Fisher判别法
- 格式:docx
- 大小:1.22 MB
- 文档页数:7
Fisher判别法课程设计一、教学目标本节课的教学目标是使学生掌握Fisher判别法的基本原理和应用方法。
知识目标包括:了解Fisher判别法的数学背景和原理,掌握Fisher判别函数的推导过程,理解Fisher判别法的应用场景。
技能目标包括:能够运用Fisher判别法解决实际问题,能够使用相关软件进行Fisher判别法的计算和分析。
情感态度价值观目标包括:培养学生的数据分析能力和科学思维,激发学生对统计学的兴趣和热情。
二、教学内容本节课的教学内容主要包括Fisher判别法的原理和应用。
首先,介绍Fisher判别法的基本概念和数学背景,解释判别函数的推导过程。
然后,通过实例分析,展示Fisher判别法在实际问题中的应用,如分类问题和判别分析。
最后,结合教材和课外资料,进行深入学习,探讨Fisher判别法的优缺点和适用条件。
三、教学方法为了达到本节课的教学目标,将采用多种教学方法相结合的方式进行教学。
首先,采用讲授法,系统地讲解Fisher判别法的原理和推导过程。
其次,通过案例分析法,引导学生运用Fisher判别法解决实际问题,培养学生的应用能力。
此外,还采用讨论法,鼓励学生积极参与课堂讨论,提出问题和观点,培养学生的思考能力和团队合作精神。
最后,利用实验法,让学生亲自动手进行实验,验证Fisher判别法的有效性,提高学生的实践能力。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源。
首先,教材和相关参考书籍,为学生提供系统的学习材料。
其次,多媒体资料,如PPT和教学视频,用于辅助讲解和展示Fisher判别法的原理和应用。
此外,实验设备,如计算机和统计软件,用于学生进行实验和实践操作。
最后,网络资源,如学术期刊和在线课程,为学生提供更多的学习参考和拓展资料。
五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观地评价学生的学习成果。
评估方式包括平时表现、作业和考试。
Fisher判别是一种基于线性判别分析的分类方法,用于将样本分为不同的类别。
其基本步骤如下:
1. 确定判别变量:首先需要确定用于判别的变量,即用于分类的特征。
2. 计算判别函数:根据样本数据,计算出判别函数,即用于将样本分为不同类别的函数。
3. 确定判别类别:根据判别函数,将样本分为不同的类别。
4. 计算判别准确率:计算分类准确率,即正确分类的样本数与总样本数之比。
5. 优化判别函数:根据判别准确率,调整判别函数,以提高分类准确率。
6. 重复步骤3~5:重复以上步骤,直到达到所需的分类准确率。
在Fisher判别中,判别函数是基于Fisher线性判别的,即对于每个类别,计算出一个线性函数,使得属于该类别的样本与属于其他类别的样本的距离最大化。
这个过程可以通过矩阵运算和求导来实现。
总之,Fisher判别是一种基于线性判别分析的分类方法,其基本步骤包括确定判别变量、计算判别函数、确定判别类别、计算判别准确率、优化判别函数和重复步骤3~5,直到达到所需的分类准确率。
简述fisher判别的基本思想一、关于fisher判别在零和博弈的环境下,当各自利益都为零时,会做出什么选择?其中,局中人A是指在与B的交易中获得好处的人,而B则指因此而损失的人。
不管从哪一个角度考虑,局中人A都不会自己吃亏,他一定会想办法将自己的损失补偿给对方。
因此,从A到B的行动是单方面的。
为了对这种行动作出客观评价,我们假定: 1、局中人A 获得正收益; 2、局中人B获得负收益。
在这样的背景下,博弈方应该如何评价局中人A的行为?这就需要引入一个分析工具——fisher判别法。
fisher判别方法要求:每个局中人都会选择和自己利益最大化相等的行动,而不管别人如何。
因此,一个局中人的行动仅仅取决于它对另一个局中人所得利益的期望。
因为B的利益和A的利益总是相等的,即B的收益为-0,因此B的行动对A而言无关紧要。
如果局中人A的行动对B来说有很大影响,那么即使B不采取任何行动,也能够保证A自己的利益最大化,那么它也会采取一些行动。
fisher分析是解决寡头垄断的重要手段。
上世纪70年代以前,荷兰的壳牌公司(荷兰皇家石油公司)是唯一一家占有全国市场的企业。
通过在全国建立广泛的销售网络,荷兰皇家石油公司控制了几乎全部的石油产品市场。
为了反击荷兰皇家石油公司对竞争者的排挤,其他公司纷纷效仿荷兰皇家石油公司,设立全国性销售网络,实现地区范围内的联合销售,并在若干个城市设立销售公司。
这样,一个庞大的跨地区石油销售网络就形成了,而原先各企业各自为战的情况也逐渐改变,甚至消失。
荷兰皇家石油公司从独霸市场到“共存共荣”,完全是由于fisher分析技术的发展。
可见, fisher分析方法的实质是:在一个竞争性环境中,博弈各方最优决策问题可表述为:对于各博弈方而言,如何做出各自最优的个人决策?fisher分析主要适用于零和博弈情形。
如果存在多个纳什均衡点,但这些均衡点没有明显的共同点,而是由局中人的个人偏好、资源约束和实际可能达成的结果共同决定的。
典则判别函数和fisher判别函数
典则判别函数和Fisher判别函数是模式分类中常用的两种算法。
它们都是通过选择合适的决策边界来对数据进行分类。
但是它们的实
现方式和应用场景有所不同。
典则判别函数是一种基于贝叶斯分类规则的判别函数。
它将数据
集分为多个类别,并计算每个类别的先验概率。
在观察到新的数据时,典则判别函数将计算各类别的后验概率并选择概率最大的类别作为分
类结果。
这种算法相对简单,但需要事先知道每个类别的先验概率。
Fisher判别函数则是一种基于判别分析的算法,它用于确定分类数据的最佳线性投影。
这个投影可以最大化类别之间的差异性,同时
最小化类别内部的差异性。
因此,Fisher判别函数在处理大量特征或
类别未知时效果更好。
它可以用于二分类和多分类问题,并且可以通
过聚类算法来确定类别数量。
总体而言,典则判别函数是一种简单而直接的方法,而Fisher
判别函数则更适合于处理高维数据和未知类别的情况。
但无论是哪种
算法,在实际应用中都需要根据具体的问题选择合适的算法,并根据
数据集进行调整。
Fisher判别函数,也称为线性判别函数(Linear Discriminant Function),是一种经典的模式识别方法。
它通过将样本投影到一维或低维空间,将不同类别的样本尽可能地区分开来。
一、算法原理:Fisher判别函数基于以下两个假设:1.假设每个类别的样本都服从高斯分布;2.假设不同类别的样本具有相同的协方差矩阵。
Fisher判别函数的目标是找到一个投影方向,使得同一类别的样本在该方向上的投影尽可能紧密,而不同类别的样本在该方向上的投影尽可能分开。
算法步骤如下:(1)计算类内散度矩阵(Within-class Scatter Matrix)Sw,表示每个类别内样本之间的差异。
Sw = Σi=1 to N (Xi - Mi)(Xi - Mi)ᵀ,其中Xi 表示属于类别i 的样本集合,Mi 表示类别i 的样本均值。
(2)计算类间散度矩阵(Between-class Scatter Matrix)Sb,表示不同类别之间样本之间的差异。
Sb = Σi=1 to C Ni(Mi - M)(Mi - M)ᵀ,其中 C 表示类别总数,Ni 表示类别i 中的样本数量,M 表示所有样本的均值。
(3)计算总散度矩阵(Total Scatter Matrix)St,表示所有样本之间的差异。
St =Σi=1 to N (Xi - M)(Xi - M)ᵀ(4)计算投影方向向量w,使得投影后的样本能够最大程度地分开不同类别。
w= arg max(w) (wᵀSb w) / (wᵀSw w),其中w 表示投影方向向量。
(5)根据选择的投影方向向量w,对样本进行投影。
y = wᵀx,其中y 表示投影后的样本,x 表示原始样本。
(6)通过设置一个阈值或使用其他分类算法(如感知机、支持向量机等),将投影后的样本进行分类。
二、优点和局限性:Fisher判别函数具有以下优点:•考虑了类别内和类别间的差异,能够在低维空间中有效地区分不同类别的样本。
fisher判别法Fisher判别分析的基本思想:选取适当的投影方向,将样本数据进行投影,使得投影后各样本点尽可能分离开来,即:使得投影后各样本类内离差平方和尽可能小,而使各样本类间的离差平方和尽可能大。
为了克服“维数灾难”,人们将高维数据投影到低维空间上来,并保持必要的特征,这样,一方面数据点变得比较密集一些,另一方面,可以在低维空间上进行研究。
fisher判别法是判别分析的方法之一,它是借助于方差分析的思想,利用已知各总体抽取的样品的p维观察值构造一个或多个线性判别函数y=l′x其中l= (l1,l2…lp)′,x= (x1,x2,…,xp)′,使不同总体之间的离差(记为B)尽可能地大,而同一总体内的离差(记为E)尽可能地小来确定判别系数l=(l1,l2…lp)′。
数学上证明判别系数l恰好是|B-λE|=0的特征根,记为λ1≥λ2≥…≥λr>0。
所对应的特征向量记为l1,l2,…lr,则可写出多个相应的线性判别函数,在有些问题中,仅用一个λ1对应的特征向量l1所构成线性判别函数y1=l′1x不能很好区分各个总体时,可取λ2对应的特征向量l′2建立第二个线性判别函数y2=l′2x,如还不够,依此类推。
有了判别函数,再人为规定一个分类原则(有加权法和不加权法等)就可对新样品x判别所属。
Fisher判别法是根据方差分析的思想建立起来的一种能较好区分各个总体的线性判别法,由Fisher在1936年提出。
该判别方法对总体的分布不做任何要求。
Fisher判别法是一种投影方法,把高维空间的点向低维空间投影。
在原来的坐标系下,可能很难把样品分开,而投影后可能区别明显。
一般说,可以先投影到一维空间(直线)上,如果效果不理想,在投影到另一条直线上(从而构成二维空间),依此类推。
每个投影可以建立一个判别函数。
fisher线性判别
fisher 判决⽅式是监督学习,在新样本加⼊之前,已经有了原样本。
原样本是训练集,训练的⽬的是要分类,也就是要找到分类线。
⼀⼑砍成两半!
当样本集确定的时候,分类的关键就在于如何砍下这⼀⼑!
若以⿊⾊的来划分,很明显不合理,以灰⾊的来划分,才是看上去合理的
1.先确定砍的⽅向
关键在于如何找到投影的向量u,与u的长度⽆关。
只看⽅向
找到样本点的中⼼均值m1,m2,以及在向量u上的投影的m1~,m2~。
因为u的⽅向与样本点都有关,所以需要考虑⼀个含有所有样本点的表达式
不妨算出离差阵
算出类内离差矩阵,两个都要求出来,并求和
并且投影的离差阵
根据聚类的理想情况,类内距离⼩,类间距离⼤,所以就⽤类间去处理类内,我们现在的变量是向量u,我们就对u求导,算出max存在的时后u的条件。
为了⽅便化简,引⼊⼀个参数不要以为下⾯除以是向量,(1*2)*(2*2)(2*1)=1 维度变成1,这是⼀个常数。
当求导公式
分⼦为0的时候,推出
所以
⽽且是(1*2)*(2*1)等于1,也是⼀个常数
到此为⽌,u的⽅向已经确定了
2.具体切哪⼀个点。
a,切
切投影均值的终点
2.
切贝叶斯概率的⽐例点
⽅向和具体点均已找到,分析完毕。