简述驱动桥的功用
- 格式:doc
- 大小:28.00 KB
- 文档页数:1
驱动桥的基本功能
驱动桥是位于传动系末端能改变来自变速器的转速和转矩,并将它们传递给驱动轮的机构,其基本功用是:
1. 将万向传动装置传来的发动机转矩通过主减速器、差速器、半轴等传到驱动车轮,实现降速增大转矩;
2. 通过主减速器圆锥齿轮副改变转矩的传递方向;
3. 通过差速器实现两侧车轮差速作用,保证内、外侧车轮以不同转速转向;
4. 承受作用于路面和车架或车身之间的垂直力、纵向力和横向力。
总之,驱动桥在汽车传动系统中扮演着重要的角色,为车辆的正常行驶提供了必要的驱动力和转矩传递功能。
同时,它还能够通过差速器实现车轮之间的差速,使车辆能够更加灵活地转向。
此外,驱动桥还承受着各种力和力矩,保证了车辆的稳定性和安全性。
因此,驱动桥的设计和性能对于车辆的整体性能和可靠性具有重要影响。
驱动桥的作用驱动桥(Driving Bridge)是一种在电子设备中常见的器件,它主要起到信号放大和信号增强的作用。
驱动桥的作用是接收输入信号并将其转化为输出信号,从而驱动外部设备的运行。
首先,驱动桥可以放大信号。
在信号的传输过程中,由于长距离传输和环境干扰等原因,信号会发生衰减和失真。
而驱动桥可以根据需要调节其输入和输出的增益,将弱小的信号放大到适合目标设备的电平,保证信号的传输质量和稳定性。
其次,驱动桥可以增强信号。
在某些情况下,输入信号的电压、电流或功率可能不足以满足外部设备的要求,无法实现正常运行。
此时,驱动桥可以通过对输入信号进行改变和操作,增加其电压、电流或功率,从而满足外部设备对信号的需求,保证其正常工作和性能表现。
此外,驱动桥还可以改变信号的特性以适应不同的外部设备。
不同的设备对信号的要求有所不同,比如输入电压范围、输入电流大小、输入阻抗等。
驱动桥可以根据外部设备的需求,调整输入信号的特性,使其与目标设备相匹配,确保信号传输的稳定性和可靠性,避免信号的损失和失真。
另外,驱动桥还可以提供对外部设备的保护。
外部设备在工作过程中可能会受到一些不良因素的影响,比如电流过大、电压过高等,导致设备损坏或工作不正常。
驱动桥可以通过对输入信号进行限制和调节,防止这些不良因素对外部设备造成损害,增强设备的稳定性和耐用性。
最后,驱动桥还可以提高系统的整体性能。
在一个复杂的电子系统中,不同的设备之间可能存在接口不匹配或信号转换的问题。
驱动桥可以扮演信号桥梁的角色,将不同设备之间的信号进行转换和传递,实现系统的协同工作,提高系统的整体性能和效率。
总而言之,驱动桥在电子设备中具有重要的作用。
它可以放大和增强信号,改变信号的特性,保护外部设备,提高系统的整体性能。
驱动桥的存在和应用,为电子设备的工作和效果提供了可靠的保证,推动了电子技术的发展和进步。
驱动桥的基本功能
驱动桥是一种电子设备,用于控制和驱动电动机或其他负载。
其基本功能包括:
1. 电流放大功能:驱动桥可以放大输入信号的电流,以控制输出负载的电流。
通过调节驱动桥的输入信号,可以控制输出负载的电流大小。
2. 方向控制功能:驱动桥可以控制电动机或其他负载的运动方向。
通过调节驱动桥的输入信号,可以切换输出负载的正向或反向运动。
3. 速度控制功能:驱动桥可以控制电动机或其他负载的运动速度。
通过调节驱动桥的输入信号,可以控制输出负载的转速。
4. 保护功能:驱动桥通常具有过电流保护、过温保护、短路保护等功能,以保护电动机或其他负载免受损坏。
5. 信号转换功能:驱动桥可以将输入信号从一个形式转换为另一个形式。
例如,从数字信号转换为模拟信号,或从低电平转换为高电平。
6. 接口功能:驱动桥通常具有与其他系统或设备进行通信的接口功能,以便于系统集成和控制。
驱动桥的基本功能是控制和驱动电动机或其他负载的运动,包括电流放大、方向控制、速度控制、保护、信号转换和接口功能。
驱动桥主要功能是将传动轴传来的转矩传给驱动轮,使变速箱输出的转速降低、转矩增大,并使两边车轮具有差速功能。
此外,驱动桥桥壳还起到承重和传力的作用。
一、驱动桥的结构驱动桥主要由桥壳、主传动器(包括差速器)、半轴、轮边减速器等组成。
其结构如图1所示:驱动桥安装在车架上,承受车架传来的载荷并将其传递到车轮上。
驱动桥的桥壳又是主传动器、半轴、轮边减速器等的安装支承体。
二、主传动器的构造主传动器的功用是将变速箱传来传动再一次降低转速、增大转矩,并将输入轴的旋转轴线改变900后,经差速器、半轴传给轮边减速器。
主传动器的结构如图2所示:主传动器主要由差速器和一对由螺旋锥齿轮组成的主减速器构成。
主动螺旋锥齿轮和从动螺旋锥齿轮之间,必须有正确的相对位置才能使两齿轮啮合后传动的冲击噪声较轻,而且使轮齿沿其长度方向磨损较均匀。
为此,在结构上一方面要使主动和从动螺旋锥齿轮有足够的支承刚度,使其在传动过程中不至于发生较大变形而影响正常啮合;另一方面,应有必要的啮合调整装置图二、主传动器为了保证主动螺旋锥齿轮有足够的支承刚度,将主动螺旋锥齿轮与轴制成一体,其前端支承在互相贴近而小端相向的两个圆锥滚子轴承上,后端支承在圆柱滚子轴承上,形成跨置式支承。
环状的从动锥齿轮用螺栓固定在差速器右壳的凸缘上。
而差速器壳则用两个圆锥滚子轴承支承在托架两端的座孔中。
为了保证从动锥齿轮有足够的支承刚度,在从动螺旋锥齿轮的背面,装有止推螺栓以限制从动螺旋锥齿轮的变形量,防止从动螺旋锥齿轮因过度变形而影响正常工作。
在装配和调试过程中应当注意:从动螺旋锥齿轮的背面和止推螺栓末端的间隙一般应调整至0.25~0.40毫米之间。
为了调整圆锥滚子轴承的预紧度,在轴承内座圈之间的隔套的一端装有调整垫片。
如果发现过紧则增加垫片的总厚度;反之,则减少垫片的总厚度。
圆锥滚子轴承的预紧转矩值可通过测量主动锥齿轮的旋转转矩获得。
一般地其旋转转矩为1.5~2.6N.m。
简述驱动桥的功用
驱动桥处于动力传动系的末端,其基本功能是:1、将万向传动装置传来的发动机转矩通过主减速胎、差速器、半轴等传到驱动车轮,实现降速增大转矩;2、通过主减速器圆锥齿轮副改变转矩的传递方向;3、通过差速器实现两侧车轮差速作用,保证内、外侧车轮以不同转速转向;4、通过桥壳体和车轮实现承载及传力作用。
驱动桥分非断开式与断开式两大类。
以下是相关内容介绍:1、非断开式。
驱动车轮采用非独立悬架时,应选用非断开式驱动桥。
非断开式驱动桥也称为整体式驱动桥,其半轴套管与主减速器壳均与轴壳刚性地相连一个整体梁,因而两侧的半轴和驱动轮相关地摆动,通过弹性元件与车架相连。
它由驱动桥壳,主减速器,差速器和半轴组成。
2、断开式。
驱动桥采用独立悬架,即主减速器壳固定在车架上,两侧的半轴和驱动轮能在横向平面相对于车体有相对运动的则称为断开式驱动桥。
为了与独立悬架相配合,将主减速器壳固定在车架(或车身)上,驱动桥壳分段并通过铰链连接,或除主减速器壳外不再有驱动桥壳的其它部分。
为了适应驱动轮独立上下跳动的需要,差速器与车轮之间的半轴各段之间用万向节连接。