1、3矩形的性质
- 格式:doc
- 大小:91.00 KB
- 文档页数:4
1.3 矩形的性质和判定【学习目标】: 1、学会识别矩形;2、掌握矩形的概念、判定和性质,会用矩形的性质和判定解决简单的问题;3、会运用矩形的知识解决有关问题, 重点:掌握矩形的性质,并学会应用 难点:理解矩形的特殊性 【知识梳理】1.矩形的定义:有一个角是直角的平行四边形叫做矩形. 2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质: ① 边的性质:对边平行且相等. ② 角的性质:四个角都是直角.③ 对角线性质:对角线互相平分且相等.④ 对称性:矩形是中心对称图形,也是轴对称图形. 直角三角形斜边上的中线等于斜边的一半. 直角三角形中,30︒角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得. 3.矩形的判定判定①:有一个角是直角的平行四边形是矩形. 判定②:对角线相等的平行四边形是矩形. 判定③:有三个角是直角的四边形是矩形. 【例题精讲】【矩形的判定】【例1】如图,在四边形ABCD 中,90ABC BCD ∠=∠=︒,AC BD =. 求证:四边形ABCD 是矩形.【例2】如图,已知在四边形ABCD 中,AC DB ⊥交于O ,E 、F 、G 、H 分别是四边的中点,求证四边形EFGH 是矩形.HG OFEDCBACDB A【例3】如图,在平行四边形ABCD 中,M 是AD 的中点,且MB MC =,求证:四边形ABCD 是矩形.【例4】设凸四边形ABCD 的4个顶点满足条件:每一点到其他3点的距离之和都要相等.试判断这个四边形是什么四边形?请证明你的结论。
【例5】如图,平行四边形ABCD 中,AQ 、BN 、CN 、DQ 分别是DAB ∠、ABC ∠、BCD ∠、CDA ∠的平分线,AQ 与BN 交于P ,CN 与DQ 交于M ,证明:四边形PQMN 是矩形.【例6】如图,在ABC ∆中,D 是BC 边上的一点,E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连结BF . ⑴ 求证:BD CD =.⑵ 如果AB AC =,试判断四边形AFBD 的形状,并证明你的结论.【例7】已知,如图,在ABC ∆中,AB AC =,AD 是BC 边上的高,AF 是BAC ∠的外角平分线,DE ∥AB 交AF 于E ,试说明四边形ADCE 是矩形.FEDCBA321FE D CBAM CDB A NMQPDCBAEFDCAB ABCEFD【例8】如图所示,在Rt ABC ∆中,90ABC ∠=︒,将Rt ABC ∆绕点C 顺时针方向旋转60︒得到DEC ∆点E 在AC 上,再将Rt ABC ∆沿着AB 所在直线翻转180︒得到ABF ∆连接AD . ⑴ 求证:四边形AFCD 是菱形;⑵ 连接BE 并延长交AD 于G 连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?【例9】 如图,在ABCD 中,AE BC ⊥于E ,AF CD ⊥于F ,AEF ∆的两条高相交于M ,20AC =,16EF =,求AM 的长.【例10】已知,如图矩形ABCD 中,延长CB 到E ,使CE AC =,F 是AE 中点. 求证:BF DF ⊥.【矩形的性质及应用】【例11】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
矩形及特殊矩形知识点(经典完整版)
1. 矩形定义
矩形是一种具有四条相等长度的边且四个角都为直角的四边形。
2. 矩形的性质
- 矩形的对角线相等。
- 矩形的两条对边平行且相等。
- 矩形的四个角都为直角。
- 矩形的相邻两边互相垂直。
3. 特殊矩形
除了常见的矩形外,还有一些特殊类型的矩形,包括正方形、
长方形和黄金矩形。
3.1 正方形
正方形是一种特殊的矩形,它的四条边长度相等,且每个角都
为直角。
正方形具有以下性质:
- 任意一条边的长度可以表示为正方形的对角线长度的平方根
乘以√2。
- 正方形的对角线长度等于边长乘以√2。
3.2 长方形
长方形是一种具有不相等的长和宽的矩形,它的两对边分别平行且长度相等。
长方形具有以下性质:
- 长方形的对角线长度可以通过长和宽的值应用勾股定理来计算。
3.3 黄金矩形
黄金矩形是一种特殊的矩形,它的长和宽比例接近黄金分割比例。
黄金矩形具有以下性质:
- 黄金矩形的长和宽的比例可以接近黄金分割比例1:1.618。
- 黄金矩形的长和宽比例可以通过对角线长度的比例来计算。
4. 应用
矩形及其特殊类型的知识在几何学、工程学和建筑学中具有广泛的应用。
矩形可以用于设计建筑物的平面布局、计算房间面积、绘制电路图等。
以上是关于矩形及特殊矩形知识点的经典完整版介绍。
*注:以上内容为简要介绍,未涉及具体应用举例。
如需详细了解,请参考专业教材或专业指导。
*。
矩形中考要求知识点睛矩形的性质及判定1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质矩形是特殊的平行四边形,它具有平行四边形的所有性质,•还具有自己独特的性质:①边的性质:对边平行且相等.②角的性质:四个角都是直角.③对角线性质:对角线互相平分且相等.④对称性:矩形是中心对称图形,也是轴对称图形.直角三角形斜边上的中线等于斜边的一半.直角三角形中,30 角所对的边等于斜边的一半.点评:这两条直角三角形的性质在教材上是应用矩形的对角线推得,用三角形知识也可推得.3.矩形的判定判定①:有一个角是直角的平行四边形是矩形.判定②:对角线相等的平行四边形是矩形.判定③:有三个角是直角的四边形是矩形.例题精讲模块一矩形的概念【例1】矩形的定义:__________________的平行四边形叫做矩形.【答案】有一个角是直角;【例2】矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.【答案】都是直角,相等,经过对边中点的直线;【例3】矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.【答案】平行四边形;对角线相等;三个角【例4】矩形具有而平行四边形不具有的性质为( )A .对角线相等B .对角相等C .对角线互相平分D .对边相等【解析】省略 【答案】A【巩固】矩形ABCD 中,点H 为AD 的中点,P 为BC 上任意一点,PE HC ⊥交HC 于点E ,PF BH ⊥交BH 于点F ,当AB BC ,满足条件 时,四边形PEHF 是矩形 【解析】省略 【答案】2BC AB =模块二 矩形的性质【例5】如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果60BAF ∠=︒,则DAE ∠=FED CBA【解析】省略 【答案】15︒【例6】矩形ABCD 中,对角线AC 、BD 相交于O ,∠AOB =60°,AC =10cm ,则BC =______cm ,周长为 .【答案】,【例7】如图,在矩形ABCD 中,,E F 分别是,BC AD 上的点,且BE DF =. 求证:ABE ∆≌CDF ∆.D EFCAB【解析】省略【答案】∵四边形ABCD 是矩形∴90AB AD B D =∠=∠=,. 在ABE ∆和CDF ∆中, 又∵BE DF =, ∴ABE ∆≌CDF ∆.【例8】如图,在矩形ABCD 中,点E 是BC 上一点,AE AD =,DF AE ⊥,垂足为F .线段DF 与图中的哪一条线段相等?先将你猜想出的结论填写在下面的横线上,然后再加以证明。
自学资料一、矩形及其性质【知识探索】1.有一个角是直角的平行四边形叫做矩形,也是长方形.2.矩形的性质:(1)矩形的四个角都是直角;(2)矩形的两条对角线相等.【说明】(1)矩形具有平行四边形的所有性质;(2)矩形既是中心对称图形,又是轴对称图形.对称中心是其对角线的交点,对称轴是每组对边的垂直平分线.【错题精练】例1.如图,已知矩形ABCD的对角线AC的长为10cm,连结矩形各边中点E、F、G、H得四边形EFGH,则四边形EFGH的周长为()cm.第1页共7页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训A. 20;B. ;C. ;D. 25.例2.已知:如图,矩形ABCD中,AC与BD交于O点,若点E是AO的中点,点F是OD的中点.求证:BE=CF.例3.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:CP=AQ;(2)若BP=1,PQ=2,∠AEF=45°,求矩形ABCD的面积例4.如图,矩形ABCD中,已知AB=6,BC=8,BD的垂直平分线交AD于点E,交BC于点F,则△BOF的面积为__________ .第2页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.如图,在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE于F,连接DE.证明:DF=DC2.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.3.如图,AC为矩形ABCD的对角线,将边AB沿AE折叠,使点B落在AC上的点M处,将边CD沿CF折叠,使点D落在AC上的点N处.(1)求证:四边形AECF是平行四边形;(2)若AB=6,AC=10,求四边形AECF的面积.4.如图,矩形ABCD的对角线AC的中点为O,过点O作OE⊥BC于点E,连接OD,已知AB=6,BC=8,则四边形OECD的周长为__________ .第3页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训5.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=__________ 度二、矩形的判定【知识探索】1.矩形的判定:(1)对角线相等的平行四边形是矩形.(2)有三个角是直角的四边形是矩形.【错题精练】例1.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线与点E,连接BD,EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=50∘,则当∠BOD=°时,四边形BECD是矩形.例2.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.第4页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训【举一反三】1.已知,如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交与BE的延长线于点F,且AF=DC,连结CF.(1)求证:四边形ADCF是平行四边形;(2)当AB与AC有何数量关系时,四边形ADCF为矩形,请说明理由.2.已知:如图,AB=AC,AE=AF,且∠EAB=∠FAC,EF=BC.求证:四边形EBCF是矩形.1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.2.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()第5页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训A. △AFD≌△DCEB. AF=ADC. AB=AFD. BE=AD﹣DF3.如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.(1)证明:CE=CF;(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)4.如图,在直线MN上和直线MN外分别取点A、B,过线段AB的中点作CD平行于MN,分别与∠MAB与∠NAB的平分线相交于点C、D.求证:四边形ACBD是矩形.5.如图,在▱ABCD中,E是DC边的中点,且EA=EB.求证:▱ABCD是矩形.6.下列说法中,错误的是()第6页共7页自学七招之智慧树神拳:知识内容体系化,思维导图来助力非学科培训A. 平行四边形的对角线互相平分B. 对角线互相平分的四边形是平行四边形C. 菱形的对角线互相垂直D. 对角线互相垂直的四边形是菱形第7页共7页自学七招之以背代诵掌:高效记忆有妙招,以背代诵效果好非学科培训。
矩形的认识与分类矩形是几何学中常见的形状之一,具有许多重要的性质和用途。
本文将对矩形的基本定义、特点以及不同类型的矩形进行详细介绍。
一、基本定义矩形是一种有四个直角的四边形,其对边长度相等且相对平行。
也就是说,一条边和和其相邻的两条边构成一个直角。
二、性质和特点1. 对角线相等:矩形的对角线相等,而且相互平分。
2. 相对边平行:矩形的相对边是平行的。
3. 内角和为180度:矩形的内角和等于180度,每个角都是直角。
根据以上性质和特点,我们可以通过测量边长和角度来判断是否是矩形。
三、不同类型的矩形1. 正矩形:正矩形是一种特殊的矩形,其四个内角都是直角,并且所有边长相等。
正矩形常见于建筑物中的窗户、门框等。
2. 长方形:长方形也是一种矩形,其相邻两条边长度不同,但仍然保持直角。
长方形在日常生活中非常常见,例如书、手机、电视等。
3. 菱形:菱形是矩形的一种特殊情况,其对边长度相等,但相邻两边不平行。
菱形在宝石、纹身等领域中常见。
四、矩形的应用矩形在日常生活和工作中有着广泛的应用。
以下是一些常见的应用场景:1. 建筑设计:矩形常用于建筑设计中的墙壁、门窗等构造物的规划和设计。
2. 统计学:矩形常用于绘制柱状图,用于表示数据的分布情况和比较。
3. 地理学:地理学中常用矩形来表示地图上的区域。
总结:矩形是一种重要的几何形状,具有许多独特的性质和特点。
我们可以通过测量边长和角度来判断是否是矩形,并进一步分类为正矩形、长方形和菱形。
矩形在我们的日常生活和工作中有着广泛的应用,需要我们对其进行深入的认识和理解。
注:以上内容为文章的主要部分,字数仅为500字,如需增加字数可适当拓展各小节的内容,提供更多实际应用和相关案例。