Fisher判别-jing
- 格式:ppt
- 大小:420.00 KB
- 文档页数:28
fisher判别准则
Fisher判别准则是一种分类算法,主要用于将多维数据分为两
个类别。
该算法的核心是通过最大化类别间距离和最小化类别内部距离来确定决策边界,从而实现对新数据的分类。
具体来说,该算法首先计算每个类别的均值向量和协方差矩阵,然后通过类别间距离和类别内部距离的比值来确定最佳的决策边界。
决策边界可以用一个线性方程表示,因此该算法也称为线性判别分析(LDA)。
由于Fisher判别准则考虑了类别间的差异和类别内部的相似性,因此在处理高维数据时表现出色。
同时,该算法还可以用于特征选择和降维,有助于简化数据处理过程。
总之,Fisher判别准则是一种有效的分类算法,可用于处理多
维数据和进行特征选择。
在实际应用中,可以根据具体问题的性质选择适合的分类算法并进行实验验证。
- 1 -。
3·4 Fisher线性判别多维 Þ Fisher变换 Þ 利于分类的一维对于线性判别函数( 3-4-1)可以认为是矢量在以为方向的轴上的投影的倍。
这里,视作特征空间中的以为分量的一个维矢量希望所求的使投影后,同类模式密聚,不同类模式相距较远。
求权矢量Þ 求满足上述目标的投影轴的方向和在一维空间中确定判别规则。
从另一方面讲,也是降维,特征提取与选择等问题的需要。
(R.A.Fisher,1936)下面我们用表示待求的。
图 (3-4-1) 二维模式向一维空间投影示意图(1)Fisher准则函数对两类问题,设给定维训练模式,其中有个和个模式分属类和类。
为方便,各类的模式又可分别记为和,于是,各类模式均值矢量为( 3-4-2)各类类内离差阵和总的类内离差阵分别为( 3-4-3)( 3-4-4)我们取类间离差阵为( 3-4-5)作变换,维矢量在以矢量为方向的轴上进行投影( 3-4-6)变换后在一维空间中各类模式的均值为( 3-4-7)类内离差度和总的类内离差度为( 3-4-8)( 3-4-9)类间离差度为( 3-4-10)我们希望经投影后,类内离差度越小越好,类间离差度越大越好,根据这个目标作准则函数( 3-4-11)称之为Fisher准则函数。
我们的目标是,求使最大。
(2)Fisher变换将标量对矢量微分并令其为零矢量,注意到的分子、分母均为标量,利用二次型关于矢量微分的公式可得( 3-4-12)令可得当时,通常是非奇异的,于是有( 3-4-13)上式表明是矩阵相应于本征值的本征矢量。
对于两类问题,的秩为1,因此只有一个非零本征值,它所对应的本征矢量称为Fisher最佳鉴别矢量。
由式( 3-4-13)有( 3-4-14)上式右边后两项因子的乘积为一标量,令其为,于是可得式中为一标量因子。
这个标量因子不改变轴的方向,可以取为1,于是有( 3-4-15)此时的是使Fisher准则函数取最大值时的解,即是维空间到一维空间投影轴的最佳方向,( 3-4-16)称为Fisher变换函数。
关于fisher判别的⼀点理解最近⼀个朋友问这⽅⾯的⼀些问题,其实之前也就很粗略的看了下fisher,真正帮别⼈解答问题的时候才知道原来⾃⼰也有很多东西不懂。
下⾯⼩结下⾃⼰对fisher判别的理解:其实fisher和PCA差不多,熟悉PCA的⼈都知道,PCA其实就是在寻找⼀个⼦空间。
这个空间怎么来的呢,先求协⽅差矩阵,然后求这个协⽅差矩阵的特征空间(特征向量对应的空间),选取最⼤的特征值对应的特征向量组成特征⼦空间(⽐如说k个,相当于这个⼦空间有k 维,每⼀维代表⼀个特征,这k个特征基本上可以涵盖90%以上的信息)。
那么我们把样本投影在这个⼦空间,原来那么多维的信息就可以⽤这k维的信息代替了,也就是说降维了。
⾄于PCA为啥要⽤求协⽅差矩阵然后求特征⼦空间的⽅法,这个数学上有证明,记得在某篇⽂章上看过,有兴趣的可以找找,看看证明。
那么fisher空间⼜是怎么⼀回事呢,其实fisher判别和PCA是在做类似的⼀件事,都是在找⼦空间。
不同的是,PCA是找⼀个低维的⼦空间,样本投影在这个空间基本不丢失信息。
⽽fisher是寻找这样的⼀个空间,样本投影在这个空间上,类内距离最⼩,类间距离最⼤。
那么怎么求这个空间呢,类似于PCA,求最⼤特征值对应的特征向量组成的空间。
当我们取最⼤⼏个特征值对应的特征向量组成特征空间时(这⾥指出,最佳投影轴的个数d<=c-1,这⾥c是类别数),最佳投影矩阵如下:其实在⽂章Eigenfaces vs Fisherfaces :recognition using class specific linear projection中给出了PCA和LDA⽐较直观的解释,⽂中对⼀个⼆维的数据进⾏分析,PCA和LDA都是把⼆维数据降到⼀个⼀维空间,那么其实PCA使得数据投影在这个⼀维空间总的离散度最⼤,我的理解是这样的,如果数据在某⼀维上⽐较离散,说明这维特征对数据的影响⽐较⼤,也就是说这维特征是主成分。
Fisher判别函数,也称为线性判别函数(Linear Discriminant Function),是一种经典的模式识别方法。
它通过将样本投影到一维或低维空间,将不同类别的样本尽可能地区分开来。
一、算法原理:Fisher判别函数基于以下两个假设:1.假设每个类别的样本都服从高斯分布;2.假设不同类别的样本具有相同的协方差矩阵。
Fisher判别函数的目标是找到一个投影方向,使得同一类别的样本在该方向上的投影尽可能紧密,而不同类别的样本在该方向上的投影尽可能分开。
算法步骤如下:(1)计算类内散度矩阵(Within-class Scatter Matrix)Sw,表示每个类别内样本之间的差异。
Sw = Σi=1 to N (Xi - Mi)(Xi - Mi)ᵀ,其中Xi 表示属于类别i 的样本集合,Mi 表示类别i 的样本均值。
(2)计算类间散度矩阵(Between-class Scatter Matrix)Sb,表示不同类别之间样本之间的差异。
Sb = Σi=1 to C Ni(Mi - M)(Mi - M)ᵀ,其中 C 表示类别总数,Ni 表示类别i 中的样本数量,M 表示所有样本的均值。
(3)计算总散度矩阵(Total Scatter Matrix)St,表示所有样本之间的差异。
St =Σi=1 to N (Xi - M)(Xi - M)ᵀ(4)计算投影方向向量w,使得投影后的样本能够最大程度地分开不同类别。
w= arg max(w) (wᵀSb w) / (wᵀSw w),其中w 表示投影方向向量。
(5)根据选择的投影方向向量w,对样本进行投影。
y = wᵀx,其中y 表示投影后的样本,x 表示原始样本。
(6)通过设置一个阈值或使用其他分类算法(如感知机、支持向量机等),将投影后的样本进行分类。
二、优点和局限性:Fisher判别函数具有以下优点:•考虑了类别内和类别间的差异,能够在低维空间中有效地区分不同类别的样本。
论文(设计)《模式识别》题目Fisher线性判别的基本原理及应用Fisher判别准则一、基本原理思想Fisher线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。
Fisher线性判别分析,就是通过给定的训练数据,确定投影方向W和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。
二、算法的实现及流程图1 算法实现 (1)W 的确定x 1m x, 1,2ii X ii N ∈==∑各类样本均值向量mi样本类内离散度矩阵和总类内离散度矩阵Tx S (x m )(x m ), 1,2ii i i X i ∈=--=∑样本类间离散度矩阵T1212S (m m )(m m )b =--在投影后的一维空间中,各类样本均值。
样本类内离散度和总类内离散度。
样本类间离散度。
Fisher 准则函数满足两个性质:·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。
·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。
根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W :。
(2)阈值的确定采取的方法:【1】【2】【3】(3)Fisher 线性判别的决策规则对于某一个未知类别的样本向量x ,如果y=W T·x>y0,则x ∈w1;否则x ∈w2。
2 流程图归一化处理载入训练数据三、实验仿真1.实验要求试验中采用如下的数据样本集:ω1类: (22,5),(46,33),(25,30),(25,8),(31, 3),(37,9),(46,7),(49,5),(51,6),(53,3)(19,15),(23,18),(43,1),(22,15),(20,19),(37,36),(22,22),(21,32),(26,36),(23,39)(29,35),(33,32),(25,38),(41,35),(33,2),(48,37)ω2类: (40,25),(63,33),(43,27),(52,25),(55,27),(59,22) ,(65,59),(63,27)(65,30),(66,38),(67,43),(52,52),(61,49) (46,23),(60,50),(68,55) (40,53),(60,55),(55,55) (48,56),(45,57),(38,57) ,(68,24)在实验中采用Fisher线性判别方法设计出每段线性判别函数。