第八章 胎圈结构设计与钢丝圈应力计算
- 格式:ppt
- 大小:623.00 KB
- 文档页数:50
12R22.5低滚阻全钢载重 子午线轮胎导向轮的设计李本超 王业敬 高 原 孙美丽山东华盛橡胶有限公司54应用技术APPLIED TECHNOLOGY二、结构设计1.外直径(D )和断面宽(B )全钢载重子午线轮胎充气后受到沿圆周方向钢丝带束层的箍紧作用,外直径D 及断面宽度B 变化较小,根据设计的需要,一般B 取值较小,D 就要取值较大。
结合标准及其他设计经验数据,考虑轮胎充气膨胀率,综合权衡确定D 的取值。
本设计中,D 取值1079mm ,B 取298mm 。
2.行驶面宽度(b )和弧度高(h )行驶面宽度b 的确定,要以轮辋宽度R m 为基准。
一般情况下,行驶面宽b =Rm ±15mm ,最终要根据实际需要来确定具体取值。
高速路和路况较好的条件下,b 值较小;较差和恶劣路况,速度较低,b 值较大。
h 的选取与b 数值的确定密切相关,行驶面较宽,相应h 较大;行驶面较窄,相应h 较小。
为获得导向轮静负荷下较好的接地印痕,以及产品低滚动阻力的需要,根据实际情况权衡确定,本设计b 取230mm , h 取7.8mm 。
3.胎圈着合直径(d )和着合宽度(C )着合直径的取值,应满足装卸方便、着和紧密的要求。
胎圈与轮辋装配过盈量过大时,轮胎装卸困难,且影响胎圈安全性;过盈量过小,轮胎不能与轮辋紧密配合,无内胎子午线轮胎容易漏气。
装于深槽轮辋的载重子午线无内胎轮胎,轮胎的着合直径d 一般要小于轮辋的标定直径,以满足过盈配合的要求,使轮胎紧箍于轮辋上,提高牵引性能,避免磨子口现象。
此处,着合直径较轮辋相应部位直径(571.5mm )小2mm ,d 取569.5mm ;着合宽度C ,一般无内胎载重子午线轮胎胎圈大于轮辋宽度半英寸或1英寸(25.4mm ),b 的取值与C 的取值接近,用来增大轮胎的弹性值,提高轮胎整体舒适性。
本设计C 取228mm ,胎圈部位设计为20度和25度两段直线连接。
4.断面水平轴位置(H 1/H 2)断面水平轴位于全钢载重子午线轮胎断面最宽处,对轮胎的使用性能及寿命起决定性作用。
几种进行汽车轮胎滚动半径、自由半径、静力半径的常规算法汽车轮胎一般依据为以下方法进行计算,主要内容如下:当汽车静止时,汽车车轮中心至轮胎与道路接触面之间的距离称为静力半径,由于轮胎在受到径向载荷的作用,轮胎发生显著变形,所以轮胎静力半径小于自由半径。
一般在汽车速度比较低的时候,可以认为:滚动半径= 车轮自由半径= 静力半径。
1.自由半径:可以运用公式{H*B*2+in*25.4}/2,其中H代表轮胎截面款,B代表轮胎截面高宽比即扁平率,in代表轮辋的直径尺寸(单位为英寸)。
2.静力半径:自由半径-F/K ,其中F为轮胎上的垂直载荷,k为轮胎的轮胎的形变系数,可参阅。
或者估算静力半径≈(0.995~0.997)*自由半径3.滚动半径:方法一:实际测试:如以车轮转动圈数与实际车轮滚动距离之间的关系来换算,则滚动半径为r=S/2πn式中n为车轮转动的圈数,S为在转动n圈时车轮滚动的距离。
方法二:依据行业标准测试。
欧洲轮胎与轮辋技术(E.T.R.T.O)协会推荐用下式计算滚动圆周:即在条件为最大载荷、规定气压与车速在60km/h时的滚动圆周CR=F*d由于滚动周长CR=2πr所以滚动半径为r=F*d/2π其中CR为滚动圆周长; F为计算常数,子午线轮胎为3.05,斜交轮胎为2.99;d代表E.T.R.T.O会员生产轮胎的自由直径。
在德国橡胶企业协会指定的WdK准则中,给出了车速为60km/h时的滚动圆周长为CR,并给出不同车速ua时的滚动周长CR’。
CR’=CR(1+Δua/10000)式中Δua=ua-60km/h,亦可套用公式(2)的方法求解,此状态下的滚动半径。
方法三:直接查表参照。
全钢载重⼦午线轮胎钢丝圈受⼒分析全钢载重⼦午线轮胎钢丝圈受⼒分析梁 俐1,刘 锟1,李 炜2,夏 勇2,夏源明2[1.佳通轮胎(中国)研发中⼼,安徽合肥 231202;2.中国科学技术⼤学⼒学和机械⼯程系,安徽合肥 230027]摘要:以10.00R20全钢载重⼦午线轮胎为例进⾏钢丝圈钢丝受⼒分析。
利⽤有限元模型计算得到各种充⽓压⼒下钢丝圈钢丝的应⼒分布特征,并进⼀步得到钢丝圈钢丝的最⼤应⼒和平均应⼒,它们基本上与充⽓压⼒成正⽐;以最⼤应⼒和平均应⼒分别计算得到的钢丝圈安全系数相差213倍。
有限元计算结果还表明,超载情况下钢丝圈的安全性能明显下降。
关键词:全钢载重⼦午线轮胎;胎圈钢丝;应⼒分布;安全系数中图分类号:TQ330138+9;U4631341+16 ⽂献标识码:B ⽂章编号:100628171(2004)1020594204作者简介:梁俐(19622),男,安徽舒城⼈,佳通轮胎(中国)研发中⼼⾼级⼯程师,学⼠,主要从事全钢载重⼦午线轮胎研究⼯作。
轮胎载荷主要由⾻架结构承担,李炜[1]以10.00R20全钢载重⼦午线轮胎为例研究了⾻架结构对充⽓压⼒分配⽐例的影响,结果表明,钢丝圈承受74%左右的充⽓压⼒。
在轮胎结构设计中,钢丝圈强度设计的经典⽅法仍然是安全系数法,⼦午线轮胎钢丝圈的安全系数⼀般取4~5倍,在这种设计⽅法中,钢丝圈钢丝的受⼒分布被认为是均匀的。
⽽事实上,轮胎中钢丝圈钢丝的受⼒是不均匀的,⽤简单的理论模型将钢丝受⼒视为均匀分布只能给出受⼒的粗略估算结果。
根据有限元计算所得到的最⼤钢丝应⼒进⾏钢丝圈的强度设计更为合理。
本⼯作以10.00R20轮胎为例,研究钢丝圈强度设计的经典⽅法与有限元⽅法所得到的安全系数之间的关系。
1 钢丝圈钢丝拉伸性能对10100R20轮胎的钢丝圈钢丝进⾏了单向拉伸试验,测试所⽤钢丝为江苏兴达钢帘线股份有限公司⽣产的Φ1.65mm 冷拉钢丝;试验仪器为DCS5000型岛津材料试验机,并对其数据采集系统进⾏了改进,使测试结果可直接采集到计算机进⾏处理。
轮胎轮辋错动与胎圈配合的分析和设计当轮胎受到的驱动扭矩或制动扭矩大于在车轮轮辋和轮胎之间产生的极限摩擦扭矩时,轮胎会在轮辋周向上滑动。
这种现象被称为轮辋错动或扭矩错动,如图1所示。
若这种现象由驱动扭矩引起,则在转动方向上轮辋向轮胎前方移动;若由于较大制动扭矩引起则出现相反情况。
不管哪种情况,轮胎-轮辋组件的平衡性丧失,导致振动和/或对操纵性的不利影响。
轮胎的轮辋错动阻力是接触压力p,摩擦系数µ与到车轮中心距离r的乘积在整个轮胎-轮辋交界面上的积分,如:最大轮胎-轮辋摩擦扭矩(后面缩写为摩擦力矩)。
在轮辋的一侧,摩擦扭矩T为·原因:驱动扭矩或制动扭矩超过了最大轮胎-轮辋摩擦扭矩·摩擦扭矩增量-(摩擦系数)*(接触压力)*(到车轮中心的距离)*(面积增量)图1- 轮辋错动示意图公式中里边的积分(对于ds)在一处周向位置上覆盖了从胎趾到轮辋法兰区接触末端的整个轮胎-轮辋接触路径,而外边的积分覆盖整个圆周。
积分符号内的乘积dsrdθ代表一个接触面积增量。
轮辋两侧的摩擦扭矩组成了总轮辋错动阻力。
摩擦系数取决于安装时所用润滑剂的类型和多少,轮胎使用前的干燥时间,胶料,轮辋的材质和表面光洁度,接触压力[1]的量值,以及诸如温度和湿度等环境因素。
另一方面,接触压力分布取决于在轮胎胎圈区域与轮辋之间的几何关系,胎压以及其他轮胎负荷,如垂直力,测向力和离心力。
本文重在设计一种胎圈,在符合安装极限(根据安装钢丝圈所要求的胎压)和胎圈钢丝张力要求的情况下,具有更高的最大轮胎-轮辋摩擦扭矩。
由于摩擦系数的多变性和分析中采用了简化假设,所以需要说明的是,本文中给出的预测压力大小和摩擦扭矩数值取值并非十分严格;文中的观点和适当的解释将根据发生机制,敏感性,改变趋势和百分比变化。
选择赛车轮胎作为首要研究目标,研究了设计变量,胎压和离心力对轮胎-轮辋接触压力分布,最大接触压力,总摩擦扭矩,胎圈钢丝张力分布,轮胎-轮辋分离以及胎趾上提的影响。
子午线轮胎结构设计摘要:随着汽车工业的高速发展,我国汽车拥有量越来越多,高速公路里程越来越长,汽车速度越来越高,在这种形势下,对汽车轮胎的各项性能也提高了要求,以便使汽车的行驶舒适性、安全性得到人们的认同,同时也令轮胎的经济性更容易让人接受。
本文介绍了子午线轮胎在我国的发展历程和发展方向,并对子午线轮胎的结构组成和其优越性进行了研究分析,并完成了对轿车子午线轮胎的设计。
关键词:子午线轮胎;扁平化;带束层;帘布线;轮胎花纹Radial tire structure design ABSTRACT:Along with automobile industry's high speed development, our country automobile capacity are getting more and more, the highway course is getting more and more long, the automobile speed is getting higher and higher, under this kind of new situation, also enhanced the request to automobile tire's each performance, with the aim of enabling automobile's travel comfortableness, the security to obtain people's approval, simultaneously is been also easier tire's efficiency to let the human accept. this article introduced the meridian tire in our country's development process and the development direction, and the antitheticalcouplet noon-mark tire's structure composition and its superiority has carried on the research analysis, and has completed independently to passenger vehicle meridian tire's design.KEY WORDS: radial ply tyre;the flattening;belted layer;the curtain wiring;the tire tread目录1. 子午线轮胎概述 (6)1.1子午线轮胎的历史发展现状 (6)1.2选题的目的和意义 (7)2. 原理容及其优缺点 (10)2.1子午线轮胎设计原理容 (10)2.1.1带束层的设计对子午线转向性能的影响 (11)2.1.2带束层的帘线材料 (12)2.1.3帘线结构 (12)2.1.4带束层的帘线密度 (12)2.1.5帘布角度 (13)2.1.6带束层宽度 (13)2.2子午线轮胎的特点 (15)2.2.1子午线轮胎的优越性 (15)2.2.2子午线轮胎胎冠刚性大 (16)2.2.3子午线轮胎有“柔性”胎侧 (16)2.2.4六个主要变形特性 (16)2.2.5子午线轮胎的 (17)2.2.6子午线轮胎表现特点 (19)2.3设计目的与方向 (20)2.3.1SEE的研发 (20)2.3.2生产工艺改进 (20)2.3.3全面的产品检测与深入的试验研究 (21)2.3.4扁平化 (22)2.3.5无胎化 (23)3. 结构设计及计算 (27)3.1子午线轮胎负荷能力的计算 (27)3.2外轮廓断面形状设计 (28)3.2.1外直径D和断面宽B (28)3.2.2胎圈着合直径的确定 (29)3.2.3外胎断面高 (29)3.2.4断面水平轴位置的确定 (29)3.2.5胎圈着合宽度C的设计 (30)3.2.6行驶面宽 (30)3.3外轮廓弧度计算 (31)3.3.1胎冠弧度 (31)3.3.2上胎侧弧半径 (32)3.3.3胎圈曲线弧度设计 (32)3.3.4胎冠弧长的计算 (33)3.3.5胎面饱和度 (33)3.4施工设计 (33)3.4.1胎体帘线拉伸应力及安全倍数的计算 (34)3.4.2钢丝圈应力和安全倍数的计算 (36)3.4.3带束层强度计算 (36)3.5花纹设计 (37)3.5.1轮胎花纹的作用 (37)3.5.2子午线轮胎胎面花纹 (38)3.6胎圈结构特点 (41)4. 爆炸图及工程图的设计 (43)4.1子午线轮胎爆炸图的设计 (43)4.2子午线轮胎工程图的设计 (44)5. 总结 (45)6. 参考文献 (46)致 (47)外文摘要 (48)1.子午线轮胎概述1.1子午线轮胎的历史发展现状子午线轮胎是轮胎工业的更新换代产品,从问世至今已经经历了半个多世纪的发展历程。