1995年全国大学生数学建模竞赛B评述
- 格式:pdf
- 大小:311.51 KB
- 文档页数:4
全国数学建模大赛2023b题:深度评估与思考1. 引言全国数学建模大赛一直以来都是我国高校学子展示数学建模能力的重要舞台。
而2023年的b题作为考察学生综合数学能力和创新思维的重要题目之一,备受关注。
在本文中,我将深入评估并思考全国数学建模大赛2023b题,希望可以对这一题目进行全面、深入的了解。
2. 概述全国数学建模大赛2023b题全国数学建模大赛2023b题是一个涉及数学、计算机科学和工程学知识的综合性题目。
它要求参赛者利用所学知识,对一个现实问题进行建模,并通过数学模型来解决具体问题。
这一题目既考察了参赛者的数学建模能力,也考察了其解决实际问题的能力,因此备受瞩目。
3. 对题目的深度评估为了更深入地理解全国数学建模大赛2023b题,我首先对其进行了深度评估。
这一题目要求参赛者通过对某一现实问题的抽象和分析,构建相应的数学模型,并用数学方法加以求解。
在评估过程中,我发现这一题目对参赛者的数学建模能力、创新思维和解决问题的能力提出了很高的要求。
它也考察了参赛者的团队合作能力和对于实际问题的理解能力。
这一题目在全国数学建模大赛中具有非常重要的地位。
4. 广度评估除了对全国数学建模大赛2023b题的深度评估之外,我还对其进行了广度评估。
这一题目所涉及的现实问题可能涉及各个学科领域,例如社会科学、自然科学、工程科学等。
解决这一问题需要参赛者具备跨学科的知识储备和综合运用能力。
这也意味着参赛者需要具备广阔的学科视野和跨学科的综合能力,这对于他们未来的学术和职业发展都具有极大的促进作用。
5. 个人观点对于全国数学建模大赛2023b题,我认为这是一个既具有挑战性又具有发展潜力的题目。
它既可以锻炼参赛者的数学建模能力和解决问题的能力,同时也可以促进参赛者在学科间的交叉学习和思维方式的变化。
而且,这也是对于学生学习成果的一种很好的检验方式,能够让参赛者更好地理解、掌握所学知识,促进他们的学术成长和创新能力的培养。
基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。
“打车难”已成为社会热点。
以此为背景,本文将要解决分析的三个问题应运而生。
本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。
针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。
之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。
接着,通过主成分分析法确定模型的目标函数、约束条件等。
最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。
针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。
在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。
重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。
针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。
设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。
目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。
通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。
关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
2023年数学建模国赛B题评分标准一、引言数学建模国赛是我国高校学生参与最广泛,影响最深远的大学生科技竞赛之一。
作为国家最高学科竞赛,对数学建模国赛B题的评分标准一直备受关注。
本文将针对2023年数学建模国赛B题的评分标准进行分析和解读,以期让广大参赛学生更好地了解比赛要求,并为备赛提供参考。
二、评分标准概述评分标准是数学建模国赛的重要组成部分,它直接影响到选手的比赛成绩。
2023年数学建模国赛B题的评分标准主要包括A、B、C三部分,分别是模型建立和分析、模型求解和模型的实际意义,每部分都有不同的评分要求和权重。
三、模型建立和分析1.问题分析:(1)对题目进行深入的理解和分析;(2)明确模型的建立方向和目标。
2.建模思路:(1)提出的模型是否合理,能否完整反映问题的本质;(2)建模思路是否清晰,是否能够系统地解决问题;(3)是否有创新性的建模思路。
3.模型假设:(1)对假设条件的合理性和准确性进行讨论;(2)是否考虑到了问题的所有可能影响因素。
4.模型分析:(1)是否有适当的数学工具来分析模型;(2)对模型进行的分析是否充分,是否有误差分析。
四、模型求解1.算法设计:(1)所选择的算法是否适用于实际问题;(2)算法的设计是否合理、稳定,并有较高的精度和收敛速度。
2.程序编制:(1)程序是否编写正确、高效;(2)程序输入输出是否准确;(3)是否考虑到了程序的可扩展性和可移植性。
五、模型的实际意义1.模型的应用:(1)对模型的应用范围和实际意义进行探讨;(2)模型是否具有一定的实际指导意义。
2.结论:(1)对模型的结论是否具有一定的合理性和稳定性;(2)是否能够很好地回答问题并给出一定的结论。
六、评分标准的权重1.模型建立和分析:25%2.模型求解:35%3.模型的实际意义:40%七、结语本文针对2023年数学建模国赛B题的评分标准进行了简要的概述,并对每个评分要点进行了详细的解读。
希望可以帮助参赛学生更好地了解比赛要求,提高备赛水平,取得更好的成绩。
2003高教社杯全国大学生数学建模竞赛B题参考答案注意:以下答案是命题人给出的,仅供参考。
各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。
问题:钢铁工业是国家工业的基础之一,铁矿是钢铁工业的主要原料基地。
许多现代化铁矿是露天开采的,它的生产主要是由电动铲车(以下简称电铲)装车、电动轮自卸卡车(以下简称卡车)运输来完成。
提高这些大型设备的利用率是增加露天矿经济效益的首要任务。
?露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
一般来说,平均铁含量不低于?25%的为矿石,否则为岩石。
?每个铲位的矿石、岩石数量,以及矿石的平均铁含量(称为品位)都是已知的。
每个铲?位至多能安置一台电铲,电铲的平均装车时间为?5?分钟。
卸货地点(以下简称卸点)有卸矿石的矿石漏、2?个铁路倒装场(以下简称倒装场)?和卸岩石的岩石漏、岩场等,每个卸点都有各自的产量要求。
从保护国家资源的角度及?矿山的经济效益考虑,应该尽量把矿石按矿石卸点需要的铁含量(假设要求都为29.5%?1%,称为品位限制)搭配起来送到卸点,搭配的量在一个班次(8?小时)内满足?品位限制即可。
从长远看,卸点可以移动,但一个班次内不变。
卡车的平均卸车时间为3?分钟。
所用卡车载重量为?154?吨,平均时速?28kmh?。
卡车的耗油量很大,每个班次每台车消耗近?1?吨柴油。
发动机点火时需要消耗相当多的电瓶能量,故一个班次中只在开始?工作时点火一次。
卡车在等待时所耗费的能量也是相当可观的,原则上在安排时不应发?生卡车等待的情况。
电铲和卸点都不能同时为两辆及两辆以上卡车服务。
卡车每次都是满载运输。
?每个铲位到每个卸点的道路都是专用的宽?60?m?的双向车道,不会出现堵车现象,每段道路的里程都是已知的。
一个班次的生产计划应该包含以下内容:出动几台电铲,分别在哪些铲位上;出动几辆卡车,分别在哪些路线上各运输多少次(因为随机因素影响,装卸时间与运输时间?都不精确,所以排时计划无效,只求出各条路线上的卡车数及安排即可)。
目录1996年全国大学生数学建模竞赛题目 (2)A题最优捕鱼策略 (2)B题节水洗衣机 (2)1997年全国大学生数学建模竞赛题目 (3)A题零件的参数设计 (3)B题截断切割 (4)1998年全国大学生数学建模竞赛题目 (5)A题投资的收益和风险 (5)B题灾情巡视路线 (6)1999创维杯全国大学生数学建模竞赛题目 (7)A题自动化车床管理 (7)B题钻井布局 (8)C题煤矸石堆积 (9)D题钻井布局(同 B 题) (9)2000网易杯全国大学生数学建模竞赛题目 (10)A题 DNA分子排序 (10)B题钢管订购和运输 (12)C题飞越北极 (15)D题空洞探测 (15)2001年全国大学生数学建模竞赛题目 (17)A题血管的三维重建 (17)B题公交车调度 (18)C题基金使用计划 (20)D题公交车调度 (20)2002高教社杯全国大学生数学建模竞赛题目 (21)A题车灯线光源的优化设计 (21)B题彩票中的数学 (21)C题车灯线光源的计算 (23)D题赛程安排 (23)2003高教社杯全国大学生数学建模竞赛题目 (24)A题 SARS的传播 (24)B题露天矿生产的车辆安排 (28)C题 SARS的传播 (29)D题抢渡长江 (30)2004高教社杯全国大学生数学建模竞赛题目 (31)A题奥运会临时超市网点设计 (31)B题电力市场的输电阻塞管理 (35)C题饮酒驾车 (39)D题公务员招聘 (39)2005高教社杯全国大学生数学建模竞赛题目 (42)A题: 长江水质的评价和预测 (42)B题: DVD在线租赁 (43)C题雨量预报方法的评价 (44)D题: DVD在线租赁 (45)2006高教社杯全国大学生数学建模竞赛题目 (46)A题:出版社的资源配置 (46)B题: 艾滋病疗法的评价及疗效的预测 (46)C题: 易拉罐形状和尺寸的最优设计 (47)D题: 煤矿瓦斯和煤尘的监测与控制 (48)2007高教社杯全国大学生数学建模竞赛题目 (53)A题:中国人口增长预测 (53)2008高教社杯全国大学生数学建模竞赛题目 (56)A题数码相机定位 (56)B题高等教育学费标准探讨 (57)C题地面搜索 (57)2009高教社杯全国大学生数学建模竞赛题目 (59)A题制动器试验台的控制方法分析 (59)B题眼科病床的合理安排 (60)C题卫星和飞船的跟踪测控 (61)D题会议筹备 (61)2010全国高教社杯数学建模题目 (65)A题储油罐的变位识别与罐容表标定 (65)B题 2010年上海世博会影响力的定量评估 (66)A题最优捕鱼策略为了保护人类赖以生存的自然环境,可再生资源(如渔业、林业资源)的开发必须适度.一种合理、简化的策略是,在实现可持续收获的前提下,追求最大产量或最佳效益.考虑对某种鱼(鳀鱼)的最优捕捞策略:假设这种鱼分四个年龄组,称1龄鱼,…,4龄鱼,各年龄组每条鱼的平均重量分别为 5.07,11.55,17.86,22.99(g),各年龄组鱼的自然死亡率为0.8(1/年),这种鱼为季节性集产卵繁殖,平均每条4龄鱼的产卵量为1.109× (个),3龄鱼的产卵量为这个数的一半,2龄鱼和1龄鱼不产卵,产卵和孵化期为每年的最后4个月,卵孵化并成活为1龄鱼,成活率(1龄鱼条数与产卵总量n之比)为1.22× /(1.22× +n).渔业管理部门规定,每年只允许在产卵孵化期前的8个月内进行捕捞作业.如果每年投入的捕捞能力(如渔船数﹑下网次数等)固定不变,这时单位时间捕捞量与各年龄组鱼群条数成正比,比例系数不妨称捕捞强度系数.通常使用13mm网眼的拉网,这种网只能捕3龄鱼和4龄鱼,其两个捕捞强度系数之比为0.42:1.渔业上称这种方式为固定努力量捕捞.1)建立数学模型分析如何实现可持续捕获(即每年开始捕捞时鱼场中各年龄组鱼群不变),并且在此前提下得到最高的年收获量(捕捞总重量).2)某渔业公司承包这种鱼的捕捞业务5年,合同要求5年后鱼群的生产能力不能受到太大破坏. 已知承包时各年龄组鱼群的数量分别为:122,29.7,10.1,3.29(×条),如果任用固定努力量的捕捞方式,该公司应采取怎样的策略才能使总收获量最高.(北京师范大学刘来福提供)B题节水洗衣机我国淡水资源有限,节约用水人人又责,洗衣在家庭用水中占有相当大的份额,目前洗衣机已相当普及,节约洗衣机用水十分重要.假设在放入衣服和洗涤剂后洗衣机的运行过程为:加水-漂水-脱水-加水-漂洗-脱水-…-加水-漂洗-脱水(称"加水-漂洗-脱水"为运行一轮).请为洗衣机设计一种程序(包括运行多少轮﹑每轮加水量等),使得在满足一定洗涤效果的条件下,总用水量最少.选用合理的数据进行计算,对照目前常用的洗衣机的运行情况,对你的模型和结果做出评价.A题零件的参数设计一件产品由若干零件组装而成,标志产品性能的某个参数取决于这些零件的参数。
综合题目参考答案1. 赛程安排(2002年全国大学生数学建模竞赛D 题)(1)用多种方法都能给出一个达到要求的赛程。
(2)用多种方法可以证明支球队“各队每两场比赛最小相隔场次的上界”n r (如=5时上界为1)是,如:n ⎦⎤⎢⎣⎡-23n 设赛程中某场比赛是,两队, 队参加的下一场比赛是,两队(≠i j i i k k ),要使各队每两场比赛最小相隔场次为,则上述两场比赛之间必须有除,j r i ,以外的2支球队参赛,于是,注意到为整数即得。
j k r 32+≥r n r ⎥⎦⎤⎢⎣⎡-≤23n r (3)用构造性的办法可以证明这个上界是可以达到的,即对任意的编排出n 达到该上界的赛程。
如对于=8, =9可以得到:n n 1A 2A 3A 4A 5A 6A 7A 8A 每两场比赛相隔场次数相隔场次总数1A ×159131721253,3,3,3,3,3182A 1×206231126164,4,4,3,2,2193A 520×2410271522,4,4,4,3,2194A 9624×28243192,2,4,4,4,3195A 13231028×41872,2,2,4,4,4186A 171127144×8223,2,2,2,4,4177A 2126153188×124,3,2,2,2,4178A 251621972212×4,4,3,2,2,2171A 2A 3A 4A 5A 6A 7A 8A 9A 每两场比赛相隔场次数相隔场次总数1A ×366311126162114,4,4,4,4,4,4,282A 36×2277221217324,4,4,4,4,4,3273A 62×3515302025103,3,4,4,4,4,4264A 312735×318813234,4,4,4,3,3,3255A 117153×342429193,3,3,3,4,4,4246A 2622301834×49144,4,3,3,3,3237A 1612208244×33283,3,3,3,3,3,4228A 2117251329933×53,3,3,3,3,3,3,219A 13210231914285×3,4,3,4,3,4,324可以看到,=8时每两场比赛相隔场次数只有2,3,4,=9时每两场比n n 赛相隔场次数只有3,4,以上结果可以推广,即为偶数时每两场比赛相隔场n 次数只有,,,为奇数时只有,。