湘教版九年级数学下册 第2章 知识梳理
- 格式:ppt
- 大小:47.51 MB
- 文档页数:15
湘教版数学九年级下册第二章《圆》说课稿一. 教材分析湘教版数学九年级下册第二章《圆》是学生在学习了平面几何相关知识后,进一步深入研究圆的相关性质和定理。
本章内容主要包括圆的定义、圆的性质、圆的方程、圆与直线的位置关系等。
通过本章的学习,使学生掌握圆的基本性质和应用,培养学生解决实际问题的能力。
二. 学情分析学生在学习本章内容时,已具备了一定的几何知识基础,如平行线、相交线、三角形等。
但圆的概念和性质较为抽象,对学生空间想象能力和逻辑思维能力要求较高。
此外,学生对于实际问题的解决能力也有待提高。
三. 说教学目标1.知识与技能:掌握圆的定义、性质、方程,了解圆与直线的位置关系;能运用圆的知识解决实际问题。
2.过程与方法:通过观察、实践、探究、合作等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.圆的定义和性质2.圆的方程3.圆与直线的位置关系及其应用五. 说教学方法与手段1.采用问题驱动法,引导学生主动探究圆的性质和定理。
2.利用多媒体课件,展示圆的相关图形和动画,提高学生的空间想象能力。
3.发挥学生的主体作用,鼓励学生参与课堂讨论和实践活动。
4.通过实际例子,培养学生运用圆的知识解决实际问题的能力。
六. 说教学过程1.导入:以生活中的实例引入圆的概念,激发学生的学习兴趣。
2.探究圆的性质:引导学生观察、实践,发现圆的基本性质。
3.学习圆的方程:引导学生根据圆的性质,推导出圆的方程。
4.探讨圆与直线的位置关系:通过实际例子,引导学生了解圆与直线的位置关系及应用。
5.实践与应用:布置适量的练习题,让学生运用所学知识解决实际问题。
七. 说板书设计1.圆的定义2.圆的性质3.圆的方程4.圆与直线的位置关系5.实际应用八. 说教学评价1.课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
知识点总结二次函数知识点I.定义与定义表达式一般地,自变量x和因变量y之间存在如下关系:y=ax^2+bx+c (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(x-x₁)(x-x₂)[仅限于与x轴有交点A(x₁,0)和B(x₂,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2a k=(4ac-b^2)/4a x₁,x₂=(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=x^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与x轴交点个数Δ=b^2-4ac>0时,抛物线与x轴有2个交点。
Δ=b^2-4ac=0时,抛物线与x轴有1个交点。
Δ=b^2-4ac<0时,抛物线与x轴没有交点。