13-2002年全国初中数学竞赛试题及答案
- 格式:doc
- 大小:301.50 KB
- 文档页数:11
2002年全国初中数学竞赛----辽宁省预赛试卷一、选择题1、已知点P 的坐标为(x, y)且2(1)0x +=,则点P 关于原点的对称点P 的坐标是( )A 、(-1,32)B 、(-1,32-)C 、(1,32-)D 、(1,32)2、已知α是锐角,且tg α,那么下列各式中正确的是( ) A 、60°<α<90° B 、45°<α<60°C 、30°<α<45°D 、0°<α<30° 3、内接于半径为1的圆的正方形的面积是( )A 、BC 、2D 、44、设a 、b 为两圆半径,c 为圆心距,且方程x 2-2ax+b 2=c(b-a)有两个相等的实数根,则这两个圆( )A 、相交B 、内切C 、相等D 、相等或外切5、设a =,1b =,c =,则a ,b ,c 之间的大小关系是( ) A 、c >b >a B 、a >c >b C 、b >a >c D 、a >b >c6、制作一个圆锥模型,其侧面是用一个半径为9cm ,圆心角为240°的扇形铁皮围成的,则圆锥底面半径为( )A 、4cmB 、3cmC 、6cmD 、12cm7、右图是一次函数my x m a =+的图象,那么△AOB 的面积等于( )A 、12am B 、12am - C 、1||2a m D 、||am8、平面上有O 和I 两点,以O 为外心,I 为内心的三角形( ) A 、只能画出一个 B 、只能画出2个 C 、最多画出3个 D 、能画出无数个9、二次函数y=x 2+mx+n 中,如果m-n=0,那么它的图象一定经过点( ) A 、(-1,-1) B 、(1,-1) C 、(-1,1) D 、(1,1)10、已知a 为非负整数,若关于x 的方程240x a -+=至少有一个整数根,则a 可以取值的个数为( )A 、1B 、2C 、3D 、4二、填空题11、解方程22112()10x x x x +-+-=时,若设1y x x=+,则原方程可化为关于y 的一元二次方程是______。
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2013年全国初中数学竞赛试题及参考答案(广东省3月17日复试)一.选择题(5×7'=35')1.对正整数n ,记n !=1×2×...×n,则1!+2!+3!+...+10!的末位数是( ).A .0B .1C .3D .5【分析】5≥n 时,n !的个位数均为0,只考虑前4个数的个位数之和即可,1+2+6+4=13,故式子的个位数是3. 本题选C .2.已知关于x 的不等式组⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x x x 235352恰好有5个整数解,则t 的取值范围是( ). 2116.-<<-t A 2116.-<≤-t B 2116.-≤<-t C 2116.-≤≤-t D 【分析】2023235352<<-⇒⎪⎪⎩⎪⎪⎨⎧<-+->-+x t x t x x x ,则5个整数解是15,16,17,18,19=x .注意到15=x 时,只有4个整数解.所以2116152314-≤<-⇒<-≤t t ,本题选C 3.已知关于x 的方程xx x a x x x x 22222--=-+-恰好有一个实根,则实数a 的值有( )个. A .1 B .2 C .3 D .4【分析】422222222+-=⇒--=-+-x x a xx x a x x x x ,下面先考虑增根: ⅰ)令0=x ,则4=a ,当4=a 时,0,1,022212===-x x x x (舍);ⅱ)令2=x ,则8=a ,当8=a 时,2,1,0422212=-==--x x x x (舍);再考虑等根:ⅲ)对04222=-+-a x x ,270)4(84=→=--=∆a a ,当21,272,1==x a . 故27,8,4=a ,21,1,1-=x 共3个.本题选C .4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( ).A .3B .4C .5D .6【分析】设ABC ∆底边BC 上的高为h ,则DE CF CF BC h 121244848====,)(2121212121h h DE h DE h DE S S BDE ADE +⋅⋅=⋅⋅+⋅⋅=+∆∆ 本题选D .6122121=⋅⋅=⋅⋅=DE DE h DE5.在分别标有号码2,3,4,...,10的9个球中,随机取出两个球,记下它们的标号,则较大标号被较小标号整除的概率是( ).41.A 92.B 185.C 367.D 【分析】9236811291214==+++=C C C P 本题选B .二.填空题(5×7'=35')6.设33=a ,b 是a 2的小数部分,则3)2+b (的值为 .【分析】考虑到33=a ,则33333332292,29,327982,93=+-==<<===b b a 则9)9()2333==+b (7.一个质地均匀的正方体的六个面上分别标有数1、2、3、4、5、6.掷这个正方体三次,则其朝上的面的数的和为3的倍数的概率是 .【分析】对第一次向上面为1时,后面两次所得数字与1的和是3的倍数有111,114,123,126,132,135,141,144,153,156,162,165共12种;对于首次掷得向上的面是2,3,4,5,6的,后面两次与首次的和为3的倍数是轮换对称的,故和为3的倍数共有612⨯,而总次数是666⨯⨯次,则其概率为31666612=⨯⨯⨯=P .8.已知正整数a 、b 、c 满足a +b 2-2c -2=0,3a 2-8b +c=0,则abc 的最大值为 .【分析】先消去c ,再配方估算.24166)8()121(621662222+=-++⇒=-++b a b b a a观察易知上式中3≤a ,故3,2,1=a ,经试算,2,1=a 时,b 均不是整数;当3=a 时,11,5=b ,于是有)61,11,3(),13,5,3(),,(=c b a ,故201361113max =⨯⨯=abc .9. 实数a 、b 、c 、d 满足:一元二次方程x 2+cx +d=0的两根为a 、b ,一元二次方程x 2+ax +b=0的两根为c 、d ,则所有满足条件的数组(a 、b 、c 、d )为 .【分析】由根与系数关系知b cd d ab d b a d c c b a ===⇒=++=++,,0,然后可得(a 、b 、c 、d )=(1,-2,1,-2)本题在化简过程中,总感觉还有,此处仅给出一组,好像不严谨,期待官方答案.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,园珠笔每支售7元,开始时他有铅笔和圆珠笔共350支,当天虽然没有全部卖完,但是他的销售收入恰好是2013元,则他至少卖出了 支圆珠笔.【分析】设4元的卖x 支,7元的卖y 支,则350,201374<+=+y x y x 4125031820124201374++-=⇒++-=⇒=+y y x y y x y x 令1441-=⇒=+k y k y ,则k k k x 7505)14(2503-=+--=,又350≤+y x ,即523151350147505≥−−→−≥⇒≤-+-∈k k k k N k ,207152414=-⨯≥-=k y 即他至少卖了207支圆珠笔.三.解答题(4×20'=80')11.如图,抛物线y =ax 2+bx -3,顶点为E ,该抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且OB=OC=3OA .直线131+-=x y 与y 轴交于点D ,求∠DBC -∠CBE .【分析】易知4)1(3222--=--=x x x y ,)4,1()3,0()0,3(),0,1(---D C B A ,,,作EF ⊥CO 于F ,连CE ,易知△OBC 、△CEF 都是等腰直角三角形,则△CBE 是直角三角形.分别在Rt △OBD 、Rt △BCE 中运用正切定义,即有31232tan 31tan =====BC CE ,OB OD βα,则βα= 从而可得∠DBC -∠CBE=45º.12.如图,已知AB 为圆O 的直径,C 为圆周上一点,D 为线段OB 内一点(不是端点),满足CD ⊥AB ,DE ⊥CO ,E 为垂足,若CE =10,且AD与DB 的长均为正整数,求线段AD 的长.【分析】设圆O 半径为r ,则由相似或三角函数或射影定理可知,)10(1022-=⇒⋅=r DE OE CE DE ,又r r DE CE CD 10)10(10102222=-+=+=由相交弦定理(考虑垂径时)或连AC 、BC 用相似或三角函数,易知r CD BD AD 102==⋅①,而r BD AD 2=+②令y BD x AD ==,,①/②即155210-=⇒==+y x y r r y x xy ,显然有x y <<0,则10<<x y ,即1051150<<⇒<-<y y ,y 为正整数,故9,8,7,6=y ,又x 也为正整数,经逐一试算,仅当30,6==x y 这一组是正整数,故30=AD .13.设a 、b 、c 是素数,记c b a z b a c y a c b x -+=-+=-+=,,,当2,2=-=y x y z 时,a 、b 、c能否构成三角形的三边长?证明你的结论. 【分析】281102222a z a z z y z a z y cb a z b ac y +±-=⇒=-+−−−→−==+⇒⎩⎨⎧-+=-+= a 、b 、c 是素数,则z c b a =-+为整数,则1281+=+k a ,k 为正整数.化简整理后,有a k k 2)1(=+⎩⎨⎧=+==+==⇒=+==+=⇒3121,2(121121,1a k k )a a k k 非质数 2,332811-=−−→−=+±-=z a a z ⅰ)112,2529,9,3=⇒=-=⇒=-==b b z x x x y z ,c b a b =<=+=+=1720173,17不能围成三角形;ⅱ)是合数9,16,4,2====b x y z综上所述,以a 、b 、c 不能围成三角形.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数) .求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,...,a n ,满足对任意一个正整数m ,在a 1,a 2,...,a n 中都至少有一个为m 的“魔术数”.【分析】考虑到魔术数均为7的倍数,又a 1,a 2,...,a n 互不相等,不妨设n a a a <<<...21,余数必为1、2、3、4、5、6,0,设t k a i i +=7,(6,5,4,3,2,1,0;,...,3,2,1==t n i ),至少有一个为m 的“魔术数”.因为m a k i +⋅10(k 是m 的位数),是7的倍数,当6≤i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6中的6个;当7=i 时,而k i a 10⋅除以7的余数都是0,1,2,3,4,5,6这7个数字循环出现,当7=i 时,依抽屉原理,k i a 10⋅与m 二者余数的和至少有一个是7,此时m a k i +⋅10被7整除,即n =7.。
2013年全国初中数学竞赛试题及参考答案一、选择题1.设非零实数a ,b ,c 满足2302340a b c a b c ++=⎧⎨++=⎩,,则222ab bc caa b c ++++的值为( ). (A )12-(B )0 (C )12(D )1【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++.2.已知a ,b ,c 是实常数,关于x 的一元二次方程20ax bx c ++=有两个非零实根1x ,2x ,则下列关于x 的一元二次方程中,以211x ,221x 为两个实根的是( ). (A )2222(2)0c x b ac x a +-+= (B )2222(2)0c x b ac x a --+= (C )2222(2)0c x b ac x a +--= (D )2222(2)0c x b ac x a ---=【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12bx x a+=-,12c x x a =,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b a c x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c--+=,即2222(2)0c x b ac x a --+=. 3.如图,在Rt △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E .若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ).(A )OD (B )OE (C )DE(D )AC(第3题)【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数.由Rt △DOE ∽Rt △COD ,知2OD OE OC=,·DC DO DE OC =都是有理数,而AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且4BC CF =,DCFE 是平行四边形,则图中阴影部分的面积为( ).(A )3 (B )4 (C )6 (D )8【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC.连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6.5.对于任意实数x ,y ,z ,定义运算“*”为:()()32233333451160x y x y xy x y x y +++*=+++-,且()x y z x y z **=**,则2013201232****的值为( ).(A )607967(B )1821967(C )5463967(D )16389967【答案】C【解答】设201320124m ***=,则()20132012433m ****=*32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.(第3题答题)(第4题答题)(第4题)二、填空题6.设a =b 是2a 的小数部分,则3(2)b +的值为 . 【答案】9【解答】由于2123a a <<<<,故222b a =-=,因此33(2)9b +==. 7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别是3,4,5,则四边形AEFD 的面积是 .【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413. 8.已知正整数a ,b ,c 满足2220+--=a b c ,2380-+=a b c ,则abc 的最大值为 .【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.(第7题答题)(第7题)9.实数a ,b ,c ,d 满足:一元二次方程20x cx d ++=的两根为a ,b ,一元二次方程20x ax b ++=的两根为c ,d ,则所有满足条件的数组(),,,a b c d 为 .【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有全部卖完,但是他的销售收入恰好是2013元.则他至少卖出了 支圆珠笔.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+, 所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y=23ax bx+-,顶点为E,该抛物线与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA.直线113y x=-+与y轴交于点D.求∠DBC-∠CBE.【解答】将0x=分别代入y=113x-+,23y ax bx=+-知,D(0,1),C(0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=CE BE=因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.(第11题答题)(第11题)12.设△ABC 的外心,垂心分别为O H ,,若B C H O ,,,共圆,对于所有的△ABC ,求BAC ∠所有可能的度数.【解答】分三种情况讨论. (i )若△ABC 为锐角三角形.因为1802BHC A BOC A ∠=︒-∠∠=∠,,所以由BHC BOC ∠=∠,可得1802A A ︒-∠=∠,于是60A ∠=︒.(ii )若△ABC 为钝角三角形.当90A ∠>︒时,因为()1802180BHC A BOC A ∠=︒-∠∠=︒-∠,,所以由180BHC BOC ∠+∠=︒,可得()3180180A ︒-∠=︒,于是120A ∠=︒。
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18.答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n .答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1.答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是 (A)2;(B)3;(C)2 ;(D)3.答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则 (A)21< c < 2 ; (B)0< c ≤21; 答( )(C )c > 2; (D )c = 2.答( )二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 . 2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+ac b 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y , yx 四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定.3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7.答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4.答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是 (A)21S S > (B)21S S =(C)21S S < (D)不确定 答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3.答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3(C)2:5 (D)3:10答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11.答( )二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则x x x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是(A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错.3.设x 是实数,11++-=x x y .下列四个结论:Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值;Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B )53124x x x x x >>>>;(C )52413x x x x x >>>>; (D )24135x x x x x >>>>.5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角,则)cos(OCB OBC ∠+∠的值是 (A)22- (B)22 (C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于 (A)c b a 1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin .答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+答( )二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________. 2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________. 第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (17)2001年全国初中数学竞赛试卷及答案解析 (24)2002年全国初中数学竞赛试卷及答案解析 (31)2003年全国初中数学竞赛试卷及答案解析 (39)2004年全国初中数学竞赛试卷及答案解析 (49)2005年全国初中数学竞赛试卷及答案解析 (57)2006年全国初中数学竞赛试卷及答案解析 (64)2007年全国初中数学竞赛试卷及答案解析 (72)2008年全国初中数学竞赛试卷及答案解析 (84)2009年全国初中数学竞赛试卷及答案解析 (91)2010年全国初中数学竞赛试卷及答案解析 (99)2011年全国初中数学竞赛试卷及答案解析 (107)2012年全国初中数学竞赛试卷及答案解析 (115)2013年全国初中数学竞赛试卷及答案解析 (129)2014年全国初中数学竞赛预赛试题及参考答案 (137)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14; C. 16; D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接 DACBE4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p ccc b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_____.【解析】.1360.136013560135.1355125sin135605125)12(sin.12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=xxPFPExxPAFAPPFxxPDEDPPExDPxxAP;,则如图所示,设FEA DCBP7、已知直线32+-=xy与抛物线2xy=相交于A、B两点,O为坐标原点,那么△OAB的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆OBBOAABBAAOABSSSSBAxBBAABAxyxy梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cma,外直径为cmb,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm.【解析】49a+b..49)150(225050242332222baabbbaabbbaabb+=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(15132832222是非负整数其中aaaxaaxa=+-+--,至少有一个整数根,那么a=_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-= 10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF 于如图所示,作GFEACB解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过 HFEACB.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a a a a a a a a a aa a a a a 17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作FEACD B18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2; C. 3; D. 4.【解析】A.().1 184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.1)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABCCABCSkkkkkkkkxxyABSkkkkabackkabkkkkxxxxxxkxxkxxxxkxkx∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE所在的平面内能找到点P,使得△PCD与△BCD的面积相等,并且△ABP为等腰三角形,这样的不同的点P的个数为(D).A.2;B.3;C.4;D.5.【解析】D..③②①.31452PPBABPBABPPABAPABAPPPABPBPAPABPCDCDBPBCDPCD,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=yx,,那么22yx+的值为_____.【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xyyxyxyxyx,,21、如图,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F.设DP=xcm,△EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是_____(0<x<10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形 22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或.35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A 1(如图3),将A 1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A 2(如图4);将A 2的每条边三等分,并重复上述过程,所得到的图形记作A 3(如图5);再将A 3的每条边三等分,并重复上述过程,所得到的图形记作A 4,那么A 4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化A A A A25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccc c b a c b ca cb ac b a c b a三、解答题(本大题共3小题,每小题20分,共60分).26、设实数t s ,分别满足0199901991922=++=++t t s s ,,并且1≠st ,求ts st 14++的值. 【解】.519141991419199191991.01999111019199)1(0199190222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴≠ss s t s st s t s st t st s x x t s st st ss s s s 的两个不等实根是一元二次方程, 27、如图,已知四边形ABCD 内接于直径为3的圆O ,对角线AC 是直径,对角线AC 和BD 的交点是P ,AB =BD ,且PC =0.6,求四边形ABCD 的周长.【解】如图所示,连接BO 并延长交AD 于H ,连接OD .则HDP O CA B.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴∠=∠⇒∆≅∆⇒=的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH DBO ABO DOB AOB BD AB28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到;9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到. A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足. B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+.或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a >>,则M 与P 的大小关系是(B ). A. ;P M = B. ;P M > C. ;P M < D. 不确定.【解析】B..01221221224234222223P M cc c c b a P M cb a cb ac b a c b a P M c b a cba c N Pb a Nc b a M >⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++= ,,30、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(b ﹤a ),再前进c千米,则此人离起点的距离S 与时间t 的关系示意图是(C ).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A ).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y 33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ; D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()( ,中,和在,于是,使到如图所示,延长ca b cDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ).A. ;1S S >B. ;1S S <C. ;1S S =D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan 30120.62264526.o o o o +=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AE CD AB S FC EF DE DC AE DE DAE BAD CF BF AE BCD BC F E DC BF AE ABCD 梯形,、于垂直、如图所示,作37、已知关于x 的方程012)1(2=--+-a x x a 的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC 的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+bBQOPSSbBQbOPbQbPOPQABQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x xy x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.ECOBAD【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒= ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接 HECO BAD43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关;②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87D. .47 【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ;②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2. 故22125112211=+=+ba ab .47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若P A =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).CDBPAA. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .MCDBPA则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >B. ;b a =C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x .51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或. ①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则4514GBCDA35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,. 在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o . 于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则4145FE ACDBDE =CF =(5-1)/2=2,32242222=-=-=DE AD AE . 于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W 当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则H I M P'(5,-5)'Q (2,1)P (5,5)M'MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ 最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H . 于是255251'=⇒--=⇒=x x x IM HM I P QH .55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t .31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a .三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线P AB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.ACPOSTB【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,, F E CA POS TB58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值. 【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).GFEDABCA. ;65B. ;54C. ;43D. .32 【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a aa S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCDABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设 GFEDABC62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A. .00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=πππππ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-aB. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432o o o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长 ab PA 9A 8A 7A 6A 5A 4A 3A 2A 1二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-..863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由。
2002年全国初中数学竞赛试题及解析一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则A B C DA G C D S S 矩形四边形等于【 】 A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】 A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2013年全国初中数学竞赛试题考试时间 2013年3月17日 9:30-11:30 满分150分答题时注意:1.用圆珠笔或钢笔作答; 2.解答书写时不要超过装订线; 3.草稿纸不上交.一、选择题(共5小题,每小题7分,共35分.每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.设非零实数a ,b ,c ,满足⎩⎪⎨⎪⎧a +2b+3c =02a +3b+4c =0则ab +bc +caa 2+b 2+c 2的值为( )(A )—12 (B )0 (C )12(D )12.已知a ,b ,c 是实常数,关于x 的一元二次方程ax 2+bx +c =0有两个非零实根x 1,x 2,则下列关于x 的一元二次方程中,以1 x 12,1x 22为两个实根的是( )(A )c 2x 2+(b 2-2ac )x +a 2=0 (B )c 2x 2—(b 2-2ac )x +a 2=0 (C )c 2x 2+(b 2-2ac )x —a 2=0 (D )c 2x 2—(b 2-2ac )x —a 2=03.如图,在R t △ABC 中,已知O 是斜边AB 的中点,CD ⊥AB ,垂足为D ,DE ⊥OC ,垂足为E ,若AD ,DB ,CD 的长度都是有理数,则线段OD ,OE ,DE ,AC 的长度中,不一定...是有理数的为( ) (A )OD (B )OE (C )DE (D )AC4.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC =4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )(A )3 (B )4 (C )6 (D )85.对于任意实数x ,y ,z ,定义运算“*”为:x y *=3x 3y +3x 2y 2+xy 3+45(x +1)3+(y +1)3—60,且x y z=x y z ****(),则2013201232****…的值为( )(A )607967 (B )1821 967 (C )5463 967 (D )16389 967二、填空题(共5小题,每小题7分,共35分)6.设a,b 是a 2的小数部分,则(b +2)3的值为____________.7.如图,点D ,E 分别是△ABC 的边AC ,AB 上的点,直线BD 与CE 交于点F ,已知△CDF ,△BFE ,△BCF 的面积分别为3,4,5,则四边形AEFD 的面积是____________.8.已知正整数a ,b ,c 满足a +b 2—2c —2=0,3a 2—8b +c =0,则abc 的最大值为__________.9.实数a ,b ,c ,d 满足:一元二次方程x 2+cx +d =0的两根为a ,b ,一元二次方程x 2+ax +b =0的两根为c ,d ,则所有满足条件的数组(a ,b ,c ,d )为___________________________________.10.小明某天在文具店做志愿者卖笔,铅笔每支售4元,圆珠笔每支售7元.开始时他有铅笔和圆珠笔共350支,当天虽然笔没有卖完,但是他的销售收入恰好是2013元,则他至少卖出了__________支圆珠笔.三、解答题(共4题,每题20分,共80分)11.如图,抛物线y =ax 2+bx —3,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA ,直线y =—13x 2+1与y 轴交于点D ,求∠DBC -∠CBE .(第4题)ABED (第7题)ABCO DE (第3题)12.设△ABC 的外心,垂心分别为O ,H ,若B ,C ,H ,O 共圆,对于所有的△ABC ,求∠BAC 所有可能的度数.13.设a ,b ,c 是素数,记x =b +c -a ,y =c +a -b ,z =a +b -c ,当z 2=y ,x -y =2时,a ,b ,c 能否构成三角形的三边长?证明你的结论.14.如果将正整数M 放在正整数m 左侧,所得到的新数可被7整除,那么称M 为m 的“魔术数”(例如,把86放在415的左侧,得到的数86415能被7整除,所以称86为415的魔术数).求正整数n 的最小值,使得存在互不相同的正整数a 1,a 2,…,a n ,满足对任意一个正整数m ,在a 1,a 2,…,a n 中都至少有一个为m 的魔术数.2013年全国初中数学竞赛试题参考答案一、选择题1.【答案】A【解答】由已知得(234)(23)0a b c a b c a b c ++=++-++=,故2()0a b c ++=.于是2221()2ab bc ca a b c ++=-++,所以22212ab bc ca a b c ++=-++. 2.【答案】B【解答】由于20ax bx c ++=是关于x 的一元二次方程,则0a ≠.因为12b x x a +=-,12cx x a=,且120x x ≠,所以0c ≠,且 221212222221212()2112x x x x b ac x x x x c +--+==,22221211a x x c⋅=, 于是根据方程根与系数的关系,以211x ,221x 为两个实根的一元二次方程是222220b ac a x x c c --+=,即2222(2)0c x b ac x a --+=.3.【答案】D【解答】因AD ,DB ,CD 的长度都是有理数,所以,OA =OB =OC =2AD BD+是有理数.于是,OD =OA -AD 是有理数. 由Rt △DOE ∽Rt △COD ,知2OD OE OC =,·DC DODE OC=都是有理数,而AC =·AD AB 不一定是有理数.4.【答案】C【解答】因为DCFE 是平行四边形,所以DE //CF ,且EF //DC . 连接CE ,因为DE //CF ,即DE //BF ,所以S △DEB = S △DEC , 因此原来阴影部分的面积等于△ACE 的面积.连接AF ,因为EF //CD ,即EF //AC ,所以S △ACE = S △ACF .因为4BC CF =,所以S △ABC = 4S △ACF .故阴影部分的面积为6. 5.【答案】C【解答】设201320124m ***=L ,则()20132012433m ****=*L 32323339274593316460m m m m m m ⨯+⨯+⨯+==++++-, 于是()201320123292****=*L 3223333923929245546310360967⨯⨯+⨯⨯+⨯+==+-.二、填空题6.【答案】9【解答】由于2123a a <<<<,故32292b a =-=-,因此333(2)(9)9b +==.7.【答案】20413【解答】如图,连接AF ,则有:45=3AEF AEF BFE BCF AFD AFD CDF S S S BF S S S FD S ∆∆∆∆∆∆∆++===,354AFD AFD CDF BCF AEF AEF BEF S S S CF S S S FE S ∆∆∆∆∆∆∆++====,解得10813AEF S ∆=,9613AFD S ∆=. 所以,四边形AEFD 的面积是20413.8.【答案】2013【解答】由已知2220+--=a b c ,2380-+=a b c 消去c ,并整理得(第3题答题)(第4题答题)(第7题答题)(第4题)()228666b a a -++=.由a 为正整数及26a a +≤66,可得1≤a ≤3.若1a =,则()2859b -=,无正整数解; 若2a =,则()2840b -=,无正整数解;若3a =,则()289b -=,于是可解得11=b ,5b =. (i )若11b =,则61c =,从而可得311612013abc =⨯⨯=; (ii )若5b =,则13c =,从而可得3513195abc =⨯⨯=. 综上知abc 的最大值为2013.9. 【答案】(1212),,,--,(00),,,-t t (t 为任意实数)【解答】由韦达定理得,,,.+=-⎧⎪=⎪⎨+=-⎪=⎪⎩a b c ab d c d a cd b由上式,可知b a c d =--=. 若0b d =≠,则1==d a b ,1==bc d,进而2b d a c ==--=-. 若0b d ==,则c a =-,有()(00),,,,,,=-a b c d t t (t 为任意实数). 经检验,数组(1212)--,,,与(00),,,-t t (t 为任意实数)满足条件. 10.【答案】207【解答】设x ,y 分别表示已经卖出的铅笔和圆珠笔的支数,则472013350,,+=⎧⎨+<⎩x y x y所以201371(5032)44y y x y -+==-+, 于是14y +是整数.又20134()343503x y y y =++<⨯+,所以204y >,故y 的最小值为207,此时141x =.三、解答题11.如图,抛物线y =23ax bx +-,顶点为E ,该抛物线与x 轴交于A ,B 两点,与y 轴交于点C ,且OB =OC =3OA .直线113y x =-+与y 轴交于点D . 求∠DBC -∠CBE .【解答】将0x =分别代入y =113x -+,23y ax bx =+-知,D (0,1),C (0,3-),所以B(3,0),A(1-,0).直线y=113x-+过点B.将点C(0,3-)的坐标代入y=(1)(3)a x x+-,得1a=.抛物线223y x x=--的顶点为E(1,4-).于是由勾股定理得BC=32,CE=2,BE=25.因为BC2+CE2=BE2,所以,△BCE为直角三角形,90BCE∠=︒.因此tan CBE∠=CECB=13.又tan∠DBO=13ODOB=,则∠DBO=CBE∠.所以,45DBC CBE DBC DBO OBC∠-∠=∠-∠=∠=︒.12.设△ABC的外心,垂心分别为O H,,若B C H O,,,共圆,对于所有的△ABC,求BAC∠所有可能的度数.【解答】分三种情况讨论.(i)若△ABC为锐角三角形.因为1802BHC A BOC A∠=︒-∠∠=∠,,所以由BHC BOC∠=∠,可得1802A A︒-∠=∠,于是60A∠=︒.(ii)若△ABC为钝角三角形.当90A∠>︒时,因为()1802180BHC A BOC A∠=︒-∠∠=︒-∠,,所以由180BHC BOC∠+∠=︒,可得()3180180A︒-∠=︒,于是120A∠=︒。
2013年全国初中数学竞赛试题参考答案一、选择题:(每题7分,共35分)1.【】2222222(234)(23)0.1()0().21.().2a b c a b c a b c a b c ab bc ca a b c ab bc ca A a b c ++=++-++=++=++=-++++=-++由已知可得,因此,,则:故,选2.】2222222222222222()(2)0()(2)0()(2)0()(2)0.A c x b ac x aB c x b ac x aC c x b ac x aD c x b ac x a +-+=--+=+--=---=;;;12121212222121222222222121212222222122222000.11()22111120.(2)0.().x x x b ca x x x x x x c a ax x x x b ac a x x x x c x x cb ac a x x x x c cc x b ac x a B ≠+=-=≠≠+--+==⋅=--+=--+=由于关于的二次方程有两个非零实根、,则:,且,;且,从而又,因此,以、为实根的一元二次方程为:即,故,选3.Rt ABC O AB CD AB AB D DE OC ∆⊥⊥如图,在中,为斜边中点,交于点,交.OC E ADDB CD OD OE DE AC于点若、和的长度为有理数,则:线段、、和【 】的长度中,不一定为有理数的是()()()().A ODB OEC DED AC ;;;通护关于管路高中资料试卷连接管口处理高决高中语文电气课件中管壁薄、接口不严等问题,合理利用管线敷设技术。
线缆敷设原对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关以正常工作;对于继电保护进行整核对定过程中高中资料试卷电气设备进行调试工作并且进行过关运行高中资料试卷技术指导。
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a2+b2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、3Bq20xL2kEI 2.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a2+b2+c2-ab -bc -ca 的值为【 】Bq20xL2kEI A 、0 B 、1 C 、2 D 、3Bq20xL2kEI 3.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCD S S 矩形四边形等于【 】A 、65 B 、54 C 、43 D 、32Bq20xL2kEI AB C DEF G4.设a 、b 、c 为实数,x =a2-2b +3π,y =b2-2c +3π,z =c2-2a +3π,则x 、y 、z 中至少有一个值【 】Bq20xL2kEI A 、大于0 B 、等于0 C 、不大于0 D 、小于0Bq20xL2kEI 5.设关于x 的方程ax2+(a +2>x +9a =0,有两个不等的实数根x1、x2,且x1<1<x2,那么a 的取值范围是【 】Bq20xL2kEI A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <0 6.A1A2A3…A9是一个正九边形,A1A2=a ,A1A3=b ,则A1A5等于【 】A 、22b a +B 、22b ab a ++C 、()b a +21 D 、a +b 二、填空题7.设x1、x2是关于x 的一元二次方程x2+ax +a =2的两个实数根,则(x1-2x2>(x2-2x1>的最大值为 。
Bq20xL2kEI8.已知a、b为抛物线y=(x-c>(x-c-d>-2与x轴交点的横坐标,a<b,则bcca-+-的值为。
Bq20xL2kEI 9.如图,在△ABC中,∠ABC=600,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=。
2002年全国初中数学竞赛试题一、选择题1.设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为【 】 A 、3 B 、6 C 、2 D 、32.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则A B C DA G C D S S 矩形四边形等于【 】 A 、65 B 、54 C 、43 D 、32ABC DEF G4.设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于0 5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】 A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】 A 、22b a + B 、22b ab a ++ C 、()b a +21D 、a +b 二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则b c c a -+-的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
ABCP10.如图,大圆O 的直径AB =acm ,分别以OA 、OB 为直径作⊙O 1、⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形O 1O 2O 3O 4的面积为 cm 2。
A B11.满足(n 2-n -1)n +2=1的整数n 有 个。
12.某商品的标价比成本高p%,当该商品降价出售时,为了不亏本,售价的折扣(即降价的百分数)不得超过d%,则d 可以用p 表示为 。
三、解答题13.某项工程,如果由甲、乙两队承包,522天完成,需付180000元;由乙、丙两队承包,433天完成,需付150000元;由甲、丙两队承包,762天完成,需付160000元。
现在工程由一个队单独承包,在保证一周完成的前提下,哪个队的承包费用最少?14.如图,圆内接六边形ABCDEF 满足AB =CD =EF ,且对角线AD 、BE 、CF 交于一点Q ,设AD 与CE 的交点为P 。
(1)求证:EC AC ED QD =(2)求证:22CE AC PE CP = ABCD EFPQ16.如果对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数(即整数的平方)。
证明:(1)2a、2b、c都是整数;(2)a、b、c都是整数,并且c是平方数;反过来,如果(2)成立,是否对一切的x的整数值,x 的二次三项式ax2+bx+c的值都是平方数?ABCDEG2002年全国初中数学竞赛试题一、 选择题(每小题5分,共30分) 1. 设a <b <0,a 2+b 2=4ab ,则ba ba -+的值为( )。
A 、3 B 、6 C 、2 D 、3答案:A.由题意:>0,且2⎪⎭⎫ ⎝⎛-+b a b a == =3。
2.已知a =1999x +2000,b =1999x +2001,c =1999x +2002,则多项式a 2+b 2+c 2-ab -bc -ca 的值为( )。
A 、0B 、1C 、2D 、3答案:原式= [(a-b)2+(b-c)2+(c-a)2]= [1+1+4]=3。
3. 如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则A B C DA G C D S S 矩形四边形等于( )。
A 、65B 、54C 、43D 、32答案:设S 矩形ABCD =1。
因为E 、F 是矩形ABCD 中边AB 、BC 的中点,所以S ΔGCF =S ΔGBF ,设为x ;S ΔGAE =S ΔGBE ,设为y 。
则,得2x+2y= .所以S 四边形AGCD = .从而S 四边形AGCD ∶S 矩形ABCD =2∶3.4. 设a 、b 、c 为实数,x =a 2-2b +3π,y =b 2-2c +3π,z =c 2-2a +3π,则x 、y 、z中至少有一个值( )。
A 、大于0B 、等于0C 、不大于0D 、小于0答案:由题意:x+y+z=a 2+b 2+c 2-2a-2b-2c+π=(a-1)2+(b-1)2+(c-1)2+π-3>0,所以x 、y 、z 中至少有一 个大于0.5.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是( )。
A 、72-<a <52 B 、a >52 C 、a <72- D 、112-<a <0答案:由题知:(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2)+1<0,代入韦达定理并整理得<0,可知选(A). 6.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于( )。
A 、22b a +B 、22b ab a ++C 、()b a +21D 、a +b答案:.延长A 1A 2和A 5A 4相交于P,连结A 2A 4.易证:ΔPA 1A 5和ΔPA 2A 4均为正Δ,且PA 2=A 2A 4=A 1A 3=b 。
所以A 1A 5=PA 1=a+b.AABCP二、填空题(每小题5分,共30分)7.设x1、x2是关于x的一元二次方程x2+ax+a=2的两个实数根,则(x1-2x2)(x2-2x1)的最大值为。
答案:由Δ=(a-2)2+4>0知a为一切实数.由韦达定理,得原式=9x1x2-2(x1+x2)2=-2a2+9a-18≤- .8.已知a、b为抛物线y=(x-c)(x-c-d)-2与x轴交点的横坐标,a<b,则bcca-+-的值为。
答案:由题知:(a-c)(a-c-d)-2=0, (b-c)(b-c-d)-2=0.所以a-c和b-c是方程t(t-d)-2=0(即t2-dt-2=0)的两实根.所以(a-c)(b-c)= -2<0.而a<b,即a-c<b-c.所以a-c<0,b-c>0.所以原式=b-a.9.如图,在△ABC中,∠ABC=600,点P是△ABC内的一点,使得∠APB=∠BPC=∠CPA,且PA=8,PC=6,则PB=。
答案:易证:ΔPAB∽ΔBCP,所以= ,得PB=410.如图,大圆O的直径AB=acm,分别以OA、OB为直径作⊙O1、⊙O2,并在⊙O与⊙O1和⊙O2的空隙间作两个等圆⊙O3和⊙O4,这些圆互相内切或外切,则四边形O1O2O3O4的面积为 cm2。
答案:设⊙O3的半径为x,则O1O3= +x,O1O= ,O3O= - x. 所以( +x)2=( )2+( - x )2,解得x= ,易得菱形O 1O 3O 2O 4的面积为 a 2.11. 满足(n 2-n -1)n +2=1的整数n 有 个。
答案:由题设得n 2-n-1=±1,有5个根:0,1,-1,2.和-212. 某商品的标价比成本高p%,当该商品降价出售时,为了不亏本,售价的折扣(即降价的百分数)不得超过d%,则d 可以用p 表示为 。
答案:设成本为a,则a(1+p%)(1-d%)=a,得d=.三、 解答题(每小题20分,共60分) 13. 某项工程,如果由甲、乙两队承包,522天完成,需付180000元;由乙、丙两队承包,433天完成,需付150000元;由甲、丙两队承包,762天完成,需付160000元。
现在工程由一个队单独承包,在保证一周完成的前提下,哪个队的承包费用最少?答案:设单独完成,甲、乙、丙各需a 、b 、c 天.则解得a=4, b=6, c=10(c>7,舍去).又设每天付给甲、乙、丙的费用分别为x 、y 、z(元),则⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+160000)(720150000)(315180000)(512x z z y y x解得x=45500, y=29500, 所以甲4天完成的总费用为182000元, 乙6天完成的总费用为177000元, 所以由乙承包.14. 如图,圆内接六边形ABCDEF 满足AB =CD =EF ,且对角线AD 、BE 、CF 交于一点Q ,设AD 与CE 的交点为P 。
(1)求证:EC AC ED QD =(2)求证:22CE ACPE CP =答案:(1)易证∠3=∠4,所以∠AEC=∠DEQ,而∠ACE=∠2, 所以ΔACE ∽ΔQDE.可得结论成立. (2)分析:易证∠6=∠4,所以FC ∥ED,所以=所以只需证 = ,ABCDEFPQ由(1)有 = 。
所以只需证= ,即QD2=CQ×EQ.这只需证ΔCQD∽ΔEQD.而由题设有∠7=∠3+∠5=∠4+∠5,由(1)有∠9=∠EAC,而∠EAC=∠8==∠QCD,所以可证得ΔCQD∽ΔEQD.15.如果对一切x的整数值,x的二次三项式ax2+bx+c的值都是平方数(即整数的平方)。
证明:(1)2a、2b、c都是整数;(2)a、b、c都是整数,并且c是平方数;反过来,如果(2)成立,是否对一切的x的整数值,x 的二次三项式ax2+bx+c的值都是平方数?答案:(1)由题设知,可分别令x=0、-1、1,得则有c=m2,2a=n2+k2,2b=n2-k2均为整数. (其中m、n、k为整数)(2)假设2b为奇数2t+1(t为整数).取x=4得 16a+4b+m2=h2(h为整数).因 2a为整数,从而16a可被4整除.所以16a+4b=16a+4t+2 除以4余2.所以16a+4b为偶数. ①又因为 16a+4b=(h+m)(h-m).若h、m的奇偶性不同,则16a+4b=(h+m)(h-m)为奇数,这与①矛盾.若h、m的奇偶性相同,则16a+4b=(h+m)(h-m)能被4整除,从而2b为偶数,这与假设矛盾. 所以假设不成立,即2b应为偶数,从而b为整数.所以a=k2+b-c为整数.反之,若a、b、c都是整数,且c是平方数,则对一切x的整数值,x的二次三项式ax2+bx+c的值不一定是平方数.例如:取a=b=x=c=1,则ax2+bx+c=3,不是平方数.。