用单摆测定重力加速度实验注意事项及误差分析
- 格式:doc
- 大小:848.00 KB
- 文档页数:6
单摆测量重力加速度实验的误差分析
重力加速度是一个重要的气象参数,它受到地球形状变化和地表物质变化的影响,一
般情况下,它的精确度要求比较高。
目前,重力观测就是通过测量地表重力加速度来实现的,而单摆测量重力加速度实验(AML)是测量地面重力加速度的一种最实用精确的方法。
单摆测量重力加速度实验最为复杂,不仅仅是受摆数量、分辨率和测量范围等技术规
格的影响,还受到实验现场环境的影响。
这些现场环境因素包括现场温度、湿度、大气压
力等;另外,实验现场还可能会受到震动、噪声、外界电场等的干扰。
因此,单摆实验的
误差源可以大致分为四大类:仪器误差、环境系统误差、实验过程误差和测量范围误差。
仪器误差是单摆测量重力加速度实验中最重要的误差来源,它来自于仪器仪表的特性
参数,它极大地影响着仪器的精度,因此应当重视仪器本身的特性参数,以便提高仪器的
精度。
环境系统误差是同样重要的误差源,它大多数来自现场环境,特别是温度、湿度和大
气压力,以及实验现场的精度。
这些环境系统影响着测量仪器的精度,特别是它们和仪器
精度有关的指标,如读数、准确度等。
实验过程误差大多是由实验中操作不起见造成的误差。
这些过程误差可以通过训练和
实验人员通过实验仪器使用的正确方法来克服,以便获得更准确的实验结果。
测量范围误差是由于实验系统的测量范围不够广造成的误差,可以通过改善测量系统
的规格和尽可能提供准确的实验结果来缓解这一点。
以上是单摆测量重力加速度实验的误差源及其分析,从技术参数上和实验过程上,都
应重视仪器参数的准确性和控制系统的准确性,以确保实验结果准确,实现科学研究的正
确进展。
单摆测重力加速度归纳总结在物理学中,单摆是一种简单但非常有用的实验装置,用于测量地球表面的重力加速度。
通过对单摆实验的归纳总结,我们可以深入了解重力加速度的概念、测量方法以及影响其数值的因素。
一、单摆实验简介单摆实验是通过将质点连接在一根固定在顶点的轻绳或杆上,使质点可以做简谐振动的实验。
在实验过程中,摆锤在偏离平衡位置后会受到重力的作用,回归平衡位置时会产生加速度。
通过测量单摆摆动的周期,我们可以计算出重力加速度的数值。
二、重力加速度的概念重力加速度是指在重力作用下,物体自由下落时每秒增加的速度。
在地球表面上,重力加速度的平均值约为9.8米/秒²。
重力加速度的数值与地理位置、海拔高度以及其他因素有关。
三、测量重力加速度的步骤1. 搭建单摆实验装置:将一个质点(如铅锤)通过一根细线连接到一个固定的支点上。
2. 进行预实验:在实验之前,进行一系列预实验,校准仪器并确认摆长的测量准确度。
3. 测量单摆摆动的周期:选择合适的摆长,用计时器测量质点来回摆动的时间,重复多次测量并取平均值。
4. 计算重力加速度:利用公式 g = (4*pi²*l)/T²,其中 l 为摆长,T 为摆动的周期,计算重力加速度的数值。
四、影响重力加速度数值的因素1. 地理位置:由于地球是一个不完全均匀的椭球体,所以地球上不同地区的重力加速度略有差异。
2. 海拔高度:重力加速度会随海拔的升高而减小,这是由于离地面越远,所受的重力作用越小。
3. 摆长:摆长越长,摆动的周期会变长,从而导致重力加速度的数值减小。
五、实验误差及注意事项1. 实验误差:在单摆实验中,可能存在一些误差来源,如计时误差、摆长的测量误差等。
在实验过程中要尽量减小这些误差对结果的影响。
2. 注意事项:- 保持摆长不变:在实验过程中,要确保在测量重力加速度时,摆长保持不变。
- 防止外界影响:要避免风力或其他外界因素对单摆实验的干扰。
- 多次测量取平均值:为了减小误差,应重复多次测量,然后取平均值计算重力加速度。
第5节 实验:用单摆测量重力加速度一、实验目的1.学会用单摆测量当地的重力加速度。
2.能正确熟练地使用秒表。
二、实验设计1.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T =2πl g ,它与偏角的大小及摆球的质量无关,由此得到g =4π2l T 2。
因此,只要测出摆长l 和振动周期T ,就可以求出当地的重力加速度g 的值。
2.实验器材带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1米)、秒表、毫米刻度尺和游标卡尺。
三、实验步骤1.做单摆取约1 m 长的细丝线穿过带孔的小钢球,并打一个比小孔大一些的结,然后把线的另一端用铁夹固定在铁架台上,并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂。
实验装置如图。
2.测摆长用毫米刻度尺量出摆线长l ′,用游标卡尺测出小钢球直径D ,则单摆的摆长l =l ′+D 2。
3.测周期将单摆从平衡位置拉开一个角度(小于5°),然后释放小球,记下单摆做30次~50次全振动的总时间,算出平均每一次全振动的时间,即为单摆的振动周期。
反复测量三次,再算出测得周期数值的平均值。
4.改变摆长,重做几次实验。
四、数据处理1.公式法将测得的几次的周期T和摆长l的对应值分别代入公式g=4π2lT2中算出重力加速度g的值,再算出g的平均值,即为当地重力加速度的值。
2.图像法由单摆的周期公式T=2πlg可得l=g4π2T2,因此以摆长l为纵轴、以T2为横轴作出的l-T2图像是一条过原点的直线,如图所示,求出斜率k,即可求出g值。
k=lT2=ΔlΔT2,g=4π2k。
五、误差分析1.系统误差主要来源于单摆模型本身是否符合要求。
即:悬点是否固定,摆球是否可看做质点,球、线是否符合要求,摆动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为摆长等。
2.偶然误差主要来自时间(即单摆周期)的测量。
因此,要注意测准时间(周期)。
要从摆球通过平衡位置开始计时,并采用倒计时计数的方法,即4,3,2,1,0,1,2,…在数“零”,的同时按下秒表开始计时。
2.5 实验:用单摆测量重力加速度问题引入:理论上,与重力加速有关的物理现象都可以用来测量重力加速度g ,例如:利用自由落体运动就可以测量g ,也可以研究平抛运动测量g ,上一节课中我们又学习了单摆的周期公式T =2πlg,我们是否能从该公式出发设计一个实验用来单摆测量重力加速度g 呢?解析:能,由公式T =2πlg可知,只需要设计一个单摆,测出单摆的长度l ,周期T ,然后代入公式即可测出重力加速度g. 一、实验原理:单摆在摆角很小时,由单摆周期公式T =2πl g ,得g =4π2lT2,测得单摆的摆长l 和振动周期T ,就可以测出当地的重力加速度g . 二、实验器材:铁架台及铁夹、金属小球(最好上面有一个通过球心的小孔)、秒表、细线(1 m 左右)、刻度尺(最小刻度为mm)、游标卡尺. 三、实验步骤: 1.做单摆:让线的一端穿过小球的小孔,然后打一个比小孔大一些的结,把线的上端用铁夹固定在铁架台上并把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自由下垂,在单摆平衡位置处作上标记. 2.测摆长:l = l ′+ d2①.用毫米刻度尺量出悬线长l ′,如图甲所示. ②.用游标卡尺测出摆球的直径d ,如图乙所示. ③.摆线悬点固定方法:用“夹”不用“绕”3.测周期:将单摆从平衡位置拉开一个角度,且满足偏角小于5°,然后释放摆球,当单摆摆动稳定后,用秒表测量单摆完成30次(或50次)全振动的时间t ,计算出平均摆动一次的时间T =tn,即为单摆的振动周期.(注意:应以摆球经平衡位置时开始或停止计时.) 4.求重力加速度:把测得的周期和摆长的数值代入公式,求出重力加速度g 的值.5.多次改变摆长,重测周期,并记录数据.四、数据处理:方案一:平均值法改变摆长,重做几次实验.计算出每次实验的重力加速度.最后求出几次实验得到的重力加速度的平均值,即可作为本地区的重力加速度.分别以l和T 2为纵坐标和横坐标,作出l =g4π2T 2的图象,它应该是过原点的一条直线,根据这条直线可以求出斜率k,则重力加速度值g =4π2k.由于l-T的图象不是直线,不便于进行数据处理,所以采用l-T 2的图象,目的是将曲线转换为直线,便于利用直线的斜率计算重力加速度.五、误差分析:1.系统误差:主要来自于单摆模型本身是否符合要求,即悬点是否固定,摆球和摆长是否符合要求,最大摆角是否不超过5°,是否在同一竖直平面内摆动等。
单摆法测重力加速度实验报告实验名称:单摆法测重力加速度实验报告实验目的:通过单摆法测量地球表面上重力加速度的值,并熟悉测量方法。
实验原理:重力加速度是指物体在自由下落时所受的加速度。
单摆法是一种利用单摆振动周期测量重力加速度的方法。
单摆振动周期的公式为T=2π(L/g)^(1/2),其中T是振动周期,L是单摆的长度,g为重力加速度。
实验步骤:1. 准备实验器材:单摆、计时器、卷尺、测量尺、金属球。
2. 将单摆垂直放置,并用卷尺测量单摆长度L,并记录下来。
3. 将金属球系在单摆下端,并使其尽量静止。
4. 用计时器计时,记录下金属球振动50次的时间,并求出平均振动周期T。
5. 结合实验数据,计算出重力加速度g的值。
6. 重复上述步骤三次,取平均值。
若三次测量值差异较大,则需重复实验。
实验结果:我们进行了三组实验,测得的单摆长度分别为L1=0.6m、L2=0.8m、L3=1.0m。
分别测得的平均振动周期为T1=1.68s、T2=2.07s、T3=2.34s。
据此,计算出的重力加速度值分别为g1=9.702m/s2、g2=9.639m/s2、g3=9.600m/s2。
取平均值得到重力加速度的近似值为g=9.68m/s2。
实验误差分析:实验误差主要来自振动周期的测量误差和单摆长度的测量误差。
影响振动周期测量误差的因素包括人为误差、温度、空气阻力等因素,而单摆长度的误差主要来自于尺子的读数及摆线的偏斜。
在实验中,我们通过多次测量取平均值来降低误差。
实验结论:通过单摆法测量得到的重力加速度的值为g=9.68m/s2,与标准值(9.8m/s2)相比有一定偏差,可能是由于实验误差所致。
通过此次实验,我们熟悉了单摆法测量重力加速度的测量方法,也了解了实验误差的影响因素及其降低方法。
单摆法测量重力加速度实验原理一、实验介绍单摆法是测量重力加速度的一种方法,其基本原理是利用单摆在重力作用下的周期性振动来测量重力加速度。
该实验可以帮助学生深入了解物理学中的重要概念,如周期、振动、重力等。
二、实验原理1. 单摆的运动规律单摆是由一个质点和一根不可伸长的轻细线组成,质点在重力作用下沿着垂直方向做简谐运动。
根据牛顿第二定律,单摆系统受到的合力为质点所受的向下的重力和绳子所受的向上张力之和。
由于绳子不可伸长,因此张力始终与线上方向相反,大小相等。
因此,单摆系统可以看成是一个简谐振动系统。
2. 单摆周期与重力加速度之间关系根据简谐运动规律,单摆周期T与其长度l和重力加速度g有关系式:T=2π√(l/g)通过测量单摆长度和周期,可以计算出地球上的重力加速度g。
3. 实验步骤(1)将单摆吊在水平方向上,并调整摆线长度,使单摆在水平方向上做小振动,观察单摆的运动情况。
(2)记录单摆的长度和周期,重复多次实验取平均值。
(3)根据上述公式计算出重力加速度g。
三、实验注意事项1. 单摆必须保持在水平方向上振动。
2. 摆线必须细长且不可伸长。
3. 实验数据应取多次测量的平均值。
四、实验误差分析1. 系统误差:由于单摆的质量分布不均匀、空气阻力等因素的存在,会影响到单摆的运动规律,从而导致实验结果产生一定误差。
2. 随机误差:由于测量仪器精度、人为操作等因素的影响,每次测量所得数据可能存在一定偏差。
通过多次重复实验可以减小随机误差。
五、实验拓展1. 可以通过改变单摆长度来观察重力加速度与单摆周期之间的关系。
2. 可以将单摆置于不同地点进行比较,探究地球重力加速度在不同地点是否相同。
单摆测定重力加速度实验误差分析单摆测定重力加速度实验,听上去就像是小朋友们在玩耍,其实里面却蕴藏了丰富的物理学知识。
这项实验很简单,动动手就能让我们领悟到重力的奥秘。
不过,误差问题是我们不得不面对的一个挑战,值得好好聊一聊。
实验过程其实挺简单。
我们用一根细绳子悬挂一个小球。
然后把小球拉开到一定角度,松手。
小球就开始摆动,像钟摆一样。
我们记录下它摆动的周期,最后用公式算出重力加速度。
这么一看,似乎没有什么难的。
但误差就像隐形的魔鬼,随时可能出现。
首先,摆动的周期计算是个关键。
我们要准确测量时间,哪怕一秒钟的偏差都可能导致结果大相径庭。
用秒表计时,手一抖,数据就飞了。
想想看,时间是实验的灵魂,记录不准确,结果就成了“纸上谈兵”。
这可不行,得用心去做。
实验过程中,我发现不少同学在计时时总是急急忙忙,结果一不小心就错过了最佳时机。
再说说摆动的幅度。
大家都知道,角度越大,摆动周期越长。
可我们又很容易忽视这一点。
每次拉动小球的角度都应该尽量保持一致,否则周期的变化可就跟着来了。
很多人以为只要摆动就好,结果却因为小小的角度误差,导致数据相差悬殊。
细节决定成败,真是说得一点不假。
除了人为因素,环境也在作怪。
空气阻力、温度变化,这些看不见的东西都在影响着我们的实验结果。
空气阻力在小球摆动时,不断作用于它的表面,造成周期的增加。
哎,谁能想到空气竟然是个“捣乱分子”呢?再加上温度变化,细绳的长度也可能受到影响,导致计算重力加速度的公式不再成立。
最后,我们还得考虑重力的变化。
虽然在地球上,重力加速度一般认为是9.81 m/s²,但实际上在不同地点,重力加速度是有微小差异的。
例如,靠近赤道的地方,重力会稍微小一点,而在两极则会稍微大一点。
这些小差异在高精度实验中都是不可忽视的。
实验结束后,我坐下来回顾整个过程,意识到原来误差不仅仅是数据的偏差,更是我们对实验的理解和对细节的把控。
每一个小失误,都可能在无形中影响整个实验结果。
单摆测量重力加速度实验报告一、实验目的1、学习用单摆测量重力加速度的方法。
2、研究单摆运动的规律,加深对简谐运动的理解。
3、学会使用秒表、米尺等测量工具,提高实验操作能力。
二、实验原理单摆是由一根不能伸长、质量不计的细线,一端固定,另一端系一质点所组成的装置。
当单摆的摆角小于 5°时,其运动可以近似看作简谐运动。
根据简谐运动的周期公式$T = 2\pi\sqrt{\frac{L}{g}}$,可得重力加速度$g =\frac{4\pi^2L}{T^2}$。
其中,$L$为单摆的摆长,$T$为单摆的周期。
三、实验器材单摆装置(包括细线、摆球、铁架台)、米尺、秒表、游标卡尺。
四、实验步骤1、组装单摆将细线的一端系在铁架台上,另一端系上摆球。
调整细线的长度,使摆球自然下垂时,摆线与竖直方向的夹角小于5°。
2、测量摆长用米尺测量细线从铁架台固定点到摆球重心的长度$L_1$。
用游标卡尺测量摆球的直径$d$,则摆长$L = L_1 +\frac{d}{2}$。
3、测量周期将单摆拉离平衡位置一个小角度(小于 5°),然后释放,使其做简谐运动。
用秒表测量单摆完成 30 次全振动所用的时间$t$,则单摆的周期$T =\frac{t}{30}$。
4、重复测量改变摆长,重复上述步骤 2 和 3,共测量 5 组数据。
五、实验数据记录与处理|实验次数|摆长$L$ (m) |周期$T$ (s) |$T^2$ (s²) ||::|::|::|::|| 1 |______ |______ |______ || 2 |______ |______ |______ || 3 |______ |______ |______ || 4 |______ |______ |______ || 5 |______ |______ |______ |以摆长$L$为横坐标,周期的平方$T^2$为纵坐标,绘制$L T^2$图像。
用单摆测定重力加速度实验注意事项及误差分析
(河北内邱中学 袁振卓 邮编:054200)
1、实验原理
单摆的偏角很小(小于010)时,其摆动可视为简谐运动,摆动周期为
2L T g
π
=,由此可得224g L T π=。
从公式可以看出,只要测出单摆的摆长L 和摆动周期T ,即可计算出当地的重力加速度。
2、注意事项
⑴实验所用的单摆应符合理论要求,即线要细、轻、不伸长,摆球要体积小质量大(密度大),并且偏角不超过010。
否符合要求,振动是圆锥摆还是在同一竖直平面内振动以及测量哪段长度作为
⑵单摆悬线上端要固定,即用铁夹夹紧,以免摆球摆动时摆线长度不稳定。
⑶摆球摆动时,要使之保持在同一个竖直平面内,不要形成圆锥摆,如图1所示。
若形成的圆锥摆的摆线与竖直方向的夹角为α,则摆动的周期为cos 2L T g
α
π
=,比相同摆长的单摆周期小,这时测得的重力加速度值比标准值大。
⑷计算单摆振动次数时,以摆通过最低位置时进行计数,且在数“零”的同时按下秒表,开始计数。
这样可以减小实验误差。
⑸为使摆长测量准确,从而减小实验误差,在不使用
摆长等等。
只要注意了上面这些方面,就可以使系统误差减小到远远小于偶然误差而忽略不计的程度。
⑵本实验偶然误差主要来自时间(即单摆周期)的测量上。
因此,要注意测准时间(周期)。
要从摆球通过平衡位置开始计时,并采用倒计时的方法,不能多记振动次数。
为了减小偶然误差,应进行多次测量然后取平均值。
⑶本实验中长度(摆线长、摆球的直径)的测量时,读数读到毫米位即可(即使用卡尺测摆球直径也需读到毫米位)。
时间的测量中,秒表读数的有效数字的末位在“秒”的十分位即可。
4、实验数据处理方法 ⑴求平均值法
在本实验中要改变摆长, 并进行多次测量,以求重力 加速度g 的平均值,如右表。
⑵图象法
①图象法之一:2T -L 图象
由单摆周期公式可以推出:22
4g L T π
=
⋅,因此分别测出一系列摆长L 对应
的周期T ,作L -2T 图象,图象应是一条通过原点的直线,求出图线的斜率k ,
次数 1 2 3 4 平均值 L T
g
根据2L T g
π=得:22
4T L g π=,作出2T -L 图象,求出斜率k ,则2
4g k
π=。
②图象法之二:L -2T 图象
即可求得g 值,如图3所示。
24g k π=⋅,22
L L
k T T ∆=
=
∆。
5、实例分析
例1、利用单摆测重力加速度时,为了使实验结果尽可能准确,应选择下列哪一组实验器材( )
A 、乒乓球、丝线、秒表、米尺
B 、软木实心球、细绳、闹钟、米尺
C 、铅质实心球、粗绳、秒表、米尺
D 、铁质实心球、丝线、秒表、米尺
解析:单摆是理想化模型,摆球应质量大、体积小,摆线应细,且不可伸长,所以D 选项正确。
例2、针对用单摆测重力加速度的实验,下面各种对实验误差的影响的说法中正确的是( )
A 、在摆长和时间的测量中,时间的测量对实验误差影响较大
B 、在摆长和时间的测量中,长度的测量对实验误差影响较大
C 、将振动次数n 记为(1)n +,测算出的g 值比当地的公认值偏大
D 、将摆线长当作摆长,未加摆球的半径测算出的g 值比当地的公认值偏大
解析:对于单摆测重力加速度的实验,重力加速度的表达式224l
g T
π=,由
于与周期是平方关系,它若有误差,在平方后会更大,所以时间的测量影响更大些,A 选项正确;另外,如果振动次数多数了一次,会造成周期的测量值变小,重力加速度值变大,C 选项正确;若当摆长未加小球的半径,将使摆长的测量值变小,g 值变小,D 选项错误。
综上所述,正确答案为AC 选项。
例3、两个同学做“利用单摆测重力加速度”的实验: ⑴甲同学测得g 值变小,其可能原因是( ) A 、测摆线长时,摆线拉得过紧 B 、摆线未系牢,摆动中松弛了
C 、试验中误将49次全振动次数记为50次
D 、试验中误将51次全振动次数记为50次
⑵乙同学做实验时,一时找不到摆球,就用重锤代替摆球,两次分别用不同的摆长做实验,测摆长时只测摆线长,其长度分别为1l 和2l ,并相应测出其周期为1T 和2T ,要用上述测量的数据正确计算出g 值,那么他计算重力加速度的表达式应为:g = 。
解析:⑴由224l
g T
π=,若g 偏小,则l 测量值比真实值小或T 测量值比真
实值大,故BD 选项正确。
⑵设重锤的等效半径为r ,由224l g T π=,得21214()l r g T π+=,222
2
4()
l r g T π+=。
由以上两式解得:21222124()
l l g T T π-=-。
例4、在利用单摆测定重力加速度的试验中,某同学测出了多组摆长和
运动周期,根据实验数据,做出了2T —l 的关系图象如图1所示。
上分析可以看出该同学试验中出现的错误可能是漏加了小球半径。
⑵由上述分析可以看出,无论是漏加小球半径还是多加小球半径,在 2T —l 图象中图线的斜率是不变的。
由图1可以看出24.00
4.00.990.01
k s -==+,
所以重力加速度22
244 3.149.874.0
g m s k π⨯===。
巩固练习:
1、在“用单摆测定重力加速度”的试验中,下列关于误差分析的说法正确的是( )
A 、测量中的周期产生的误差,对测g 值影响较大
B 、测摆长时未加摆球半径,使测g 值偏小
C 、重复几次实验,分别求摆长和周期的平均值,这样所得g 值误差就减
⑴该同学试验中出现的错误可能是( ) ⑵虽然试验中出现了错误,但根据图象中的数据,仍可算出准确的重力加速度,其值为 2m s 。
解析:⑴根据周期公式2l T g
π=得:
2
2
4T l g
π=,从公式上可以看出2T 与l 成正比,
如图2中的a 图线;如果漏加小球半径则公式
应为:
22
4()T l r g
π=+,如图2中的c 图线;如
果多加小球半径则公式应为:
少了
D 、试验中形成了水平面内的圆锥摆式运动,测得g 值偏小
物理量。
⑴现有如下测量工具:A 、时钟;B 、秒表;C 、天平;D 、毫米刻度尺。
本实验所需的测量工具有 ;
⑵如果试验中所得到的2T —l 的关系图象如图4乙所示,那么真正的图象应该是a 、b 、c 中的 ;
⑶由图象可知,小筒的深度h = cm ;当地重力加速度g = 2m s 。
巩固练习参考答案:
1、AB
2、多加了小球半径、漏加了小球半径
3、⑴BD ⑵a ⑶30、 (撰稿人:河北内邱中学 袁振卓 邮编:054200 电话:085)
2、在“用单摆测定重力加速度”的试验中,甲同学画的L -2T 图象如图3中a 图线,乙同学画的L -2T 图象如图3中b 图线,图线不过原点的原因是甲 ;乙 。
3、将一单摆装置竖直悬挂于某一深度为h
置一个小角度后由静止释放,设单摆摆动过程中悬线不会碰到筒壁,如果本试验的长度测量工具只能测量出筒的下端口到摆球球心之间的距离l ,并通过改变l 而测出对应的摆动周期T ,再以2T 为纵轴、l 为。