Fisher判别
- 格式:pptx
- 大小:138.30 KB
- 文档页数:9
Fisher判别法课程设计一、教学目标本节课的教学目标是使学生掌握Fisher判别法的基本原理和应用方法。
知识目标包括:了解Fisher判别法的数学背景和原理,掌握Fisher判别函数的推导过程,理解Fisher判别法的应用场景。
技能目标包括:能够运用Fisher判别法解决实际问题,能够使用相关软件进行Fisher判别法的计算和分析。
情感态度价值观目标包括:培养学生的数据分析能力和科学思维,激发学生对统计学的兴趣和热情。
二、教学内容本节课的教学内容主要包括Fisher判别法的原理和应用。
首先,介绍Fisher判别法的基本概念和数学背景,解释判别函数的推导过程。
然后,通过实例分析,展示Fisher判别法在实际问题中的应用,如分类问题和判别分析。
最后,结合教材和课外资料,进行深入学习,探讨Fisher判别法的优缺点和适用条件。
三、教学方法为了达到本节课的教学目标,将采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,系统地讲解Fisher判别法的原理和推导过程。
其次,通过案例分析法,引导学生运用Fisher判别法解决实际问题,培养学生的应用能力。
此外,还采用讨论法,鼓励学生积极参与课堂讨论,提出问题和观点,培养学生的思考能力和团队合作精神。
最后,利用实验法,让学生亲自动手进行实验,验证Fisher判别法的有效性,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源。
首先,教材和相关参考书籍,为学生提供系统的学习材料。
其次,多媒体资料,如PPT和教学视频,用于辅助讲解和展示Fisher判别法的原理和应用。
此外,实验设备,如计算机和统计软件,用于学生进行实验和实践操作。
最后,网络资源,如学术期刊和在线课程,为学生提供更多的学习参考和拓展资料。
五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估方式包括平时表现、作业和考试。
Fisher 判别函数的使用具体步骤Fisher 多类判别模型假定事物由p 个变量描述, 即: x=(p x x x ,...,,21)T该种事物有G 个类型, 从每个类型中顺次抽取p n n n ,...,,21个样品, 共计n=∑=Gi i1n个样品。
即从第g 类取了g n 个样品, g=1,2,⋯, G, 第g 类的第i 个样品, 用向量:gi x =(pgi gi gi x x ,...,,x 21)T (1)( 1) 式中, 第一个下标是变量号, 第二个下标是类型号,第三个下标是样品号。
设判别函数为:T x p p v x v x v x v =+++=...y 2211 (2)其中: V=(p v v v ,...,21)T按照组内差异最小, 组间差异最大同时兼顾的原则, 来确定判别函数系数。
(中间推导过程不在这里介绍了)最终就有个判别函数:,y x V Tj j=1,...,2,1s j = 一般只取前M=min(G- 1,p)个, 即:M j x v x v x v y p pj j j j ,...,2,1,...2211=+++= (3)根据上述M 个判别函数, 可对每一个待判样品做出判别。
),...,,(x 020100p x x x=其过程如下:1、把x0 代入式(3) 中每一个判别函数, 得到M 个数,,...,2,1,...y 202101j 0M j x v x v x v p pj j j =+++=记:TM y y y y ),...,,(020100= 2、把每一类的均值代入式(3)得Gg y y y y G g M j x v x v x v y M gggg pg pg g g g g j g ,...,2,1),,...,,(,...2,1,,...,2,1,...212211====+++=3、计算:∑=-=Mj j j g gy y D 1202)(,从这G 个值中选出最小值:)(min 212g Gg h D D ≤≤=。
Fisher判别是一种基于线性判别分析的分类方法,用于将样本分为不同的类别。
其基本步骤如下:
1. 确定判别变量:首先需要确定用于判别的变量,即用于分类的特征。
2. 计算判别函数:根据样本数据,计算出判别函数,即用于将样本分为不同类别的函数。
3. 确定判别类别:根据判别函数,将样本分为不同的类别。
4. 计算判别准确率:计算分类准确率,即正确分类的样本数与总样本数之比。
5. 优化判别函数:根据判别准确率,调整判别函数,以提高分类准确率。
6. 重复步骤3~5:重复以上步骤,直到达到所需的分类准确率。
在Fisher判别中,判别函数是基于Fisher线性判别的,即对于每个类别,计算出一个线性函数,使得属于该类别的样本与属于其他类别的样本的距离最大化。
这个过程可以通过矩阵运算和求导来实现。
总之,Fisher判别是一种基于线性判别分析的分类方法,其基本步骤包括确定判别变量、计算判别函数、确定判别类别、计算判别准确率、优化判别函数和重复步骤3~5,直到达到所需的分类准确率。
3·4 Fisher线性判别多维 Þ Fisher变换 Þ 利于分类的一维对于线性判别函数( 3-4-1)可以认为是矢量在以为方向的轴上的投影的倍。
这里,视作特征空间中的以为分量的一个维矢量希望所求的使投影后,同类模式密聚,不同类模式相距较远。
求权矢量Þ 求满足上述目标的投影轴的方向和在一维空间中确定判别规则。
从另一方面讲,也是降维,特征提取与选择等问题的需要。
(R.A.Fisher,1936)下面我们用表示待求的。
图 (3-4-1) 二维模式向一维空间投影示意图(1)Fisher准则函数对两类问题,设给定维训练模式,其中有个和个模式分属类和类。
为方便,各类的模式又可分别记为和,于是,各类模式均值矢量为( 3-4-2)各类类内离差阵和总的类内离差阵分别为( 3-4-3)( 3-4-4)我们取类间离差阵为( 3-4-5)作变换,维矢量在以矢量为方向的轴上进行投影( 3-4-6)变换后在一维空间中各类模式的均值为( 3-4-7)类内离差度和总的类内离差度为( 3-4-8)( 3-4-9)类间离差度为( 3-4-10)我们希望经投影后,类内离差度越小越好,类间离差度越大越好,根据这个目标作准则函数( 3-4-11)称之为Fisher准则函数。
我们的目标是,求使最大。
(2)Fisher变换将标量对矢量微分并令其为零矢量,注意到的分子、分母均为标量,利用二次型关于矢量微分的公式可得( 3-4-12)令可得当时,通常是非奇异的,于是有( 3-4-13)上式表明是矩阵相应于本征值的本征矢量。
对于两类问题,的秩为1,因此只有一个非零本征值,它所对应的本征矢量称为Fisher最佳鉴别矢量。
由式( 3-4-13)有( 3-4-14)上式右边后两项因子的乘积为一标量,令其为,于是可得式中为一标量因子。
这个标量因子不改变轴的方向,可以取为1,于是有( 3-4-15)此时的是使Fisher准则函数取最大值时的解,即是维空间到一维空间投影轴的最佳方向,( 3-4-16)称为Fisher变换函数。
Fisher判别函数,也称为线性判别函数(Linear Discriminant Function),是一种经典的模式识别方法。
它通过将样本投影到一维或低维空间,将不同类别的样本尽可能地区分开来。
一、算法原理:Fisher判别函数基于以下两个假设:1.假设每个类别的样本都服从高斯分布;2.假设不同类别的样本具有相同的协方差矩阵。
Fisher判别函数的目标是找到一个投影方向,使得同一类别的样本在该方向上的投影尽可能紧密,而不同类别的样本在该方向上的投影尽可能分开。
算法步骤如下:(1)计算类内散度矩阵(Within-class Scatter Matrix)Sw,表示每个类别内样本之间的差异。
Sw = Σi=1 to N (Xi - Mi)(Xi - Mi)ᵀ,其中Xi 表示属于类别i 的样本集合,Mi 表示类别i 的样本均值。
(2)计算类间散度矩阵(Between-class Scatter Matrix)Sb,表示不同类别之间样本之间的差异。
Sb = Σi=1 to C Ni(Mi - M)(Mi - M)ᵀ,其中 C 表示类别总数,Ni 表示类别i 中的样本数量,M 表示所有样本的均值。
(3)计算总散度矩阵(Total Scatter Matrix)St,表示所有样本之间的差异。
St =Σi=1 to N (Xi - M)(Xi - M)ᵀ(4)计算投影方向向量w,使得投影后的样本能够最大程度地分开不同类别。
w= arg max(w) (wᵀSb w) / (wᵀSw w),其中w 表示投影方向向量。
(5)根据选择的投影方向向量w,对样本进行投影。
y = wᵀx,其中y 表示投影后的样本,x 表示原始样本。
(6)通过设置一个阈值或使用其他分类算法(如感知机、支持向量机等),将投影后的样本进行分类。
二、优点和局限性:Fisher判别函数具有以下优点:•考虑了类别内和类别间的差异,能够在低维空间中有效地区分不同类别的样本。
论文(设计)《模式识别》题目Fisher线性判别的基本原理及应用Fisher判别准则一、基本原理思想Fisher线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。
Fisher线性判别分析,就是通过给定的训练数据,确定投影方向W和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。
二、算法的实现及流程图1 算法实现 (1)W 的确定x 1m x, 1,2ii X ii N ∈==∑各类样本均值向量mi样本类内离散度矩阵和总类内离散度矩阵Tx S (x m )(x m ), 1,2ii i i X i ∈=--=∑样本类间离散度矩阵T1212S (m m )(m m )b =--在投影后的一维空间中,各类样本均值。
样本类内离散度和总类内离散度。
样本类间离散度。
Fisher 准则函数满足两个性质:·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。
·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。
根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W :。
(2)阈值的确定采取的方法:【1】【2】【3】(3)Fisher 线性判别的决策规则对于某一个未知类别的样本向量x ,如果y=W T·x>y0,则x ∈w1;否则x ∈w2。
2 流程图归一化处理载入训练数据三、实验仿真1.实验要求试验中采用如下的数据样本集:ω1类: (22,5),(46,33),(25,30),(25,8),(31, 3),(37,9),(46,7),(49,5),(51,6),(53,3)(19,15),(23,18),(43,1),(22,15),(20,19),(37,36),(22,22),(21,32),(26,36),(23,39)(29,35),(33,32),(25,38),(41,35),(33,2),(48,37)ω2类: (40,25),(63,33),(43,27),(52,25),(55,27),(59,22) ,(65,59),(63,27)(65,30),(66,38),(67,43),(52,52),(61,49) (46,23),(60,50),(68,55) (40,53),(60,55),(55,55) (48,56),(45,57),(38,57) ,(68,24)在实验中采用Fisher线性判别方法设计出每段线性判别函数。
实验1 Fisher线性判别实验一、实验目的应用统计方法解决模式识别问题的困难之一是维数问题,低维特征空间的分类问题一般比高维空间的分类问题简单。
因此,人们力图将特征空间进行降维,降维的一个基本思路是将d维特征空间投影到一条直线上,形成一维空间,这在数学上比较容易实现。
问题的关键是投影之后原来线性可分的样本可能变为线性不可分。
一般对于线性可分的样本,总能找到一个投影方向,使得降维后样本仍然线性可分。
如何确定投影方向使得降维以后,样本不但线性可分,而且可分性更好(即不同类别的样本之间的距离尽可能远,同一类别的样本尽可能集中分布),就是Fisher线性判别所要解决的问题。
本实验通过编制程序让初学者能够体会Fisher线性判别的基本思路,理解线性判别的基本思想,掌握Fisher线性判别问题的实质。
二、实验要求1、改写例程,编制用Fisher线性判别方法对三维数据求最优方向W的通用函数。
2、对下面表1-1样本数据中的类别ω1和ω2计算最优方向W。
3、画出最优方向W的直线,并标记出投影后的点在直线上的位置。
表1-1 Fisher线性判别实验数据4、选择决策边界,实现新样本xx1=(-0.7,0.58,0.089),xx2=(0.047,-0.4,1.04)的分类。
5、提高部分(可做可不做):设某新类别ω3数据如表1-2所示,用自己的函数求新类别ω3分别和ω1、ω2分类的投影方向和分类阈值。
表1-2 新类别样本数据三、部分参考例程及其说明求取数据分类的Fisher投影方向的程序如下:其中w为投影方向。
clear %Removes all variables from the workspace.clc %Clears the command window and homes the cursor.% w1类训练样本,10组,每组为行向量。
w1=[-0.4,0.58,0.089;-0.31,0.27,-0.04;-0.38,0.055,-0.035;-0.15,0.53,0. 011;-0.35,0.47,0.034;...0.17,0.69,0.1;-0.011,0.55,-0.18;-0.27,0.61,0.12;-0.065,0.49,0.0012;-0 .12,0.054,-0.063];% w2类训练样本,10组,每组为行向量。
Fisher判别理论,编程步骤和优缺点1.理论判别分析是用于判别个体所属群体的一种统计方法,判别分析的特点是根据已掌握的、历史上每个类别的若干样本的数据信息,总结出客观事物分类的规律性,建立判别公式和判别准则。
然后,当遇到新的样本点时,只要根据总结出来的判别公式和判别准则,就能判别该样本点所属的类别。
判别分析是一种应用性很强的统计数据分析方法。
Fisher判别(1)借助方差分析的思想构造一个线性判别函数:(2)确定判别函数系数时要求使得总体之间区别最大,而使每个总体内部的离差最小。
(3)从几何的角度看,判别函数就是p维向量X在某种方向上的投影。
使得变换后的数据同类别的点“尽可能聚在一起”,不同类别的点“尽可能分离”,以此达到分类的目的。
两类Fisher判别示意图(1)如果有多个类别, Fisher 判别可能需要两个或者更多的判别函数才能完成分类。
(2)一般来说判别函数的个数等于分类的个数减一。
(3)得到判别函数后,计算待判样品的判别函数值,根据判别函数的值计算待判样品到各类的重心的距离,从而完成分类。
2.编程步骤① 把来自两类21/w w 的训练样本集X 分成1w 和2w 两个子集1X 和2X 。
G1 G2X② 由∑∈=i k X x k ii x n M 1,2,1=i ,计算i M 。
③ 由T i X x k i k i M x M x S ik ))((--=∑=计算各类的类内离散度矩阵i S ,2,1=i 。
④ 计算类内总离散度矩阵21S S S w +=。
⑤ 计算w S 的逆矩阵1-w S 。
⑥ 由)(211*M M S w w -=-求解*w 。
3.优点(1)一般对于线性可分的样本,总能找到一个投影方向,使得降维后的样本仍然线性可分,而且可分性更好即不同类别的样本之间的距离竟可能的远,同一类别的尽可能的集中分布。
(2)Fisher 方法可以直接求解法向量。
(3)Fisher 的线性判别不仅适用于确定性的模式分类器的训练,而且对于随机的模机也是适用的,Fisher 还可以推广到多类问题中去。
Fisher线性判别分析
Fisher线性判别分析
1、概述
在使⽤统计⽅法处理模式识别问题时,往往是在低维空间展开研究,然⽽实际中数据往往是⾼维的,基于统计的⽅法往往很难求解,因此降维成了解决问题的突破⼝。
假设数据存在于d维空间中,在数学上,通过投影使数据映射到⼀条直线上,即维度从d维变为1维,这是容易实现的,但是即使数据在d维空间按集群形式紧凑分布,在某些1维空间上也会难以区分,为了使得数据在1维空间也变得容易区分,需要找到适当的直线⽅向,使数据映射在该直线上,各类样本集群交互较少。
如何找到这条直线,或者说如何找到该直线⽅向,这是Fisher线性判别需要解决的问题。
2、从d维空间变换到1维空间
3、介绍⼏个基本的参量
A. 在d维原始空间
B. 在1维映射空间
4、Fisher准则函数
5、学习算法推导
6、决策分类。