置变为,其后个数比小,两者相加为故3 证明:.因为:对换改变排列的奇偶性,即一次变换后,奇排列改变为偶排列,偶排列改变为奇排列∴当n ≥2时,将所有偶排列变为奇排列,将所有奇排列变为偶排列 因为两个数列依然相等,即所有的情况不变。
∴偶排列与奇排列各占一半。
4 (1)13243341a a a a 不是行列式的项 14233142a a a a 是行列式的项 因为它的列排排列逆序列τ=(4321)=3+2+0+0=5为奇数,∴应带负号(2)5142332451a a a a a 不是行列式的项 1352413524a a a a a =1324354152a a a a a 因为它的列排排列逆序列τ(34512)=2+2+2+0+0=6 为偶数∴应带正号。
5 解: 112332441223344114233142a a a a a a a a a a a a 利用τ为正负数来做,一共六项,τ为正,则带正号,τ为负则带负号来做。
6 解:(1)因为它是左下三角形112122313233..........12300 (00)...0......n n n nna a a a a a a a a a =112131411223242233433444...............0...00 0...0000...n n n n nna a a a a a a a a a a a a a a =()()1231122331n nn a a a a τ⋅⋅⋅-⋅⋅⋅=112233nn a a a a ⋅⋅⋅ (2)11123141521222324253132414251520000000a a a a a a a a a a a a a a a a =()22232425113211425200010000a a a a a a a a +-+()21`232425213112415100010000a a a a a a a a +-=()()1111112212211010a a a a ++-⋅--⋅=0(3)1200340021131751-=()1212121313451+++-⋅-=32 (4)0000000000000xy x y x y x y yx=()()1212023120000011000x y x yxy x y y x y xxyy x++++++-+-=55x y + 7.证明:11121212212............n nn n nna a a a a a a a a ⋅⋅⋅⋅⋅⋅=将行列式转化为111221200...00...0 0n n a a a a a 若 零元多于2n n -个时,行列式可变为211200...00 0...0n n a a a 故可知行列式为0.8.(1)204136113131212331---=--52041361112302331----=4310361112302331--=-54310594012302331-=-5431431594521210630123137--==-()()1122121212111212112122111112121212122112121122121.)().)1101=y mx b x y x y y y m x x y y y x b x y x x y y x y y x y x y y x b b y x x x x x x y y x y x yy x x x x x xy x y x y y y x y x =+-=--=⋅+----=⋅+⇒=-=-----=⋅+--=-- 第一章 高数 3册9.(1).经过(,,斜率代入(,则又由左边()()2122112122112120x x y x y y y x y x yy x x x x x -+-==--=⋅+--右边则问题特征:()()()()()22222222sin cos cos 2sin cos cos 2sin cos cos 2cos c 10.145os cos 2.=+=221=b cc a a b b c c a a b b c c a b a bc a c a b b c a c a b b c a c a b a b ca b c a b c αααβββγγγααα'''''''''''''''''''''''''''''''''''''''''''''+++++++++-利用性质和分成六个行列式相加其余结合为零故原式性质2()()22222222222222cos 1cos cos 2cos cos cos 22cos 1cos cos 2cos cos cos 22cos 1cos 1-2+(1)_cos 2cos 2cos cos 2cos 2cos cos 1052cos 2cos cos 2αααββββββγγγγγγαααβββγγγ---=-=--()列列性质()()()()()()22222342222222222222000013.0000401110111101010101111.12324323yz xz xz x y zxyz xyz xyz x z y x xz xy y z x y yz x y yz xz xy z y x z y z x z xyz y z y xyz xyz z x z yz xz xy y x y x a bc da ab a bc a b cd a a b a b c a b c d a a ⨯⨯⨯−−−−→←−−−−⋅⋅⨯⋅==⋅⋅+++++++++++++列列列列()()()()()()()()()()()()()()1-122+323423+43-34463106300023243200203631063003630002000b a b c a b c da b c d ab c d a a b a b c a a b a b c a a b a b c a a b a a b a b c a a ba b c d a a b a b ca a ab a⋅⋅-⋅⋅-⋅++++++++++++−−−−−→−−−−−−→←−−−−−←−−−−−−+++++++++++−−−−−→=←−−−−−+列加到行行列行行行行()()()()()()()()()()()()1-2+21-3+31-+1+1112131*********23311231231000-103-12622-1-2-1032-1-2-3-1002620321-1234!004200013n n nnn nn n n n n nnnn n n n x a a a a a x x a a x x x a x x x x x ⨯⨯⨯−−−−−→←−−−−−⨯=⨯⨯⨯⨯==列列列列列列降阶()()()()()()()()3122322332312213311221331233223321-+21+131131-+11111101-111001n n n n nn nn n n n n nx n n n n x n nn n a x a a x x a x x x a x a x a x a x a x a x a x a x a x a x a x x x a x a x ⨯⨯-----------−−−−−−→-⨯⨯⨯-←−−−−−−-列列列列降阶习题一 13 (1)0000000000x y x y D x y yx= 根据“定义法”(2.3.4.5...)1(1)(1)nI n n n n n D x y x y -=+-=+-(2)1231110002200011n n D n n--=+---根据“降阶法”~n (1)n(n+1)23n-1n 2n(n+1)34n12n(n+1)12n-2n-12D −−−−−→将第2列加到第列上得-1123n-1123n-1n 011111341n(n+1)n(n+1)=01111221122101111nn nn n n n-−−−−−−→----将前一行乘以加到后一行得(2)~(n)(1)1111-n -1111-n 111-n 1-111-n 1n(n+1)(n-1)=211-n 11-11111-n 111−−−−−→将列加到列上得变为阶1111-n 111-n 1n(n+1)=-211-n 111111-1(1)(2)~(n)110110(1)-2101n nn n n ⨯--+−−−−→-列加到列2(1)(2)3222(1)2112222(1)11(1)(1)(1)(1)222n n n n n n n n n n n n n n nn ---+--+---+++=---=-=-(3)212122222111112111111a 12111(1)(1)(1)(2)(1)12(2)(2)(1)(2)(1)11(1)(1)n n n n n n n n a a a a a a n a a a a a a a n a a a a a a a n a n a n a n -----------+---−−−→---+------+-+-+-+转置 (1)2(-1)1!2!(1)!n n n -−−−−−→-范达蒙行列式注:根据范达蒙行列式原式=123(1)(1)(2)(1)(1)1!2!(1)!n n n ++++----+=--(1)(2)(2)n ---+-1 =(1)2(1)1!2!(1)!n n n ---(4)122111111111122122222222n n 122-111111111a n n n n n n n n n n n n n n nn n n n n n n n a a b a b a b b a a b a b a b b n a a b a b a b b --------++++++++第行提出得12211111111112122222n-11212222211111211111111n n n nn n n nn nn n n n n n n n n n n n n b a b a ba ba b b b b a a a a a a a b b b b a a a a -----+-++++-++++ =2111112111112122222n-11212222211111211111111n n n nn n n nn nn n nn n n n n n n n n n b b b b a a a a b b b b a a a a a a a b b b b a a a a ---+-++++-++++=1231()()jn n n ni n j i i j i jb b a a a a a b a b a a ππ+-=- 14 (1)证明:cossincos222cossincos 222+cossincos222αβαβαββγβγβγγαγαγα-++-++-+sincossincos2222=coscos ++22sincos sincos2222βγβγαβαβαββγγαγαγαγα++++---++ sincos-22+cos++2sincos22αβαβγαβγβγ++ ++=cos(sin coscossin)cos(sincoscossin)2222222222αββγγαβγγαβγαβγααβγα-++++-++---+cos(sincoscossin)22222γααββγαββγ-++++-cossincossincossin222222αββαβγβγγααγ------=-+111sin()sin ()sin()222βαγβαγ=-+-+- []1sin()sin()sin()2βααγγβ=-+-+- (2)证明:123422221234444412341111x x x x x x x x x x x x 12341x x x x +++=(3)12(-1)(1)~()na x a a a a aa x a a an a a a a x a a aa aa+++最后一行乘以加到行得 1212123000000000000n n n x x x x x a ax x x x x aaaaa==(4)“递推法”0121100010000100n n a a x a x a x-----01n+n 112100100010100(-1)(1)01n n n a a x x xa a xx +------+--降阶11n n xD a --=+12221112011:n n n n n n D xD a D xD a D a x a x a ------=+=+∴=+++由此类推15.(1)=+=(ab+1)(cd+1)-[a(-d)]=(ab+1)(cd+1)+ad(2)==(4-6)(-1-15)=32(3)=++=-a(c-d)-a(d-b)-a(d-c)=abd= abd(c-b)(d-b)(c-d)(4) ===(==16.范达 行列式V()=31()x x-13221()())()n n n n x x x x x x x x --=---(21211111221111111n n n n n n x x x a a a a a aa ------⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦−−−→←−−−转量行列式12122111111211111n n n n n n x a a a x a x a a a ------⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦=121()(n a x a x a x ----)()21(a -a )11n a a --()32(a -a )1212n n n a a ----()(a -a )(1)因为121n a a -a 为常数。