人教A版高中数学选修一高三·单元测试卷(八).docx
- 格式:docx
- 大小:166.03 KB
- 文档页数:7
主视图侧视图附视图图1武威第十五中学2012-2013学年第二学期试卷 高二年级·文科数学(满分120分 时间100 分钟)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷(选择题 共48分)要求:1、选择题的选项填涂在答题卡上 2、填空题的答案写在第一卷的空格处。
一.选择题(每小题只有一个正确答案,每小题4分,共48分)1.已知全集{}13<<-=x x M ,{}1,0,1,2,3---=N ,则N M ⋂= (C )A .{-2,-1,0,1}B .{-3,-2,-1,0}C . {-2,-1,0}D .{-3,-2,-1}2.若b a >,下列结论一定成立的是 (C )A .nnb a > B .bc ac > C .c b c a +>+D .11--<b a3.已知m +i 1n =-i ,其中,m n 是实数,i 是虚数单位,则m n += (B )A .-1B .0C .1D .24.直线34140x y +-=与圆()()22114x y -++=的位置关系是 (A ) A .相交但直线不过圆心 B .相切 C .相交且直线过圆心 D .相离5.已知几何体的三视图如图1所示,它的表面积是(A )A.24+B. 22+C.23+D.66. 已知⎪⎭⎫⎝⎛∈=ππ,254sin a a ,,则=a tan (D ) A .43-B .43 C . 34 D .34- 7.函数)43(log 231--=x x y 的定义域是(D )A .{}42<<x xB .{}41<<-x xC .{}42><x x x 或D .{}41>-<x x x 或 8.当0>x 时,函数31-+=xx y 的最小值是 ( A ) A .-1 B .-2 C .1D .29.=+i12(C ) 年级:________ 班级:________ 姓名:________ 准考证号(7位):□□□□□□密 封 线 内 不 要 答 题 ------------------------------------------密---------------------------封---------------------------------------线------------------------------------------A .22B . 2C .2D .110.等比数列{}n a 的前n 项和n S .已知==+=15123910a a a a S ,求,(C )A .31B .31-C .91D .91-11若向量)1,1(),0,2(==,则下列结论正确的是(B ).A .1=⋅b aB .⊥-)(C .||||a =D .b a // 12.ABC ∆内角C B A ,,的对边分别为c b a ,,,已知2=b ,6π=B ,4π=C ,ABC ∆面积=(B )A .232+B .13+C .232-D .13-二.填空题 (每小题4分,共16分,答案写到答题卷上)13.关于不等式的基本性质:①如果a>b ,那么b<a ,如果b<a ,那么a>b 。
第二学期人教A版选修1综合测试卷及详解时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.过点(3,-2)且与椭圆4x2+9y2=36有相同焦点的椭圆的方程是( )A.错误!未找到引用源。
+错误!未找到引用源。
=1B.错误!未找到引用源。
+错误!未找到引用源。
=1C.错误!未找到引用源。
+错误!未找到引用源。
=1D.错误!未找到引用源。
+错误!未找到引用源。
=1【解析】选 C.椭圆4x2+9y2=36的焦点坐标是(±错误!未找到引用源。
,0),设椭圆的标准方程是错误!未找到引用源。
+错误!未找到引用源。
=1,将(3,-2)代入得错误!未找到引用源。
+错误!未找到引用源。
=1,且a2-b2=5,解得b2=10,a2=15.因此所求椭圆的标准方程是错误!未找到引用源。
+错误!未找到引用源。
=1.2.(2014·乐山高二检测)函数y=(x-a)(x-b)在x=a处的导数为( )A.abB.-a(a-b)C.0D.a-b【解析】选D.因为y=x2-(a+b)x+ab,所以y′=2x-(a+b),所以y′|x=a= 2a-(a+b)=a-b.3.(2014·绵阳高二检测)下列各组命题中,满足“p∨q为真,p∧q为假,p为真”的是( )A.p:0=∅;q:0∈∅B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sinx在第一象限是增函数C.p:a+b≥2错误!未找到引用源。
(a,b∈R);q:不等式|x|>x的解集是(-∞,0)D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:3≥2【解析】选C.A中,p,q为假命题,不满足“p∨q”为真;B中,p是真命题,则“p”为假,不满足题意;C中,p是假命题,q为真命题,“p∨q”为真,“p∧q”为假,“p”为真,故C正确;D中,p是真命题,不满足“p”为真.4.(2013·大理高二检测)椭圆错误!未找到引用源。
模块综合测评(时间分钟,满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).(·北京高考)设,是实数,则“>”是“>”的( ).充分而不必要条件.必要而不充分条件.既不充分也不必要条件.充要条件【解析】设=,=-,则有>,但<,故>⇒>;设=-,=,显然>,但<,即>⇒>.故“>”是“>”的既不充分也不必要条件.【答案】.过点(,-)的抛物线的标准方程为( ).=或=-.=.=-或=.=-或=【解析】(,-)在第四象限,所以抛物线只能开口向右或向下,设方程为=(>)或=-(>),代入(,-)得=或=-.故选.【答案】.(·南阳高二检测)下列命题中,正确命题的个数是( )①命题“若-+=,则=”的逆否命题为“若≠,则-+≠”;②“∨为真”是“∧为真”的充分不必要条件;③若∧为假命题,则,均为假命题;④对命题:∃∈,使得++<,则¬:∀∈,均有++≥.....【解析】①正确;②由∨为真可知,,至少有一个是真命题即可,所以∧不一定是真命题;反之,∧是真命题,,均为真命题,所以∨一定是真命题,②不正确;③若∧为假命题,则,至少有一个假命题,③不正确;④正确.【答案】.函数()=+′(),则(-)与()的大小关系为( ).(-)<().(-)=().无法确定.(-)>()【解析】′()=+′(),令=,得′()=+′(),∴′()=-.∴()=+·′()=-,()=-,(-)=.∴(-)>().【答案】.(·福建高考)命题“∀∈[,+∞),+≥”的否定是( ).∀∈(-∞,),+<.∀∈(-∞,),+≥.∃∈[,+∞),+<.∃∈[,+∞),+≥【解析】故原命题的否定为:∃∈[,+∞),+<.故选.【答案】.已知双曲线的离心率=,且与椭圆+=有相同的焦点,则该双曲线的渐近线方程为( ).=±.=±.=±.=±【解析】双曲线的焦点为(±),==,∴=,==,∴渐近线方程。
专题8 直线与圆综合大题归类目录【题型一】圆大题基础:轨迹 -圆 .......................................................................................................................... 1 【题型二】圆大题基础:轨迹 -直线 ...................................................................................................................... 2 【题型三】直线与圆:韦达定理型 .......................................................................................................................... 3 【题型四】直线与圆:定点 ...................................................................................................................................... 4 【题型五】直线与圆:定值 ...................................................................................................................................... 4 【题型六】直线与圆:定直线 .................................................................................................................................. 5 【题型七】探索性、存在性题型 .............................................................................................................................. 5 【题型八】面积与最值 .............................................................................................................................................. 6 【题型九】直线与圆的应用题 .................................................................................................................................. 7 培优第一阶——基础过关练 ...................................................................................................................................... 8 培优第二阶——能力提升练 ...................................................................................................................................... 9 培优第三阶——培优拔尖练 (11)【题型一】圆大题基础:轨迹 -圆【典例分析】(2021·全国·高二课时练习)已知A (3,3),点B 是圆x 2+y 2=1上的动点,点M 是线段AB 上靠近A 的三等分点,则点M 的轨迹方程是( )A .221(2)(2)9x y -+-=B .221(2)(2)9x y -++=C .221(3)(3)3x y -+-=D .221(3)(3)3x y -++=1.(2022·全国·高二课时练习)已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且||2AB =,则||PA PB +的最小值是( )A.B .C.1 D .22.(2017·北京海淀·高二期中)若动点P 在直线1:20l x y --=上,动点Q 在直线2:60l x y --=上,设线段PQ 的中点为00(,)M x y ,且2200(2)(2)8x y -++≤,则2200x y +的取值范围是__________.3.(2020·全国·高三专题练习)在平面直角坐标系xOy 中,已知,B C 为圆224x y +=上两点,点()1,1A ,且0AB AC ⋅=,()12AM AB AC =+,则OAM ∆面积的最大值为______.【题型二】圆大题基础:轨迹 -直线【典例分析】.(2022·全国·高二课时练习)已知点(),m n 在过()2,0-点且与直线20x y -=垂直的直线上,则圆C :(()2214x y -++=上的点到点(),M m n 的轨迹的距离的最小值为( )A .1B .2C .5D .1.(2021·江苏·高二专题练习)已知圆221:4C x y +=与圆222:(1)(3)4C x y -+-=,过动点(,)P a b 分别作圆1C 、圆2C 的切线PM ,PN ,(,M N 分别为切点),若||||PM PN =,则226413a b a b +--+的最小值是A .5B .13C D .852.(2020·全国·高二)已知圆1C :221x y +=与圆2C :22(2)(4)1x y -+-=,过动点()P a b ,分别作圆1C 、圆2C 的切线PM 、PN (M 、N 分别为切点),若PM PN =,的最小值是( )A B C D【题型三】直线与圆:韦达定理型【典例分析】(2021·广东·西樵高中高二阶段练习)已知过点(0,2)A 且斜率为k 的直线l 与圆22:(2)(3)1C x y -+-=交于M ,N 两点. (1)求k 的取值范围;(2)若12OM ON ⋅=,其中O 为坐标原点,求||MN .(2021·江苏省镇江中学高二阶段练习)如图,已知图22:9C x y +=与x 轴的左右交点分别为A ,B ,与y 轴正半轴的交点为D .(1)若直线l 过点(3,4)并且与圆C 相切,求直线l 的方程;(2)若点M ,N 是圆C 上第一象限内的点,直线AM ,AN 分别与y 轴交于点P ,Q ,点P 是线段OQ 中点,直线//MN BD ,求直线AM 的斜率.【题型四】直线与圆:定点【典例分析】(2022·四川省德阳中学校高二开学考试)已知两个定点()0,4A 、()0,1B ,动点P 满足2PA PB =,设动点P 的轨迹为曲线E ,直线:4l y kx =-.(1)求曲线E 的方程;(2)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.(2021·江苏·高二专题练习)在平面直角坐标系xOy 中,圆C :22()()4x a y b -+-=与圆1C :2268160x y x y +--+=相切于点6855A ⎛⎫⎪⎝⎭,,且直线l :10x y +-=与圆C 有公共点.(1)求圆C 的方程;(2)设点P 为圆C 上的动点,直线l 分别与x 轴和y 轴交于点M ,N . ①求证:存在定点B ,使得2PB PM =;①求当12PM PN +取得最小值时,直线PN 的方程.【题型五】直线与圆:定值【典例分析】(2022·江苏省如皋中学高二开学考试)已知直线:(2)(12)630l m x m y m ++-+-=与圆22:40C x y x +-=.(1)求证:直线l 过定点,并求出此定点坐标;(2)设O 为坐标原点,若直线l 与圆C 交于M ,N 两点,且直线OM ,ON 的斜率分别为1k ,2k ,则12k k +是否为定值?若是,求出该定值:若不是,请说明理由.【变式训练】(2021·湖南·怀化五中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)直线n 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之积为2,求证:直线n 过一个定点,并求出该定点坐标.(3)直线m 交圆C 于M ,N 两点,若直线AM ,AN 的斜率之和为0,求证:直线m 的斜率是定值,并求出该定值.【题型六】直线与圆:定直线【典例分析】(2022·四川·遂宁中学高二开学考试(文))已知直线:1l x my =-,圆22:40C x y x ++=. (1)证明:直线l 与圆C 相交;(2)设l 与C 的两个交点分别为A 、B ,弦AB 的中点为M ,求点M 的轨迹方程;(3)在(2)的条件下,设圆C 在点A 处的切线为1l ,在点B 处的切线为2l ,1l 与2l 的交点为Q .试探究:当m 变化时,点Q 是否恒在一条定直线上?若是,请求出这条直线的方程;若不是,说明理由.【变式训练】(2021·江西·高二阶段练习(理))已知圆C 经过()(0,2,P Q 两点,圆心在直线0x y -=上.(1)求圆C 的标准方程;(2)若圆C 与y 轴相交于A ,B 两点(A 在B 上方).直线:1l y kx =+与圆C 交于M ,N 两点,直线AM ,BN 相交于点T .请问点T 是否在定直线上?若是,求出该直线方程;若不是,说明理由.【题型七】探索性、存在性题型【典例分析】(2022·江苏·南京二十七中高二开学考试)已知圆C 过点()2,6A ,且与直线1:100l x y +-=相切于点()6,4B . (1)求圆C 的方程;(2)过点()6,24P 的直线2l 与圆C 交于,M N 两点,若CMN △为直角三角形,求直线2l 的方程; (3)在直线3:2l y x =-上是否存在一点Q ,过点Q 向圆C 引两切线,切点为,E F ,使QEF △为正三角形,若存在,求出点Q 的坐标,若不存在,说明理由.【变式训练】(2021·江苏·高二专题练习)已知圆22:1O x y +=和点(1,4)M . (1)过M 作圆O 的切线,求切线的方程;(2)过M 作直线l 交圆O 于点C ,D 两个不同的点,且CD 不过圆心,再过点C ,D 分别作圆O 的切线,两条切线交于点E ,求证:点E 在同一直线上,并求出该直线的方程;(3)已知(2,8)A ,设P 为满足方程22106PA PO +=的任意一点,过点P 向圆O 引切线,切点为B ,试探究:平面内是否存在一定点N ,使得22PB PN 为定值?若存在,请求出定点N 的坐标,并指出相应的定值;若不存在,请说明理由.【题型八】面积与最值【典例分析】(2021·四川省遂宁市第二中学校高二期中(理))已知圆C :222210x y x y +--+=,直线l 分别交x 轴,y 轴于A ,B 两点,O 为坐标原点,,OA a OB b ==(2,2)a b >>,且圆心C 到直线l 的距离为1.(1)求证:2)22()(a b --=;(2)设(3,1)N ,直线m 过线段CN 的中点M 且分别交x 轴与y 轴的正半轴于点P 、Q ,O 为坐标原点,求①POQ 面积最小时直线m 的方程; (3)求①ABC 面积的最小值.(2022·全国·高二课时练习)已知圆()()22:4C x a y b -+-=,圆心C 在直线y x =上,且被直线:2m x y +=截得弦长为 (1)求圆C 的方程;(2)若0a ≤,点()0,1A ,过A 作两条直线l ,1l ,且满足1l l ⊥,直线l 交圆C 于M ,N 两点,直线1l 交圆C 于P ,Q 两点,求四边形PMQN 面积的最大值.【题型九】直线与圆的应用题【典例分析】(2022·江苏·高二)在①直线l 与B 、C 均相切,①直线l 截A 、B 、C 所得的弦长均相等,这两个条件中任选一个,补充在下面问题中,并求解该问题.问题:2020年是中国传统的农历“鼠年”,现用3个圆构成“卡通鼠”的头像.如图,()0,2A -是A 的圆心,且A 过原点;点B 、C 在x 轴上,B 、C 的半径均为1,B 、C 均与A 外切.直线l 过原点.若___________,求直线l 截A 所得的弦长.【变式训练】1(2022·全国·高二课时练习)赵州桥位于我国河北省,是我国现存最早、保存最好的巨大石拱桥.如图所示,它是一座空腹式的圆弧形石拱桥.(1)利用解析几何的方法,用赵州桥的跨度a 和圆拱高b 表示出赵州桥圆弧所在圆的半径r ; (2)已知37.02a =米,7.23b =米,计算半径r 的值.(结果保留2位小数)2.(2022·福建省永春第一中学高二期末)“跳台滑雪”是冬奥会中的一个比赛项目,俗称“勇敢者的游戏”,观赏性和挑战性极强.如图:一个运动员从起滑门点A 出发,沿着助滑道曲线())0f x b x =-≤≤滑到台端点B 起跳,然后在空中沿抛物线()()2200g x ax ax b x =-->飞行一段时间后在点C 着陆,线段BC 的长度称作运动员的飞行距离,计入最终成绩.已知()220g x ax ax b =--在区间[]0,30上的最大值为30-,最小值为70-.(1)求实数a ,b 的值及助滑道曲线AB 的长度.(2)若运动员某次比赛中着陆点C 与起滑门点A 的高度差为120米,求他的飞行距离(精确到米,5 2.236≈).培优第一阶——基础过关练1.(2020·黑龙江·双鸭山一中高二阶段练习(理))由动点P 向圆221x y +=引两条切线PA 、PB 切点分别为A 、B ,若120APB ∠=︒,则动点P 的轨迹方程为__________.2.(2021·全国·高二期末)在平面直角坐标系xOy 中,点Q 为圆M :22(1)(1)1x y -+-=上一动点,过圆M 外一点P 向圆M 引-条切线,切点为A ,若|P A |=|PO |,则||PQ 的最小值为( )A .21-B .21+C .3214-D .3214+3.(2021·江苏省响水中学高二阶段练习)已知圆C 过点P (1,1),且与圆M :2(2)x ++22(y )+=2r (r >0)关于直线x +y +2=0对称. (1)求圆C 的方程;(2)设Q 为圆C 上的一个动点,求PQ MQ ⋅取得最小值时点Q 的坐标; (3)过点P 作两条相异直线分别与圆C 相交于A ,B ,且直线P A 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.4.(2022·全国·高二课时练习)如图,在平面直角坐标系xOy 中,已知圆221:(1)1C x y ++=,圆222:(3)(4) 1.C x y -+-=设动圆C 同时平分圆1C 、圆2C 的周长.(1)求证:动圆圆心C 在一条定直线上运动.分阶培优练(2)动圆C 是否经过定点⋅若经过,求出定点的坐标;若不经过,请说明理由.5.(2021·广东·广州四十七中高二期中)在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B . (1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.6.(2013·湖南长沙·一模(理))已知1,04A ⎛⎫⎪⎝⎭,点B 是y 轴上的动点,过B 作AB 的垂线l 交x 轴于点Q ,若()2,4,0AP AQ AB M +=.(1)求点P 的轨迹方程;(2)是否存在定直线x a =,以PM 为直径的圆与直线x a =的相交弦长为定值,若存在,求出定直线方程;若不存在,请说明理由.7.(2022·全国·高二单元测试)已知圆C 过坐标原点O 和点(6,A ,且圆心C 在x 轴上.(1)求圆C 的方程: (2)设点()10,0M -.①过点M 的直线l 与圆C 相交于P ,Q 两点,求当PCQ △的面积最大时直线l 的方程;①若点T 是圆C 上任意一点,试问:在平面上是否存在点N ,使得32TM TN =.若存在,求出点N 的坐标,若不存在,请说明理由.8.(2021·江苏·高二专题练习)圆C :22(3)1x y +-=,点(,0)P t 为x 轴上一动点,过点P 引圆C 的两条切线,切点分别为M ,N . (1)若1t =,求切线方程;(2)若两条切线PM ,PN 与直线1y =分别交于A ,B 两点,求ABC 面积的最小值.9.(2021·江苏·扬州市江都区大桥高级中学高二阶段练习)如图,已知一艘海监船O 上配有雷达,其监测范围是半径为25 km 的圆形区域,一艘外籍轮船从位于海监船正东40 km 的A 处出发,径直驶向位于海监船正北30 km 的B 处岛屿,速度为28 km/h.问:这艘外籍轮船能否被海监船监测到?若能,持续时间多长?(要求用坐标法)培优第二阶——能力提升练1.(2021·山东·薛城区教育局教学研究室高二期中)已知圆()()22:254C x y -+-=,T 为圆C 外的动点,过点T 作圆C 的两条切线,切点分别为M 、N ,使TM TN ⋅取得最小值的点T 称为圆C 的萌点,则圆C 的萌点的轨迹方程为_______.2.(2017·重庆一中一模(理))过x 轴下方的一动点P 作抛物线2:2C x y =的两切线,切点分别为,A B ,若直线AB 到圆221x y +=相切,则点P 的轨迹方程为 A .221(0)y x y -=< B .22(2)1y x ++=C .221(0)4y x y +=< D .21x y =--3.(2021·新疆维吾尔自治区喀什第六中学高二阶段练习)已知直线l :x +y +3=0及圆C :()()2239x a y -++=,令圆C 在x 轴同侧移动且与x 轴相切,(1)圆心在何处时,圆在直线l 上截得的弦最长; (2)C 在何处时,l 与y 轴的交点把弦分成1:3;(3)当圆C 移动过程中与直线l 交于A ,B 两点时,求OA ·OB 的取值范围.4.(2022·全国·高二课时练习)已知两个定点A (-4,0),B (-1,0),动点P 满足|P A |=2|PB |.设动点P 的轨迹为曲线E ,直线l :y =kx -4. (1)求曲线E 的方程;(2)若直线l 与曲线E 交于不同的C ,D 两点,且①COD =90°(O 为坐标原点),求直线l 的斜率;(3)若k =12,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM ,QN ,切点为M ,N ,探究:直线MN 是否过定点.5.(2022·四川·盐亭中学高二开学考试)①圆心C 在直线:2780l x y -+=上,圆C 过点B (1,5);①圆C 过直线:3580l x y +-=和圆226160x y y ++-=的交点;在①①这两个条件中任选一个,补充在下面的问题中进行求解.已知圆C 经过点A (6,0),且 . (1)求圆C 的标准方程;(2)过点P (0,1)的直线l 与圆C 交于M ,N 两点 ①求弦M N 中点Q 的轨迹方程; ①求证PM PN ⋅为定值.注:若选择多个条件分别解答,按第一个解答计分. 6.(2021·安徽·高二阶段练习)已知圆C 过原点,圆心C 是直线2y x =+与直线22y x =-+的交点.(1)求圆C 的标准方程;(2)若圆C 与y 轴交于A 、B 两点(A 在B 上方),直线:1l y kx =+与圆C 交于M 、N 两点,直线AM ,BN 相交于T .请问点T 是否在定直线上?若是,求出该直线方程;若不是,说明理由.7.(2021·江西省铜鼓中学高二期中(文))已知点(2,0)P 及圆C :226490x y x y +-++=. (1)若直线l 过点P 且与圆C 相切,求直线l 的方程;(2)设过P 直线1l 与圆C 交于M 、N 两点,当MN =求以MN 为直径的圆的方程; (3)设直线10ax y -+=与圆C 交于A ,B 两点,是否存在实数a ,使得过点(2,0)P 的直线2l 垂直平分弦AB ?若存在,求出实数a 的值.8.(2021·江苏·高二专题练习)如图,已知圆O ①224x y +=,过点E (1,0)的直线l 与圆相交于A ,B 两点.(1)当|AB l 的方程;(2)已知D 在圆O 上,C (2,0),且AB ①CD ,求四边形ACBD 面积的最大值.9.(2022·全国·高二课时练习)河北省赵县的赵州桥是世界上著名的单孔石拱桥,它的跨度是37.02m ,圆拱高约为7.2m ,自建坐标系,求这座圆拱桥的拱所在圆的标准方程.(精确到0.01m )培优第三阶——培优拔尖练1.(2021·江苏·高二专题练习)已知圆:O 229x y +=与x 轴交于点A 、B ,过圆上动点M (M 不与A 、B 重合)作圆O 的切线l ,过点A 、B 分别作x 轴的垂线,与切线l 分别交于点,C D ,直线CB 与AD 交于点Q ,Q 关于M 的对称点为P ,则点P 的轨迹方程为_______2.(2021·广东·湛江市第四中学高二期中)过点(,)P x y 作圆221:1C x y +=与圆222:(2)(2)1C x y -+-=的切线,切点分别为A 、B ,若PA PB =,则22x y +的最小值为( )AB .2C .D .83.(2021·北京铁路二中高二期中)已知圆C 的圆心坐标为(3,0)C ,且该圆经过点(0,4)A .(1)求圆C 的标准方程;(2)若点B 也在圆C 上,且弦AB 长为8,求直线AB 的方程;(3)直线l 交圆C 于M ,N 两点,若直线,AM AN 的斜率之和为0,求直线l 的斜率.4.(2022·全国·高二课时练习)知圆22:4O x y +=,点P 是直线:4l x =上的动点.(1)若从点P 到圆O 的切线长为P 的坐标以及两条切线所夹的劣弧长; (2)若点()2,0A -,()2,0B ,直线PA ,PB 与圆O 的另一交点分别为M ,N ,求证:直线MN 经过定点()1,0Q .5.(2021·全国·高二专题练习)已知点(4,0)A 和(4,4)B ,圆C 与圆22(1)(2)4x y -++=关于直线2450x y --=对称.(1)求圆C 的方程;(2)点P 是圆C 上任意一点,在x 轴上求出一点M (异于点)A 使得点P 到点A 与M 的距离之比PA PM 为定值,并求12PB PA +的最小值.6.(2021·四川省绵阳南山中学高二阶段练习)已知圆O :224x y +=与x 轴的负半轴交于点P ,过点()1,0Q 且不与坐标轴重合的直线与圆O 交于A ,B 两点.(1)设直线PA ,PB 的斜率分别是1k ,2k ,试问12k k ⋅是否为定值?若是定值,求出该定值,若不是定值,请说明理由.(2)延长PA ,与直线4x =相交于点R ,证明:PBR △的外接圆必过除P 点之外的另一个定点,并求出该点坐标.7.(2020·江苏·苏州大学附属中学高二开学考试)已知圆22:1O x y +=,圆()()221:231O x y -+-=过1O 作圆O 的切线,切点为T (T 在第二象限).(1)求1OO T ∠的正弦值;(2)已知点(),P a b ,过P 点分别作两圆切线,若切线长相等,求,a b 关系;(3)是否存在定点(),M m n ,使过点M 有无数对相互垂直的直线12,l l 满足12l l ⊥,且它们分别被圆O 、圆1O 所截得的弦长相等?若存在,求出所有的点M ;若不存在,请说明理由.8.(2020·安徽省太和第一中学高二期中)已知圆M 的圆心M 在x 轴上,半径为1,直线l :4132y x =-被圆M M 在直线l 的下方. (1)求圆M 的方程;(2)设(0,),(0,6)(52)A t B t t +-≤≤-,若圆M 是△ABC 的内切圆,求△ABC 的面积S 的范围.9.(2022·全国·高二课时练习)如图,某海面上有O ,A ,B 三个小岛(面积大小忽略不计),A岛在O 岛的北偏东45°方向距O 岛B 岛在O 岛的正东方向距O 岛20千米处.以O 为坐标原点,O 的正东方向为x 轴的正方向,1千米为一个单位长度,建立平面直角坐标系.圆C 经过O ,A ,B 三点.(1)求圆C 的方程;(2)若圆C 区域内有未知暗礁,现有一船D 在O 岛的南偏西30°方向距O 岛40千米处,正沿着北偏东45°方向行驶,若不改变方向,试问该船有没有触礁的危险?。
第3章圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .87.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F2向∠F1QF2的平分线作垂线F2P,垂足为P,求P点的轨迹方程.18.(12分)已知点P到F1(0,3),F2(0,-3)的距离之和为4,设点P的轨迹为C,直线y=kx+1与轨迹C交于A,B两点.(1)求轨迹C的方程;(2)若|AB|=825,求k.19.(12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过20.(12分)如图,已知抛物线C1:y=14原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的左顶点为M(-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N(1,0)的直线AB交椭圆Γ于A,B两点;当MA→·MB→取得最大值时,求△MAB的面积.22.(12分)已知曲线C上任意一点S(x,y)都满足到直线l′:x=2的距离是它到点T(1,0)的距离的2倍.(1)求曲线C的方程;(2)设曲线C与x轴正半轴交于点A2,不垂直于x轴的直线l与曲线C交于A,B两点(异于点A2).若以AB为直径的圆经过点A2,试问直线l是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C:x2a2+y2b2=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若13<k<12,则椭圆离心率的取值范围是()2.若椭圆x2m+y2n=1(m>n>0)和双曲线x2a-y2b=1(a>b>0)有相同的左、右焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A.m-a B.12(m-a)C.m2-a2 D.m-a3.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .24.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.9.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.10.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l 与抛物线交于A,B两点,弦AB的中点为P,AB的垂直平分线与x轴交于E(x0,0).(1)求k的取值范围;(2)求证:x0<-3.13.设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为43 3.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若AC→·DB→+AD→·CB→=8,求k的值.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.第3章圆锥曲线的方程单元测试卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14 D.14答案C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=1答案C解析因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或0答案C解析由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .5答案B解析由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =ca= 5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()答案B解析方程ax 2-by 2=ab 变形为x 2b -y 2a=1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a =1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a =1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a =1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .8答案B解析由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3 D.2答案B解析如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =ca=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案D解析如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0)12=4x 1,22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x 2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ答案AD解析对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=θ(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=θF (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+1答案ABD 解析若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca =2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案CD解析设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取PF 1→·PF 2→2-142,--142,-=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案ABD解析设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =yx +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以y x +1·y x -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m =1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案38解析由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案2255解析抛物线y 2=2px (p >0)的准线方程为x =-p 2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p ×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案0或2或4解析设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案52解析利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax .=b a x ,-3y +m =0,得=-b a x ,-3y +m =0,得-am a +3b ,所以AB 的中点C设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a =52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b 2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|),即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y1),B (x 2,y 2).2+y 24=1,=kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析设A (x 1,y 1),B (x 2,y 2),(1)=x +m ,2=8x ,得x 2+(2m -8)x +m 2=0,=(2m -8)2-4m 2>0,1+x 2=8-2m ,1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),=k (x -t ),=14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,=-x 02t +1,-y 0=0,0=2t 1+t 2,0=2t 21+t 2.因此,点B(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA →·MB →取得最大值时,求△MAB 的面积.解析(1)由已知a =2,c a =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA →·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).ty +1,+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA →·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2t t 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA →·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA →·MB →的最大值为152.1,+y 22=1,=1,=6=1,=-62,不妨令|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析(1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),kx +m ,y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk 1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→·BA 2→=0.又AA 2→=(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =综上,直线l1.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是()答案C解析由题意知k =b 2a c +a=a -ca =1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是()A .m -a B.12(m -a )C .m 2-a 2D.m -a 答案A解析不妨取P 1|+|PF 2|=2m ,1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .2答案A解析利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.1+r 2=2a 1,1-r 2=2a 2,1=a 1+a 2,2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r 2=41-r 2r 14+34,当r 2r 1=12时,m max=163,∴max=433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案D解析根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A=2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=1答案AB解析因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab =2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c = 3.又c 2=a 2+b 2=3=2,=1=1,=2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案BD 解析∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则c k PO =kA 2B 1,∴b 2a -c =b -a,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案BD解析mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案2+1思路分析根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴b ,又∵点C ,F 在抛物线y 2=2px (p >0)上,2=pa ,2=2解得ba =2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案x 2+32y 2=1思路分析根据题意,求出点B 的坐标代入椭圆方程求解.解析设点B 的坐标为(x 0,y 0).∵x 2+y2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B -51-b 23,-将B -51-b 23,-x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案±1解析设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2)2=4x ,=k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即1+2k 2,又|FQ |=2,F (1,0),1+2k2-=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M ,23b 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设,23b ,代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析(1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),=k (x -1),2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3==-2k k 2=-2k.即直线PE 的方程为y +2k =-令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.解析(1)设F (-c ,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3.于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组k (x +1),+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k2.由已知得6+2k 2+122+3k 2=8,解得k =± 2.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.解析(1)椭圆x225+y29=1的右焦点为(4,0),所以抛物线C的方程为y2=16x.(2)设点M(a,0)(a≠0)满足题设,当PQ的斜率存在时,PQ的方程为y=k(x-a),2=16x,=k(x-a)⇒k2x2-2(ak2+8)x+a2k2=0,则x1+x2=2(ak2+8)k2,x1x2=a2.设P(x1,y1),Q(x2,y2),则由∠POQ=π2,得x1x2+y1y2=0.从而x1x2+k2(x1-a)(x2-a)=0⇒a2-16a=0⇒a=16,若PQ的方程为x=a,代入抛物线方程得y=±4a,当∠POQ=π2时,a=4a,即a=16,所以存在满足条件的点M(16,0).15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.解析(1)设M(x M,y M),∵F1(-c,0),∴x M=-c,y M=b2a,∴k OM=-b2ac.由题意知k AB=-ba,∵OM→与AB→是共线向量,∴-b2ac=-ba,∴b=c,∴a=2c,∴e=22(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,则r1+r2=2a.又|F1F2|=2c,∴由余弦定理,得cosθ=r12+r22-4c22r1r2=(r1+r2)2-2r1r2-4c22r1r2=a2r1r2-1a2-1=0,当且仅当r1=r2时等号成立,∴cosθ≥0,∴θ,π2..。
高中数学学习材料马鸣风萧萧*整理制作综合检测(时间:120分钟,满分:150分)一、选择题(每小题5分,共60分)1.已知下列语句:①你准备考北大吗?②斜率相同的直线平行.③世界上没有免费的午餐.④向抗击非典的英雄致敬!⑤x<-3或x>3.⑥5≥5.其中不是命题的是( )A.①②④B.①④⑤C.②③⑤D.①④答案:B解析:①是疑问句,④是感叹句,⑤无法判断真假.2.下列说法中错误的是( )A.命题“若x2-3x+2=0,则x=1”的逆否命题为:“若x≠1,则x2-3x+2≠0”B.“x=1”是“x2-3x+2=0”的充分不必要条件C.对命题p:A∩⌀=⌀,命题q:A∪⌀=A,则“p∧q”为假命题D.对于命题p:存在x∈R,使得x2+x+1<0,则p:任意的x∈R,均有x2+x+1≥0 答案:C解析:选项C中因为命题p,q均为真命题,所以“p∧q”为真命题.3.已知f(2)=-2,f'(2)=g(2)=1,g'(2)=2,则函数在x=2处的导数值为( )A.-B.C.-5D.5答案:A解析:利用导数的商的运算法则求解,代入条件即可.4.如果p:x>2,q:x≥2,那么p是q的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A解析:易知p⇒q,但q p,故p是q的充分不必要条件.5.θ是任意实数,则方程x2cosθ+y2=4表示的曲线不可能是( )A.椭圆B.双曲线C.抛物线D.圆答案:C解析:无论cosθ为何值,都不会出现x的一次项.6.以=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.=1B.=1C.=1D.=1答案:A解析:将方程=-1化为=1,它表示焦点在y轴上的双曲线,其中a2=12,b2=4,c2=16.由题意知椭圆焦点在y轴上,=16,=12,=16-12=4,∴所求椭圆方程为=1.7.若双曲线=1的两条渐近线恰好是曲线y=ax2+的两条切线,则a的值为( )A. B. C.± D.答案:A解析:双曲线=1的两条渐近线为y=±x,它恰好是抛物线y=ax2+的两条切线,a<0时不可能,∴a>0,且y'=2ax,∴2a=,则a=,经检验此时相切.8.函数f(x)=e x-e x在[0,2]上的最大值为( )A.0B.1C.e-2D.e(e-2)答案:D解析:f'(x)=e x-e,由f'(x)=0,得x=1,比较f(0),f(1),f(2)知最大值为e(e-2).9.如图,F1,F2分别是椭圆=1(a>b>0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该左半椭圆的两个交点,且△F2AB是等边三角形,则椭圆的离心率为( )A. B. C. D.-1答案:D解析:连接AF1(图略),由圆的性质可知,∠F1AF2=90°.又∵△F2AB是等边三角形,∴∠AF2F1=30°.∴AF1=c,AF2=c,∴e=-1.10.函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f'(x)>2,则f(x)>2x+4的解集为( )A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(-∞,+∞)答案:B解析:设m(x)=f(x)-(2x+4),则m'(x)=f'(x)-2>0,∴m(x)在R上是增函数.∵m(-1)=f(-1)-(-2+4)=0,∴m(x)>0的解集为{x|x>-1},即f(x)>2x+4的解集为(-1,+∞).11.下列关于函数f(x)=x3-3x2+1(x∈R)的性质叙述错误的是( )A.f(x)在区间(0,2)上单调递减B.曲线y=f(x)在点(2,-3)处的切线方程为y=-3C.f(x)在x=0处取得最大值1D.f(x)在其定义域上没有最大值答案:C解析:由题意得f'(x)=3x2-6x,令f'(x)=3x2-6x=0,得x=0或x=2,所以函数在(0,2)上单调递减,在x=0处取得极大值1.又f'(2)=0,所以A,B,D均正确,只有C错误.12.设函数f(x)(x∈R)的导函数为f'(x),满足f'(x)>f(x),则当a>0时,f(a)与e a f(0)的大小关系为( )A.f(a)=e a f(0)B.f(a)>e a f(0)C.f(a)<e a f(0)D.不能确定答案:B解析:设函数g(x)=,则g'(x)=>0,所以函数g(x)在R上单调递增,所以g(a)=>g(0)=,即f(a)>e a f(0).二、填空题(每小题4分,共16分)13.命题“各位数字之和是3的倍数的正整数可以被9整除”及它的逆命题、否命题、逆否命题中,假命题有个,真命题有个.答案:2 2解析:在四种命题中,真命题(或假命题)的个数总是偶数0或2或4,本题的原命题是假命题,因此它的逆否命题也是假命题,逆命题“可以被9整除的正整数的各位数字之和是3的倍数”是真命题,因此,否命题也是真命题.14.右图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽米.答案:2解析:建立如图所示的平面直角坐标系.设抛物线的方程为x2=-2py(p>0),由点(2,-2)在抛物线上,可得p=1,则抛物线方程为x2=-2y.当y=-3时,x=±,所以水面宽2米.15.曲线y=x3+11在点P(1,12)处的切线与y轴交点的纵坐标是.答案:9解析:令y=f(x),则f(x)=x3+11,∴f'(x)=3x2.∴f'(1)=3.∴曲线y=x3+11在点P(1,12)处的切线方程为y-12=3(x-1).令x=0,得y=9.16.如图所示,F为双曲线C:=1的左焦点,双曲线C上的点P i与P7-i(i=1,2,3)关于y轴对称,则的值是.答案:18解析:设E为双曲线的右焦点,根据双曲线的对称性,,∴=2a=6,同理可得其他两对差的值.故所求式子的值为18.三、解答题(共74分)17.(12分)判断下列命题是全称命题还是特称命题,并判断其真假.(1)至少有一个整数,它既能被11整除,又能被9整除;(2)∀x∈{x|x>0},x+≥2;(3)∃x∈{x|x∈Z},log2x>2.解:(1)命题中含有存在量词“至少有一个”,因此是特称命题,真命题;(2)命题中含有全称量词“∀”,是全称命题,真命题;(3)命题中含有存在量词“∃”,是特称命题,真命题.18.(12分)命题p:方程=1是焦点在y轴上的椭圆,命题q:函数f(x)=x3-2mx2+(4m-3)x-m在(-∞,+∞)上单调递增,若p∧q为假,p∨q为真,求实数m的取值范围.解:对于命题p,由条件可得m>2.对于命题q,由f'(x)=4x2-4mx+(4m-3)≥0对x∈R恒成立,得Δ=(-4m)2-16(4m-3)≤0,解得1≤m≤3.由p∧q为假,p∨q为真,得p与q一真一假.若p真q假时,则可得解得m>3.若p假q真时,则可得解得1≤m≤2.综上可得,m的取值范围是1≤m≤2或m>3.19.(12分)已知函数f(x)=x3-ax2+3x,a∈R.(1)若x=3是f(x)的极值点,求f(x)在x∈[1,5]上的最大值;(2)若函数f(x)是R上的单调递增函数,求实数a的取值范围.解:(1)f'(x)=3x2-2ax+3,令f'(3)=0,即27-6a+3=0,∴a=5.f(x)=x3-5x2+3x,令f'(x)=3x2-10x+3=0,解得x=3或x=(舍去).当x变化时,f'(x),f (x)的变化情况如下表:x 1 (1,3) 3 (3,5) 5f'(x)-0 +f( x) -1单调递减↘-9单调递增↗15因此,当x=5时,f(x)在区间[1,5]上有最大值是f(5)=15.(2)f(x)是R上的单调递增函数转化为f'(x)≥0在R上恒成立,从而有f'(x)=3x2-2ax+3,由Δ=(-2a)2-4×3×3≤0,解得-3≤a≤3.20.(12分)某上市股票在30天内每股的交易价格P(元)与时间t(天)组成有序数对(t,P),点(t,P)落在下图中的两条线段上,该股票在30天内(包括30天)的日交易量Q(万股)与时间t(天)的部分数据如下表所示.第t 天 410 16 22 Q (万股)36 30 2418(1)根据提供的图象,写出该种股票每股交易价格P (元)与时间t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式;(3)在(2)的结论下,用y (万元)表示该股票日交易额,写出y 关于t 的函数关系式,并求出这30天中第几日交易额最大,最大值为多少? 解:(1)P=(2)设Q=at+b (a ,b 为常数),将(4,36)与(10,30)的坐标代入,得解得a=-1,b=40. 日交易量Q (万股)与时间t (天)的一次函数关系式为Q=40-t ,0<t ≤30,t ∈N *. (3)由(1)(2)可得 y= 即y=当0<t ≤20时,当t=15时,y max =125;当20<t ≤30时,y=t 2-12t+320在(20,30]上是减函数, 所以,第15日交易额最大,最大值为125万元.21.(12分)已知抛物线的顶点在原点,它的准线过双曲线=1(a>0,b>0)的一个焦点,并且这条准线与双曲线的两焦点的连线垂直,抛物线与双曲线交于点P ,求抛物线的方程和双曲线的方程.解:依题意,设抛物线的方程为y 2=2px (p>0),∵点P 在抛物线上,∴6=2p×,∴p=2, ∴所求抛物线的方程为y 2=4x.∵双曲线的左焦点在抛物线的准线x=-1上, ∴c=1,即a 2+b 2=1. 又点P 在双曲线上, ∴=1, 解方程组 得(舍去)∴所求双曲线的方程为4x 2-y 2=1.22.(14分)已知F 1,F 2是椭圆=1(a>b>0)的两个焦点,O 为坐标原点,点P 在椭圆上,且=0,☉O 是以F 1F 2为直径的圆,直线l :y=kx+m 与☉O 相切,并且与椭圆交于不同的两点A ,B.(1)求椭圆的标准方程; (2)当时,求k 的值.解:(1)依题意,可知PF1⊥F1F2,∴c=1,=1,a2=b2+c2,解得a2=2,b2=1,c2=1,∴椭圆的方程为+y2=1.(2)直线l:y=kx+m与☉O:x2+y2=1相切,则=1,即m2=k2+1.由得(1+2k2)x2+4kmx+2m2-2=0.∵直线l与椭圆交于不同的两点A,B,设A(x1,y1),B(x2,y2),∴Δ>0⇒k2>0⇒k≠0,x1+x2=-,x1x2=,∴y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=,∴·=x1x2+y1y2=,∴k=±1.。
人教版高中数学选修1~1 全册同步练习及检测目录1.1命题及其关系1.2充分条件与必要条件11.2充分条件与必要条件21.3_1.4试题1.3简单的逻辑联结词1.4全称量词与存在量词同步测试第1章《常用逻辑用语》单元测试(1)第1章《常用逻辑用语》单元测试(2)第1章《常用逻辑用语》单元测试(3)第1章《常用逻辑用语》单元测试(4)2.1椭圆《椭圆的几何性质》2.1椭圆2.2双曲线双曲线几何性质2.2双曲线双曲线及其标准方程2.3抛物线习题精选2.3抛物线抛物线及其标准方程第2章《圆锥曲线与方程》单元测试(1)第2章《圆锥曲线与方程》单元测试(2)3.1变化率与导数3.2.2导数的运算法则3.2导数的计算3.3.3函数的最大值与最小值3.3《导数在研究函数中的应用》3.4生活中的优化问题举例第3章《导数及其应用》单元测试(1)第3章《导数及其应用》单元测试(2)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件测试练习第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()p m m -∈Z 是奇数,命题:21()q n n +∈Z 是偶数,则下列说法正确的是( )A.p q ∨为真 B.p q ∧为真 C.p ⌝为真D.q ⌝为假答案:A2.在下列各结论中,正确的是( )①“p q ∧”为真是“p q ∨”为真的充分条件但不是必要条件; ②“p q ∧”为假是“p q ∨”为假的充分条件但不是必要条件; ③“p q ∨”为真是“p ⌝”为假的必要条件但不充分条件; ④“p ⌝”为真是“p q ∧”为假的必要条件但不是充分条件. A.①② B.①③ C.②④ D.③④ 答案:B3.由下列命题构成的“p q ∨”,“p q ∧”均为真命题的是( ) A.:p 菱形是正方形,:q 正方形是菱形 B.:2p 是偶数,:2q 不是质数 C.:15p 是质数,:4q 是12的约数 D.{}:p a a b c ∈,,,{}{}:q a a b c ⊆,, 答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>的充分条件但不是必要条件,命题:q 函数y =的定义域是(][)13--+ ,,∞∞,则下列命题( )A.p q ∨假B.p q ∧真C.p 真,q 假D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 的取值范围是( )A.3a -≤或2a ≥ B.2a ≥ C.2a >-D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 的最大取值范围M 是( ) A.40k -≤≤ B.40k -<≤ C.40k -<≤D.40k -<<答案:C 二、填空题7.命题“全等三角形一定相似”的否命题是 ,命题的否定是 . 答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行的两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题的个数为 . 答案:29.命题p q ∧是真命题是命题p q ∨是真命题的 (填“充分”、“必要”或“充要”)条件. 答案:充分10.命题:p x ∃∈R ,2250x x ++<是 (填“全称命题”或“特称命题”),它是 命题(填“真”或“假”),它的否定命题:p ⌝ ,它是 命题(填“真”或“假”).答案:特称命题;假;x ∀∈R ,2250x x ++≥;真11.若x ∀∈R ,11x x a -++>是真命题,则实数a 的取值范围是 .答案:(2)-,∞ 12.若x ∀∈R ,2()(1)x f x a =-是单调减函数,则a 的取值范围是 .答案:(1)- 三、解答题13.已知命题2:10p x mx ++=有两个不相等的负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 的取值范围.解:210x mx ++=有两个不相等的负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<.由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p ⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥. p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点,求实数a 的取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-的图象和x 轴恒有公共点的充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 的二次不等式,恒成立的充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手的话中有两句是对的,请问哪位歌手获奖. 甲获奖或乙获奖.解:①乙说的与甲、丙、丁说的相矛盾,故乙的话是错误的;②若两句正确的话是甲说的和丙说的,则应是甲获奖,正好对应于丁说的错,故此种情况为甲获奖;③若两句正确的话是甲说的和丁说的,两句话矛盾;④若两句正确的话是丙说的和丁说的,则为乙获奖,对应甲说的错,故此种情况乙获奖. 由以上分析知可能是甲获奖或乙获奖.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。
(人教A版)高中数学必修一(全册)课时练习+单元测试卷汇总第1课时集合的含义第2课时集合的表示(2)当M中只含两个元素时, 其元素只能是x和8-x,所以元素个数为2的所有的集合M为{0,8}, {1,7}, {2,6}, {3,5}.(3)满足条件的集合M是由集合{4}, {0,8}, {1,7}, {2,6}, {3,5}中的元素组成, 它包括以下情况:①{4}, {0,8}, {1,7}, {2,6}, {3,5}, 共5个;②{4,0,8}, {4,1,7}, {4,2,6}, {4,3,5}, {0,8,1,7}, {0,8,2,6}, {0,8,3,5}, {1,7,2,6}, {1,7,3,5}, {2,6,3,5}, 共10个;③{4,0,8,1,7}, {4,0,8,2,6}, {4,0,8,3,5}, {4,1,7,2,6}, {4,1,7,3,5}, {4,2,6,3,5}, {0,8,1,7,2,6}, {0,8,1,7,3,5}, {1,7,2,6,3,5}, {0,8,2,6,3,5}, 共10个;④{4,0,8,1,7,2,6}, {4,0,8,1,7,3,5}, {4,0,8,2,6,3,5}, {4,1,7,2,6,3,5}, {0,8,1,7,2,6,3,5}, 共5个;⑤{4,0,8,1,7,2,6,3,5}, 共1个.于是满足题设条件的集合M共有5+10+10+5+1=31(个).A BB A且空集的子集只有一个A{3,4,9},A⊆B A=BA B A BZ), 当A B答案:D解析:因为N ={x |x ≤k }, 又M ={x |-1≤x <2}, 所以当M ⊆N 时, k ≥2.6.已知集合P ={x |x 2=1}, 集合Q ={x |ax =1}, 若Q ⊆P , 则a 的值为( ) A .1 B .-1C .1或-1D .0,1或-1 答案:D解析:P ={-1,1}, 当a =0时, Q =∅, 当a ≠0时, Q ={x |x =1a }, ∵Q ⊆P , ∴a =0或a =±1.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.用适当的符号填空. (1)0________{x |x 2=0};(2)∅________{x ∈R |x 2+1=0}; (3){0,1}________N ;(4){0}________{x |x 2=x };(5){2,1}________{x |x 2-3x +2=0}. 答案:(1)∈ (2)= (3) (4) (5)=8.已知集合P ={x |0<x -a ≤2}, Q ={x |-3<x ≤4}, 若P ⊆Q , 则a 的取值范围是________.答案:{a |-3≤a ≤2}解析:依题意, 知P ={x |a <x ≤a +2}, 又Q ={x |-3<x ≤4}, 若P ⊆Q , 则⎩⎪⎨⎪⎧a ≥-3a +2≤4, 解得-3≤a ≤2.9.已知集合M ={-1,3,2m -1}, 集合N ={3, m 2}, 若N ⊆M , 则实数m =________. 答案:1解析:依题意, 知当N ⊆M 时, 只能有m 2=2m -1, 解得m =1, 经检验知满足题意. 三、解答题(本大题共6小题, 共45分)10.(5分)以下各组中两个对象是什么关系, 用适当的符号表示出来: (1)0与{0}; (2)0与∅; (3)∅与{0};(4){0,1}与{(0,1)}; (5){(a , b )}与{(b , a )}. 解:(1)0∈{0}; (2)0∉∅(3)∅与{0}都是集合, 两者的关系是“包含与不包含”的关系, 所以∅{0}; (4){0,1}是含两个无素0,1的集合;而{(0,1)}是以有序数对为元素的集合, 它只含一个元素.所以{0,1}⊆{(0,1)};且{0,1}⊉{(0,1)};(5)当a =b 时, {(a , b )}={(b , a )};当a ≠b 时, {(a , b )} ⊆{(b , a )}, 且{(a , b )}⊉{(b , a )}. 11.(13分)设集合A ={x , x 2, xy }, 集合B ={1, x , y }, 且集合A 与集合B 相等, 求实数x 、y 的值.解:由题意得⎩⎪⎨⎪⎧ x 2=1,xy =y ,①或⎩⎪⎨⎪⎧x 2=y ,xy =1.②解①, 得⎩⎪⎨⎪⎧ x =1,y ∈R ,或⎩⎪⎨⎪⎧ x =-1,y =0.经检验⎩⎪⎨⎪⎧ x =1,y ∈R ,不合题意, 舍去, 则⎩⎪⎨⎪⎧x =-1,y =0.解②, 得⎩⎪⎨⎪⎧x =1,y =1.经检验⎩⎪⎨⎪⎧x =1,y =1,不合题意, 舍去.∅∅12.(9分)已知M ={(x , y )|y =x 2+2x +5}, N ={(x , y )|y =ax +1}. (1)若M ∩N 有两个元素, 求实数a 的取值范围;(2)若M ∩N 至多有一个元素, 求实数a 的取值范围.解:(1)因为M ∩N 有两个元素, 所以方程组⎩⎪⎨⎪⎧ y =x 2+2x +5y =ax +1有两组解,即一元二次方程x 2+(2-a )x +4=0有两个不等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12>0,结合二次函数y =a 2-4a -12的图象, 可得a >6或a <-2. 所以实数a 的取值范围为{a |a >6或a <-2}.(2)因为M ∩N 至多有一个元素, 所以方程组⎩⎪⎨⎪⎧y =x 2+2x +5y =ax +1无解或只有一组解,即一元二次方程x 2+(2-a )x +4=0无实数根或有两个相等的实数根, 所以Δ=(2-a )2-16=a 2-4a -12≤0,结合二次函数y =a 2-4a -12的图象, 可得-2≤a ≤6. 所以实数a 的取值范围为{a |-2≤a ≤6}.能力提升13.(5分)对于集合A , B , 我们把集合{x |x ∈A , 且x ∉B }叫做集合A 与B 的差集, 记作A -B .若A ={1,2,3,4}, B ={3,4,5,6}, 则A -B =________.答案:{1,2}解:A -B ={x |x ∈A 且x ∉B } ={1,2,3,4}-{3,4,5,6} = {1,2 }.14.(13分)已知集合A ={x |x 2-ax +a 2-19=0}, 集合B ={x |x 2-5x +6=0}, 是否存在实数a , 使得集合A , B 同时满足下列三个条件?①A ≠B ;②A ∪B =B ;③∅ (A ∩B ).若存在, 求出这样的实数a 的值;若不存在, 说明理由.解:由已知条件可得B ={2,3}, 因为A ∪B =B , 且A ≠B , 所以A ⊆B , 又A ≠∅, 所以A ={2}或A ={3}.当A ={2}时, 将2代入A 中方程, 得a 2-2a -15=0, 所以a =-3或a =5, 但此时集合A 分别为{2, -5}和{2,3}, 与A ={2}矛盾.所以a ≠-3, 且a ≠5.当A ={3}时, 同上也能导出矛盾.综上所述, 满足题设要求的实数a 不存在.第5课时 补集1.已知全集U={0,1,3,5,6,8}, 集合A={1,5,8}, B={2}, 则集合(∁U A)∪B=()A.{0,2,3,6} B.{0,3,6}C.{1,2,5,8} D.∅答案:A解析:依题意, 知∁U A={0,3,6}, 又B={2}, 所以(∁U A)∪B={0,2,3,6}.故选A.2.设集合U={1,2,3,4,5}, A={1,3,5}, B={2,3,5}, 则∁U(A∩B)等于()A.{1,2,4} B.{4}C.{3,5} D.{∅}答案:A解析:易知:A∩B={3,5}, 则∁U(A∩B)={1,2,4}, 故选A.3.设全集U={1,2,3,4,5,6,7}, 集合A={1,3,5,7}, B={3,5}, 则下列各式正确的是() A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B) D.U=(∁U A)∪(∁U B)答案:C解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U.故选C.4.已知M, N为集合I的非空真子集, 且M, N不相等, 若N∩(∁I M)=∅, 则M∪N=() A.M B.NC.I D.∅答案:A解析:由N∩(∁I M)=∅, 可知N与∁I M没有公共元素, 则N⊆M, 又M≠N, 所以N M, 所以M∪N=M.故选A.5.已知集合A={x|x<a}, B={x|1<x<2}, 且A∪(∁R B)=R, 则实数a的取值范围是() A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}答案:C解析:由于A∪(∁R B)=R, 则B⊆A, 可知a≥2.故选C.6.如图所示, I是全集, M, P, S是I的3个子集, 则阴影部分所表示的集合是()A.(M∩P)∩S B.(M∩P)∪SC.(M∩P)∩∁I S D.(M∩P)∪∁I S答案:C解析:阴影部分是M与P的公共部分, 且在S的外部, 故选C.7.设集合M ={3,4,7,9}, N ={4,5,7,8,9}, 全集U =M ∪N , 则集合∁U (M ∩N )中的元素共有________个.答案:3解析:因为U =M ∪N ={3,4,5,7,8,9}, M ∩N ={4,7,9}, 则∁U (M ∩N )={3,5,8}, 可知其中的元素有3个.8.已知集合A ={x |-2≤x <3}, B ={x |x <-1}, 则A ∩(∁R B )=________. 答案:{x |-1≤x <3} 解析:因为B ={x |x <-1}, 则∁R B ={x |x ≥-1}, 所以A ∩(∁R B )={x |-2≤x <3}∩{x |x ≥-1}={x |-1≤x <3}.9.高一(1)班共有学生50人, 其中参加诗歌鉴赏兴趣小组的有30人, 参加书法练习兴趣小组的有26人, 同时参加两个兴趣小组的有15人, 则两个兴趣小组都没有参加的学生有________人.答案:9解析:设参加诗歌鉴赏兴趣小组的学生组成集合A , 参加书法练习兴趣小组的学生组成集合B , 如图所示, 依题意card(A )=30, card(B )=26, card(A ∩B )=15, 则card(A ∪B )=30+26-15=41.所以两个兴趣小组都没有参加的学生有50-41=9(人).三、解答题(本大题共4小题, 共45分)10.(12分)已知全集U ={3, a 2-3a -2,2}, A ={3, |a -1|}, ∁U A ={-2}, 求实数a 的值. 解:因为A ∪(∁U A )=U ,所以{3, -2, |a -1|}={3, a 2-3a -2,2},从而⎩⎪⎨⎪⎧a 2-3a -2=-2|a -1|=2, 解得a =3.11.(13分)已知全集U ={x |x ≤4}, 集合A ={x |-2<x <3}, B ={x |-3≤x ≤2}. (1)求(∁U A )∪B ; (2)求A ∩(∁U B ).解:易知∁U A ={x |x ≤-2或3≤x ≤4}, ∁U B ={x |x <-3或2<x ≤4}. 则(1)(∁U A )∪B ={x |x ≤2或3≤x ≤4}. (2)A ∩(∁U B )={x |2<x <3}.能力提升12.(5分)已知全集U ={1,2,3,4,5}, A ={1,5}, B ∁U A , 则集合B 的个数是( ) A .5 B .6 C .7 D .8B∁A.M=N B.M⊆NC.M⊇N D.M, N无公共元素答案:D解析:因为M={(x, y)|(x+3)2+(y-1)2=0}={(-3,1)}是点集, 而N={-3,1}是数集, 所以两个集合没有公共元素, 故选D.6.已知全集U=R, 集合A={x|1<x≤3}, B={x|x>2}, 则A∩(∁U B)等于()A.{x|1<x≤2} B.{x|1≤x<2}C.{x|1≤x≤2} D.{x|1≤x≤3}答案:A解析:U=R, ∴∁U B={x|x≤2}, A∩∁U B={x|1<x≤3}∩{x|x≤2}={x|1<x≤2}.选A.二、填空题(本大题共3个小题, 每小题5分, 共15分)7.已知集合U=R, A={x|-2<x≤5}, B={x|4≤x<6}, 则∁U(A∪B)=________.答案:{x|x≤-2或x≥6}解析:(A∪B)={x|-2<x<6}又U=R, 所以可得∁U(A∪B)={x|x≤-2或x≥6}.8.如图所示, 阴影部分表示的集合为________.答案:∁U(A∪B)∪(A∩B)解析:阴影部分有两类:(1)∁U(A∪B);(2)A∩B.9.设集合M={x|x>1, x∈R}, N={y|y=2x2, x∈R}, P={(x, y)|y=x-1, x∈R, y∈R}, 则(∁R M)∩N=________, M∩P=________.答案:{x|0≤x≤1}∅解析:因为M={x|x>1, x∈R}, 所以∁R M={x|x≤1, x∈R}, 又N={y|y=2x2, x∈R}={y|y≥0}, 所以(∁R M)∩N={x|0≤x≤1}.因为M={x|x>1, x∈R}表达数集, 而P={(x, y)|y=x -1, x∈R, y∈R}表示点集, 所以M∩P=∅.三、解答题(本大题共4小题, 共45分)10.(12分)某班有50名学生, 有36名同学参加学校组织的数学竞赛, 有23名同学参加物理竞赛, 有3名学生两科竞赛均未参加, 问该班有多少同学同时参加了数学、物理两科竞赛?解:全集为U, 其中含有50名学生, 设集合A表示参加数学竞赛的学生, B表示参加物理竞赛的学生, 则U中元素个数为50, A中元素个数为36, B中元素个数为23, 全集中A、B 之外的学生有3名, 设数学、物理均参加的学生为x名, 则有(36-x)+(23-x)+x+3=50, 解得x=12.所以, 本班有12名学生同时参加了数学、物理两科竞赛.11.(13分)已知集合A={x|2<x<7}, B={x|2<x<10}, C={x|5-a<x<a}.(1)求A∪B, (∁R A)∩B;(2)若C⊆B, 求实数a的取值范围.={x|∅满足题设条件, 易知A BA B∅第7课时函数的有关概念第9课时映射与分段函数答案:B解析:因为|x 2-2x |=⎩⎪⎨⎪⎧x 2-2x (x ≤0或x ≥2),-x 2+2x (0<x <2),所以所求的图象为B 选项.5.设集合A ={a , b }, B ={0,1}, 从A 到B 的映射共有______个( )A .2B .3C .4D .5 答案:C解析:如图:(2)y =x 2-2|x |-1=⎩⎪⎨⎪⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图所示.11.(13分)已知函数f (x )=⎩⎪⎨⎪⎧-2x +1,x <1x 2-2x ,x ≥1.(1)试比较f (f (-3))与f (f (3))的大小;(2)画出函数f (x )的图象; (3)若f (x )=1, 求x 的值.解:(1)因为-3<1, 所以f (-3)=-2×(-3)+1=7, 又因为7>1, 所以f (f (-3))=f (7)=72-2×7=35. 因为3>1, 所以f (3)=32-2×3=3, 所以f (f (3))=3. 所以f (f (-3))>f (f (3)).(2)函数图象如图实线部分所示.而f(x1)<0, f(x2)<0, ∴f(x1)f(x2)>0. ∴F(x2)-F(x1)<0, 即F(x2)<F(x1).∴F(x)在(0, +∞)上为减函数.。
模块测试卷时间:120分钟,满分150分一、选择题:本大题共12小题,每小题5分,共60分.每小题给出的选项中,只有一项是符合题目要求的. 1.★★ 已知::31p x ->,24:0310x q x x ->+-,则P ⌝是q ⌝的( ) A .必要不充分条件B .充分不必要条件C .既不充分也不必要条件D .充要条件2. ★★方程221ax by +=表示双曲线的必要不充分条件是( )A .0ab <B .00a b <>且或a>0且b<0C . 5ab <D .0ab >3.★★★ 已知32y x px qx =--和图象与x 轴切于()1,0,则()f x 的极值情况是( )A .极大值为1()3f ,极小值为(1)fB .极大值为(1)f ,极小值为1()3fC .极大值为1()3f ,没有极小值D .极小值为(1)f ,没有极大值4. ★★★已知动点(),P x y 满足等式34x y =+,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .两相交直线5.★★★ 的椭圆称为“优美椭圆”,设曲线C 是优美椭圆,F ,A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于( )A .060B .075C .090D .01206. ★★★已知32()26f x x x m =-+(m 为常数),在[]2,2-上有最大值3,那么此函数在[]2,3-上的最小值为( ) A .37- B .29- C .5- D .11-7. ★★M 是N 的充分不必要条件,N 是P 的充要条件,Q 是P 的必要不充分条件,则Q 是M 的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件8. ★★★已知命题p :()log 2(01)a y ax a a a =+>≠且的图象必过定点()1,1-,命题q :(3)y f x =-的图象关于原点对称,则函数()y f x =的图象关于点()3,0对称,则( )A .p q 且为真B .p q 或为假C .p 真q 假D .p 假q 真9. ★★★已知0a b >>,12,e e 分别为圆锥曲线22221x y a b +=和22221x y a b-=的离心率,则12lg lg e e +的值为( ) A .正数 B .负数 C .零 D .不确定10★★.函数3223125y x x x =--+在[]0,3上的最大值和最小值分别是( )A .5,15-B .5,4C .4,15--D .5,16-11.★★★ 已知直线1y kx =+与曲线3y x ax b =++切于点()1,3,则b 的值为( )A .3B .3-C .5D .5-12. ★★★设'()f x 是函数()f x 的导函数,'()y f x =的图象如图所示,则()y f x =的图象最有可能是( )二、填空题:本大题共4小题,第小题5分,共20分13★★.已知命题p :26x x -≥,q :,x Z ∈又已知“p 且q ”和“非q ”同时为假命题,则x 的值为 。
高中同步测试卷(八)章末检测 圆锥曲线与方程 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.双曲线x 216-y 29=1的焦点坐标是( )A .(-7,0),(7,0)B .(0,-7),(0,7)C .(-4,0),(4,0)D .(-5,0),(5,0)2.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( ) A .椭圆 B .双曲线 C .抛物线 D .圆3.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线互相垂直,那么该双曲线的离心率是( )A .2 B. 3 C. 2 D.324.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-25.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( ) A.45 B.35 C.25 D.156.设P 是椭圆x 216+y 212=1上一点,P 到两焦点F 1,F 2的距离之差为2,则△PF 1F 2是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形7.已知点F 1(-4,0),F 2(4,0),曲线上的动点P 到F 1,F 2的距离之差为6,则该曲线的方程为( )A.x 29-y 27=1(x ≥3)B.x 29-y 27=1C.y 29-x 27=1(y ≥3)D.y 29-x 27=1 8.双曲线虚轴的一个端点为M ,两个焦点为F 1,F 2,∠F 1MF 2=120°,则双曲线的离心率为( )A. 3B.62 C.63 D.339.已知抛物线y 2=2px (p >0),过焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-2 10.设F 1,F 2分别是双曲线x 2-y 29=1的左、右焦点,若P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|等于( )A .2 5 B. 5 C .210 D.1011.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,点M 在棱AB 上,且AM =13,点P 是ABCD面内的动点,且点P 到直线A 1D 1的距离与点P 到点M 的距离的平方差为1,则点P 的轨迹是( )A .抛物线B .双曲线C .直线D .以上都不是12.已知双曲线C 的离心率为2,焦点为F 1、F 2 ,点A 在C 上.若|F 1A |=2|F 2A |,则cos ∠AF 2F 1=( )A.14B.13C.24D.2313.已知点(-2,3)与抛物线y 2=2px (p >0)的焦点的距离是5,则p =________. 14.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),直线l 与抛物线C 相交于A ,B 两点,若AB 的中点为(2,2),则直线l 的方程为________.15.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.16.已知抛物线y 2=4x的准线与双曲线x 2a2-y 2=1交于A ,B 两点,点F 为抛物线的焦点,若△FAB 为直角三角形,则该双曲线的离心率是________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明,证明过程或演算步骤)17.(本小题满分10分)已知抛物线的焦点F 在x 轴上,直线l 过F 且垂直于x 轴,l 与抛物线交于A ,B 两点,O 为坐标原点,若△OAB 的面积等于4,求此抛物线的标准方程.18.(本小题满分12分)双曲线与椭圆有共同的焦点F1(0,-5)、F2(0,5),点P(3,4)是双曲线的渐近线与椭圆的一个交点,求双曲线与椭圆的方程.19.(本小题满分12分)已知抛物线y2=-x与直线l:y=k(x+1)相交于A,B两点.(1)求证:OA⊥OB;(2)当△OAB的面积等于10时,求k的值.20.(本小题满分12分)已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为A(0,1),离心率为2 2,过点B(0,-2)及左焦点F1的直线交椭圆于C,D两点,右焦点设为F2.(1)求椭圆的方程;(2)求△CDF2的面积.21.(本小题满分12分)已知椭圆的两焦点为F1(-1,0)、F2(1,0),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|.若点P在第二象限,∠F2F1P=120°,求△PF1F2的面积.22.(本小题满分12分)如图,已知△AOB的一个顶点为抛物线y2=2x的顶点O,A、B两点都在抛物线上,且∠AOB=90°.(1)证明直线AB必过一定点;(2)求△AOB面积的最小值.参考答案与解析1.[导学号68670046]解析:选D.双曲线焦点在x轴上,且c=16+9=5,所以焦点为(±5,0).2.解析:选C.由于θ∈R,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.3.[导学号68670047]解析:选C.双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线互相垂直,故是等轴双曲线,离心率e= 2.4.解析:选D.焦点在x轴上,则椭圆标准方程中x2项的分母应大于y2项的分母,即a2>a+6,解得a>3或a<-2.又x2,y2项分母应分别大于0,所以a>3或-6<a<-2.5.[导学号68670048]解析:选B.设长轴长为2a,短轴长为2b,焦距为2c,则2a+2c=2×2b,即a+c=2b⇒(a+c)2=4b2=4(a2-c2),整理得5c2+2ac-3a2=0,即5e2+2e-3=0⇒e =35或e =-1(舍).故选B.6.解析:选B.由椭圆定义知|PF 1|+|PF 2|=2a =8.不妨设|PF 1|>|PF 2|, ∵|PF 1|-|PF 2|=2, ∴|PF 1|=5,|PF 2|=3.又|F 1F 2|=2c =216-12=4,∴△PF 1F 2为直角三角形.7.[导学号68670049] 解析:选A.∵点P 到F 1、F 2的距离之差是6,而不是距离的差的绝对值是6,∴点P 所在曲线应是双曲线的右支,由题可知,2a =6,c =4,∴a =3,c =4,b 2=c 2-a 2=7,∴该曲线的方程为x 29-y 27=1(x ≥3),故选A. 8.解析:选B.设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵△MF 1F 2为等腰三角形,∠F 1MF 2=120°,∴∠MF 1F 2=30°,∴tan 30°=b c =33,b 2c 2=13, c 2-a 2c 2=1-(a c )2=13,(c a )2=32,∴e =62. 9.[导学号68670050] 解析:选B.可设A (x 1,y 1),B (x 2,y 2),则中点⎝⎛⎭⎫x 1+x 22,y 1+y 22,∴y 1+y 22=2,⎩⎪⎨⎪⎧y 21=2px 1,①y 22=2px 2,②①-②得y 21-y 22=2p (x 1-x 2)⇒y 1-y 2x 1-x 2=2p y 1+y 2=p y 1+y 22,∴k AB =1=p 2⇒p =2,∴y 2=4x ,∴准线方程为:x =-1,故选B.10.解析:选C.由题意,可知双曲线两个焦点的坐标分别为 F 1(-10,0),F 2(10,0).设点P (x ,y ), 则PF 1→=(-10-x ,-y ),PF 2→=(10-x ,-y ). ∵PF 1→·PF 2→=0,∴x 2+y 2-10=0,即x 2+y 2=10. ∴|PF 1→+PF 2→| =|PF 1→|2+|PF 2→|2+2PF 1→·PF 2→=2(x 2+y 2)+20=210. 11.[导学号68670051]解析:选A.建立如图所示的空间直角坐标系,过P 作PQ 垂直A 1D 1,垂足为Q ,则PQ ∥平面DCC 1D 1,设P 点坐标为(x ,y ,0),则Q (x ,0,1),M (1,13,0),过Q 作QN 垂直DA ,垂足为N ,连接PN ,则|PQ |2=1+y 2.|PM |2=(x -1)2+(y -13)2.由题意知|PQ |2-|PM |2=1,即1+y 2-(x -1)2-(y -13)2=1,化简得(x -1)2=23(y -16).所以轨迹是抛物线.12.解析:选A.由e =ca =2得,c =2a ,如图,由双曲线的定义得|F 1A |-|F 2A |=2a ,又|F 1A |=2|F 2A |,故|F 1A |=4a , |F 2A |=2a ,所以cos ∠AF 2F 1=(4a )2+(2a )2-(4a )22×4a ×2a=14.13.[导学号68670052] 解析:∵抛物线y 2=2px (p >0)的焦点坐标是(p2,0),由两点间距离公式,得(p2+2)2+(-3)2=5.解得p =4. 答案:414.解析:由已知可得抛物线方程为y 2=4x .设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧y 21=4x 1,y 22=4x 2,两式相减,得y 21-y 22=4(x 1-x 2),∴y 1-y 2x 1-x 2=4y 1+y 2=1, ∴k =1,∴直线l 的方程为y -2=x -2,即y =x . 答案:y =x15.解析:依题意,有⎩⎪⎨⎪⎧|PF 1|+|PF 2|=2a ,|PF 1|·|PF 2|=18,|PF 1|2+|PF 2|2=4c 2,解得4c 2+36=4a 2, 即a 2-c 2=9,故有b =3. 答案:3 16.解析:抛物线y 2=4x 的准线为x =-1,又△FAB 为直角三角形,则只有∠AFB =90°, 如图,则A (-1,2)应在双曲线上,代入双曲线方程可得a 2=15,于是c =a 2+1=65. 故e =ca = 6.答案: 617.解:由题意,设抛物线方程为y 2=2px (p ≠0),焦点F (p 2,0),直线l :x =p2,∴A ,B 两点坐标为(p 2,p ),(p2,-p ),∴|AB |=2|p |.∵△OAB 的面积为4, ∴12·⎪⎪⎪⎪p 2·2|p |=4,∴p =±2 2. ∴抛物线方程为y 2=±42x .18.解:由共同的焦点F 1(0,-5)、F 2(0,5), 可设椭圆方程为y 2a 2+x 2a 2-25=1;双曲线方程为y 2b 2-x 225-b 2=1,点P (3,4)在椭圆上,16a 2+9a 2-25=1,a 2=40,双曲线的过点P (3,4)的渐近线为 y =b 25-b 2x ,即4=b 25-b2×3,b 2=16. 所以椭圆方程为y 240+x 215=1;双曲线方程为y 216-x 29=1.19.解:(1)证明:联立⎩⎪⎨⎪⎧y 2=-x ,y =k (x +1),消去x ,得ky 2+y -k =0. 设A (x 1,y 1),B (x 2,y 2), 则y 1+y 2=-1k,y 1·y 2=-1.因为y 21=-x 1,y 22=-x 2,所以(y 1·y 2)2=x 1·x 2,所以x 1·x 2=1, 所以x 1x 2+y 1y 2=0,即OA →·OB →=0, 所以OA ⊥OB .(2)设直线l 与x 轴的交点为N ,则N 的坐标为(-1,0), 所以S △AOB =12|ON |·|y 1-y 2|=12×|ON |×(y 1+y 2)2-4y 1·y 2 =12×1× 1k 2+4=10, 解得k 2=136∴k =±16.20.解:(1)易得椭圆方程为x 22+y 2=1.(2)∵F 1(-1,0),∴直线BF 1的方程为y =-2x -2, 由⎩⎪⎨⎪⎧y =-2x -2x 22+y 2=1,得9x 2+16x +6=0. ∵Δ=162-4×9×6=40>0, 所以直线与椭圆有两个公共点, 设为C (x 1,y 1),D (x 2,y 2),则⎩⎨⎧x 1+x 2=-169,x 1·x 2=23,∴|CD |=1+(-2)2|x 1-x 2| =5·(x 1+x 2)2-4x 1x 2=5·(-169)2-4×23=1092,又点F 2(1,0)到直线BF 1的距离d =455,故S △CDF 2=12|CD |·d =4910.21.解:依题意得,|F 1F 2|=2, 又2|F 1F 2|=|PF 1|+|PF 2|,∴|PF 1|+|PF 2|=4=2a ,∴a =2,c =1,b 2=3. ∵焦点在x 轴上,∴所求椭圆的方程为x 24+y 23=1.设P 点坐标为(x ,y ),∵∠F 2F 1P =120°, ∴PF 1所在直线的方程为y =(x +1)·tan 120°, 即y =-3(x +1).解方程组⎩⎪⎨⎪⎧y =-3(x +1),x 24+y 23=1.并注意到x <0,y >0,可得⎩⎨⎧x =-85,y =335.∴S △PF 1F 2=12|F 1F 2|·335=335.22.解:(1)证明:设OA 所在直线的方程为y =kx (k ≠0),则直线OB 的方程为y =-1kx ,由⎩⎪⎨⎪⎧y =kx ,y 2=2x ,解得⎩⎪⎨⎪⎧x =0y =0或⎩⎨⎧x =2k 2,y =2k ,即A 点的坐标为(2k 2,2k).同样由⎩⎪⎨⎪⎧y =-1k x ,y 2=2x ,解得B 点的坐标为(2k 2,-2k ).∴AB 所在直线的方程为 y +2k =2k+2k 2k2-2k 2(x -2k 2),高中数学-打印版精心校对 化简并整理,得(1k-k )y =x -2. 不论实数k 取任何不等于0的实数,当x =2时,恒有y =0.故直线过定点P (2,0).(2)由于AB 所在直线过定点P (2,0),所以可设AB 所在直线的方程为x =my +2,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =my +2,y 2=2x ,消去x 并整理得y 2-2my -4=0. ∴y 1+y 2=2m ,y 1y 2=-4.于是|y 1-y 2|=(y 1-y 2)2=(y 1+y 2)2-4y 1y 2=(2m )2+16=2m 2+4.S △AOB =12·|OP |·(|y 1|+|y 2|) =12|OP |·|y 1-y 2|=12×2×2m 2+4=2m 2+4. ∴当m =0时,△AOB 的面积取得最小值为4.。
随堂步步高·高三数学·单元测试卷(八)第八单元 圆锥曲线(时量:120分钟 150分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的.1.已知双曲线)0,0(12222>>=-b a by a x 的实轴长、虚轴长、焦距长成等差数列,则双曲线的离心率e 为A .2B .3C .43D .532.已知双曲线的两个焦点是椭圆16410022=+y x 的两个顶点,双曲线的两条准线经过椭圆的两个焦点,则此双曲线的方程是A .1306022=-y x B .1405022=-y x C .1406022=-y x D .1305022=-y x 3.已知P 是椭圆116922=+y x 上的一点,则P 到一条准线的距离与P 到相应焦点的距离之比为A .45B .54C .74D .474.若抛物线y 2=2px (p >0)上一点到准线和抛物线的对称轴的距离分别为10和6,则该点横坐标为A .10B .9C .8D .65.已知动点P (x ,y )满足|1243|)2()1(522++=-+-y x y x ,则P 点的轨迹是 A .两条相交直线 B .抛物线 C .双曲线 D .椭圆6.过抛物线y 2= - x 的焦点F 的直线交抛物线于A 、B 两点,且A 、B 在直线x =14上的射影分别M ,N ,则∠MFN 等于A .45°B .60°C .90°D .以上都不对7.直线y =kx +2与双曲线x 2-y 2=6的右支交于不同两点,则k 的取值范围是 A .(-153,153) B .(0,153) C .(-153,0) D .(-153,-1) 8.已知直线l 交椭圆4x 2+5y 2=80于M 、N 两点,B 是椭圆与y 轴正半轴的交点,若△BMN的重心恰好为椭圆的右焦点,则直线l 的方程是A .5x +6y -28=0B .5x -6y -28=0C .6x +5y -28=0D .6x -5y -28=09.若动点P (x ,y )与两定点M (-a ,0),N (a ,0)连线的斜率之积为常数k (ka ≠0),则P 点的轨迹一定不可能是A .除M 、N 两点外的圆B .除M 、N 两点外的椭圆C .除M 、N 两点外的双曲线D .除M 、N 两点外的抛物线 10.点(x ,y )在曲线)0(sin cos 2πθθθθ≤≤⎩⎨⎧=+-=,y x 为参数上,则 yx 的取值范围是A .[-33,33] B .[-33,0) C .[-33,0] D .(-∞,33]二、填空题:本大题共5小题,每小题4分,共20分.把答案填在横线上.11.双曲线)0,0(1)2(2222>>=--b a by a x 的一条准线被它的两条渐近线截得线段的长度等于它的一个焦点到一条渐近线的距离,则双曲线的两条渐近线的夹角为 .12.双曲线 的两个焦点F 1,F 2,点P 在双曲线上,若PF 1⊥PF 2,则点P 到x 轴的距离为 .13.已知F 1、F 2是椭圆)0(12222>>=+b a by a x 的焦点,P 是椭圆上一点,且∠F 1PF 2=90°,则椭圆的离心率e 的取值范围是 .14.椭圆C 1:)0(12222>>=+b a by a x 在第一象限部分的一点P ,以P 点横坐标作为长轴长,纵坐标作为短轴长作椭圆C 2,如果C 2的离心率等于C 1的离心率,则P 点坐标为 .15.设P 是双曲线y 2=4(x -1)上的一个动点,则点P 到点(0,1)的距离与点P 到y 轴的距离之和的最小值是 . 三、解答题(本大题共6小题,共80分) 16.(本小题满分12分)过双曲线116922=-y x 的右焦点F 作倾斜角为π4的直线交双曲线于A 、B 两点,求线段AB 的中点C 到焦点F 的距离.17.(本小题满分12分)已知双曲线x 2-3y 2=3的右焦点为F ,右准线为l ,以F 为左焦点,以l 为左准线的椭圆C 的中心为A ,又A 点关于直线y =2x 的对称点A ’恰好在双曲线的左准线上,求椭圆的方程. 18.(本小题满分14分)如图所示,在直角梯形ABCD 中,|AD |=3,|AB |=4,|BC |= 3 ,曲线段DE 上任一点到A 、B 两点的距离之和都相等.(1)建立适当的直角坐标系,求曲线段DE 的方程; (2)过C 能否作一条直线与曲线段DE 相交,且所得弦以C 为中点,如果能,求该弦所在的直线 的方程;若不能,说明理由.19.(本小题满分14分)已知H (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足.23,0MQ PM PM HP -==⋅⑴当点P 在y 轴上移动时,求点M 的轨迹C ;⑵过点T (-1,0)作直线l 与轨迹C 交于A 、B 两点,若在x 轴上存在一点E (x 0,0),使得△ABE 是等边三角形,求x 0的值.20.(本小题满分14分)如图,椭圆12222=+by a x 上的点M 与椭圆右焦点F 1的连线MF 1与x 轴垂直,且OM (O 是坐标原点)与椭圆长轴和短轴端点的连线AB 平行.(1)求椭圆的离心率;(2)F 2是椭圆的左焦点,C 是椭圆上的任一点,证明:∠F 1CF 2≤ π2;(3)过F 1且与AB 垂直的直线交椭圆于P 、Q ,若△PF 2Q 的面积是20 3 ,求此时椭圆的方程.21.(本小题满分14分)设x ,y ∈R ,i ,j 为直角坐标平面内x ,y 轴正方向上的单位向量,若向量a =xi +(y +2)j ,b =xi +(y -2)j ,且|a |+|b |=8. (1)求点M (x ,y )的轨迹C 的方程;(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设,OB OA OP +=是否存在这样的直线l ,使得四边形OAPB 为矩形?若存在,求出直线l 的方程;若不存在,试说明理由.圆锥曲线参考答案一、选择题(每小题5分,共50分): 题号 1 2 3 4 5 6 7 8 9 10 答案 DCDBBCDDDC二、填空题(每小题4分,共20分) 11.60°12.165 13.2[,1) 14.22(,)22a b 15.5 三、解答题(共80分)16.解:由已知,AB 的方程为y =x -5,将其代入222112217903690.(,),(,)916x y x x A x y B x y -=+-=得设,则1290.7x x +=-AB 的中点C 的坐标为4580(,)77--,于是||7CF ==17.解:依题意,F (2,0),l :3.2x =设所求方程为2222,01,(1)(43)||2e e e x e x y x =<<---+-即2940,4e +-=其中心为2243(,0).2(1)e A e -- ∵A 与A ’关于直线y =2x 对称,∴A ’的坐标为223(43)(,10(1)e e ---222(43))5(1)e e -- 又A ’在直线22233(4)31,,210(1)22e x e e -=-∴-=-=-上解之得。
于是所求方程为22225()152320, 1.1122824x y x x y --++=+=即18.解:(1)以直线AB 为x 轴,线段AB 的中点为原点建立直角坐标系,则A (-2,0),B(2,0),C (2, 3 ),D (-2,3).依题意,曲线段DE 是以A 、B 为焦点的椭圆的一部分.2221(||||)4,2,12,1(24,021612x y a AD BD c b x y =+===∴+=-≤≤≤≤Q 所求方程为 (2)设这样的弦存在,其方程22(2),(2)11612x y y k x y k x =-=-++=即将其代入得2222(34)16)16360k x k x k ++-+--=设弦的端点为M (x 1,y 1),N (x 2,y 2),则由12122,4,4,2x x x x k +=+===知解得 ∴弦MN所在直线方程为y x =+验证得知,这时(0,(4,0)M N 适合条件.故这样的直线存在,其方程为y x =+ 19.解(1)设点M 的坐标为(x ,y ),则由33.(0,),(,3),0,(3,)(,)0,22322y x y yPM MQ P Q HP PM x =--⋅=-⋅=u u u u r u u u u r u u u r u u u u r 得由得所以y 2=4x 由点Q 在x 轴的正半轴上,得x >0,所以,动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点.(2)设直线l :y =k (x +1),其中k ≠0代入y 2=4x ,得k 2x 2+2(k 2-2)x +k 2=0 ①设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是方程①的两个实数根,由韦达定理得2121222(2),1k x x x x k-+=-= 所以,线段AB 的中点坐标为2222(,)k k k -,线段AB 的垂直平分线方程为 22212(),k y x k k k--=--令 0220,1y x k ==+ ,所以,点E 的坐标为 22(1,0)k +。
因为△ABE 为正三角形,所以,点E 22(1,0)k+到直线AB 的距离等于||,||AB AB ==而所以,0211,.||23k x k k ==±=所以 20.(1)易得222(,),,,,2OM AB b b b b b c M c k k b c a e a ac a ac a a ==∴=⇒=⇒=∴== (2)证:由椭圆定义得:2221212121212||||||||||2,cos 2||||FC F C F F FC F C a FCF FC F C +-+=∠=222121212442||||2 1.2||||||||a c FC F Cb FC F C FC F C --==-22221212121222||||22||||(),cos 110,.222FC F C b c FC F C a FCF FCF a c π+≤=∴∠≥-=-=∴∠≤(3)解:设直线PQ的方程为(),)ay x c y x c b=--=-即 .代入椭圆方程消去x得:2 21yb+=,整理得:22212122520,.5cy c y y y y--=∴+=⋅=-∴222222 12128481()().2||25, 55252PF Qc cy y S c y y c∆-=+==⋅⋅-===因此a2=50,b2=25,所以椭圆方程为221.5025x y+=21.解:(1)∵a=xi+(y+2)j,b=xi+(y-2)j,且|a|+|b|=8 ∴点M(x,y)到两个定点F1(0,-2),F2(0,2)的距离之和为8 ∴点M的轨迹C为F1、F2为焦点的椭圆,其方程为2211216x y+=(2)∵l过y轴上的点(0,3),若直线l是y轴,则A、B两点是椭圆的顶点,这时0OP OA OB=+=u u u r u u u r u u u r。