2012中考数学一次函数的图象与性质复习
- 格式:ppt
- 大小:659.00 KB
- 文档页数:10
中考数学复习之一次函数的图象与性质(含答案)1.一个正比例函数的图象经过点(2,-1),则它的表达式为 ( )A. y =-2xB. y =2xC. y =-12xD. y =12x 2.若b >0,则一次函数y =-x +b 的图象大致是 ( )3.一次函数y =x +2的图象与y 轴的交点坐标为( )A. (0,2)B. (0,-2)C. (2,0)D. (-2,0)4. 将直线y =2x -3向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A. y =2x -4B. y =2x +4C. y =2x +2D. y =2x -2 5.等腰三角形底角与顶角之间的函数关系是( )A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数 6.如图,直线y =kx +b (k ≠0)经过点A (-2,4),则不等式kx +b >4的解集为 ( )A. x >-2B. x <-2C. x >4D. x <47. 一次函数y =kx -1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A. (-5,3)B. (1,-3)C. (2,2)D. (5,-1)8.如图,直线l 是一次函数y =kx +b 的图象,如果点A (3,m )在直线l 上,则m 的值为 ( )A. -5B. 32C. 52 D. 79. 点A (x 1,y 1),B (x 2,y 2)在一次函数y =12x +b 的图象上,且x 1>x 2,则y 1与y 2的大小关系是_____________.10.已知点A 是直线y =x +1上一点,其横坐标为-12.若点B 与点A 关于y 轴对称,则点B 的坐标为_____________.11. 如图,一次函数l 1∶y =k 1x +b 1与l 2∶y =k 2x +b 2的图象交于P 点,则方程组⎩⎨⎧y =k 1x +b 1y =k 2x +b 2的解为_____________.12.如图,在平面直角坐标系中,一次函数y =kx +b 的图象经过点A (-2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图象相交于点C ,点C 的横坐标为1. (1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.13. 如图,在平面直角坐标系中,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,点C 在第二象限,若BC =OC =OA ,则点C 的坐标为 ( )A. (-5,2)B. (-3,5)C. (-2,2)D. (-3,2)14. 如图,在平面直角坐标系中,点A (0,4)、B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为_______________.15.如图,在平面直角坐标系中,直线y=-x+3过点A(5,m)且与y轴交于点B,把点A向左平移2个单位,再向上平移4个单位,得到点C.过点C且与y=2x平行的直线交y轴于点D.(1)求直线CD的解析式;(2)直线AB与CD交于点E,将直线CD沿EB方向平移,平移到经过点B的位置结束,求直线CD在平移过程中与x轴交点的横坐标的取值范围.16.问题:探究函数y=|x|-2的图象与性质.小华根据学习函数的经验,对函数y=|x|-2的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)在函数y=|x|-2中,自变量x可以是任意实数;(2)下表是y与x的几组对应值.①m=________;②若A(n,8),B(10,8)为该函数图象上不同的两点,则n=________;(3)如图,在平面直角坐标系xOy中,描出以上表中各对应值为坐标的点,并根据描出的点,画出该函数的图象;根据函数图象可得:①该函数的最小值为________;②已知直线y1=12x-12与函数y=|x|-2的图象交于C、D两点,当y1≥y时x的取值范围是_____________.17.若正比例函数y=kx(k是常数,k≠0)的图象经过第二、四象限,则k的值可以是__________(写出一个即可).18.当-2≤x≤2时,函数y=kx-k+1(k为常数且k<0)有最大值3,则该函数的解析式为_______________.参考答案:1-4 CCAA 5-8 BACC 9. y 1>y 2 10. (12,12) 11. ⎩⎨⎧x =-1y =-212. 解:(1)∵点C 的横坐标为1,且在y =3x 的图象上,∴C 点坐标为(1,3),将A 、C 点的坐标代入y =kx +b , 得⎩⎨⎧6=-2k +b 3=k +b ,解得⎩⎨⎧k =-1b =4; (2)由(1)知直线AC 的函数解析式为y =-x +4,当y =0时,解得x =4, ∴B 点坐标为(4,0),即OB =4, ∴S △BOC =12×4×3=6,∴S △COD =13×6=2,△COD 边OD 上的高为C 点的横坐标1, 则S △COD =12×1×|y D |=2,∴|y D |=4,∵点D 在y 轴负半轴上,∴y D =-4,故D 点的坐标为(0,-4). 13. A14. y =-12x +3215. 解:(1)∵直线y =-x +3过点A (5,m ),∴m =-5+3=-2, ∴点A 的坐标为(5,-2), 由平移可得点C 的坐标为C (3,2), 设直线CD 的解析式为y =kx +b (k ≠0), ∵直线CD 与直线y =2x 平行, ∴k =2,∵点C (3,2)在直线CD 上,∴2×3+b =2, 解得b =-4,∴直线CD 的解析式为y =2x -4; (2)∵直线y =-x +3与y 轴的交点为B , ∴点B 的坐标为(0,3),∵直线CD 的解析式为y =2x -4, 令y =0,则x =2,∴直线CD 与x 轴的交点为(2,0);设直线CD 平移到经过点B (0,3)时的解析式为y =2x +b 1, ∴3=2×0+b 1,解得b 1=3,∴此时直线CD 的解析式为y =2x +3, 令y =0,则x =-32,∴平移后的直线CD 与x 轴的交点为(-32,0),∴直线CD 沿EB 方向平移,平移到经过点B 的位置时,直线CD 在平移过程中与x 轴交点的横坐标的取值范围为-32≤x ≤2. 16. 解:(2)①1;②-10;(3)该函数的图象如解图;①-2;②-1≤x ≤3. 17. -1(答案不唯一) 18. y =-23x +53。
一次函数的图像与性质【命题趋势】在中考中,主要以选择题、填空题和解答题形式出现,主要考查一次函数的图像与性质,确定一次函数的解析式,一次函数与方程(组)、不等式的关系。
一次函数与二次函数、反比例函数综合也是中考重点之一。
【中考考查重点】一、结合具体情景体会一次函数的意义,能根据已知条件确定一次函数的表达式;二、利用待定系数法确定一次函数的表达式;三、根据一次函数画出图像,探索并理解k>0和k<0时,图像的变化情况;四、体会一次函数与二元一次方程的关系考点一:一次函数及其图像性质概念一般地,形如y=kx+b(k,b为常数,k≠0)的函数,叫做一次函数,当b=0十,即y=kx,这时称y是x的正比例函数(一次函数的特殊形式)增减性k>0k<0从左向右看图像呈上升趋势,y随x的增大而增大从左向右看图像呈下降趋势,y随x的增大而较少图像(草图)b>0b=0b<0b<0b=0 b<0经过象限一、二、三一、三一、三、四一、二、四二、四二、三、四与y轴的交点位置b>0,交点在y轴正半轴上;b=0,交点在原点;b<0,交点在y轴负半轴上【提分要点】:1.若两直线平行,则;2.若两直线垂直,则1.(2021春•大安市期末)一次函数y=2x﹣1图象经过象限()A.一、二、三B.一、二、四C.二、三、四D.一、三、四2.(2021秋•肃州区期末)对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,6)3.(2021秋•东港市期中)点A(﹣1,y1)和点B(﹣4,y2)都在直线y=﹣2x上,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2 4.(2021秋•三水区期末)若一次函数y=kx+b的图象经过第一、二、四象限,则一次函数y=bx+k的图象大致是()A.B.C.D.考点二:一次函数解析式的确定方法待定系数法步骤1.设:一般式y=kx+b(k≠0)(题干中未给解析式需设)2.代:找出一次函数图像上的两个点,并且将点坐标代入函数解析式,得到二元一次方程组;3.求:解方程(组)求出k、b的值;4.写:将k、b的值代入,直接写出一次函数解析式5.(2021秋•尤溪县期中)已知一次函数y=x+b过点(﹣1,﹣2),那么这个函数的表达式为()A.y=x﹣1B.y=x+1C.y=x﹣2D.y=x+2 6.(2021春•海珠区期末)已知一次函数y=mx﹣4m,当1≤x≤3时,2≤y≤6,则m 的值为()A.3B.2C.﹣2D.2或﹣2 7.(2021秋•萧山区月考)已知y与x﹣2成正比例,且当x=1时,y=1,则y与x之间的函数关系式为.8.(2021春•古丈县期末)某个一次函数的图象与直线y=x+6平行,并且经过点(﹣2,﹣4),则这个一次函数的解析式为()A.y=﹣x﹣5B.y=x+3C.y=x﹣3D.y=﹣2x﹣8考点三:一次函数图像的平移平移前平移方式(m>0)平移后简记y=kx+b 向左平移m个单位长度y=k(x+m)+bx左加右减向右平移m个单位长度y=k(x-m)+b向上平移m个单位长度y=kx+b+m等号右端整体上加下减向下平移m个单位长度y=kx+b-m9.(2021秋•金安区校级期中)将直线y=2x向右平移1个单位,再向上平移1个单位后,所得直线的表达式为()A.y=2x﹣1B.y=2x C.y=2x+4D.y=2x﹣2 10.(2021春•米易县期末)一次函数y=2x﹣4的图象由正比例函数y=2x的图象()A.向左平移4个单位长度得到B.向右平移4个单位长度得到C.向上平移4个单位长度得到D.向下平移4个单位长度得到11.(2021秋•长丰县月考)已知点A(2,4)沿水平方向向左平移3个单位长度得到点A',若点A'在直线y=x+b上,则b的值为()A.1B.3C.5D.﹣1考点四:一次函数与方程(组)、不等式与一元一次方程的关系方程ax+b=0(a≠0)的解是一次函数y=ax+b(a≠0)的函数值为0时自变量的取值,还是直线y=ax+b(a≠0)与x 轴交点的横坐标与二元一次方程组的关系方程组的解时直线的交点坐标与一元一次不等式的关系1.从“数”来看(1)kx+b>0的解集是y=kx+b中,y>0时x的取值范围(2)kx+b><0的解集是y=kx+b中,y<0时x的取值范围2.从“形”上看(1)kx+b>0的解集是y=kx+b函数图像位于x上方部分对应的点的横坐标(2)kx+b<0的解集是y=kx+b函数图像位于x下方部分对应的点的横坐标12.(2021秋•乐平市期中)一次函数y=kx+b的图象如图所示,则关于x的方程kx+b =0的解为()A.x=0B.x=3C.x=﹣2D.x=﹣3 13.(2021秋•安徽期中)已知一次函数y=ax﹣1与y=mx+4的图象交于点A(3,1),则关于x的方程ax﹣1=mx+4的解是()A.x=﹣1B.x=1C.x=3D.x=414.(2021春•沧县期末)如图,直线y=x+5和直线y=ax+b相交于点P(20,25),根据图象可知,方程x+5=ax+b的解是()A.x=20B.x=5C.x=25D.x=15 15.(2020秋•建湖县期末)如图,一次函数y=kx+b(k≠0)的图象经过点A(﹣1,﹣2)和点B(﹣2,0),一次函数y=2x的图象过点A,则不等式2x<kx+b≤0的解集为()A.x≤﹣2B.﹣2≤x<﹣1C.﹣2<x≤﹣1D.﹣1<x≤0 16.(2021秋•兴宁区校级月考)如图,直线y=kx+b交x轴于点A(﹣2,0),直线y =mx+n交x轴于点B(5,0),这两条直线相交于点C(2,c),则关于x的不等式组的解集为()A.x<5B.1<x<5C.﹣2<x<5D.x<﹣217.(2020秋•西林县期末)如图所示是函数y=kx+b与y=mx+n的图象,则方程组的解是()A.B.C.D.1.(2021春•扎兰屯市期末)将直线y=﹣2x﹣2向右平移1个单位长度,可得直线的表达式为()A.y=2x B.y=﹣2x﹣4C.y=﹣2x D.y=﹣2x+4 2.(2021春•玉田县期末)下列有关一次函数y=﹣6x﹣5的说法中,正确的是()A.y的值随着x值的增大而增大B.函数图象与y轴的交点坐标为(0,5)C.当x>0时,y>﹣5D.函数图象经过第二、三、四象限3.(2021春•红寺堡区期末)点P1(x1,y1),点P2(x2,y2)是一次函数y=﹣4x+3图象上的两个点,且x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1>y2>0C.y1<y2D.y1=y2 4.(2021秋•运城期中)在平面直角坐标系中,一次函数y=kx+3(k≠0)的图象经过点A(2,﹣1),则这个一次函数的表达式是()A.y=﹣2x+3B.y=x+3C.y=2x+3D.y=x+35.(2021秋•南海区期中)如图,一次函数y=kx+b的图象经过点(2,0)、(0,1),则下列结论正确的是()A.k=1B.关于x的方程kx+b=0的解是x=2C.b=2D.关于x的方程kx+b=0的解是x=16.(2021秋•滕州市期中)直线y=ax+b(a≠0)过点A(0,2),B(1,0),则关于x的方程ax+b=0的解为()A.x=0B.x=2C.x=1D.x=3 7.(2021秋•龙凤区期末)一次函数y=mx﹣n(m,n为常数)的图象如图所示,则不等式mx﹣n≥0的解集是()A.x≥2B.x≤2C.x≥3D.x≤3 8.(2020秋•开化县期末)如图,直线y=2x+n与y=mx+3m(m≠0)的交点的横坐标为﹣1,则关于x的不等式2x+n<mx+3m<0的整数解为()A.﹣1B.﹣2C.﹣3D.﹣3.59.(2021春•单县期末)已知方程组的解为,则直线y=﹣x+2与直线y=2x﹣7的交点在平面直角坐标系中位于()A.第一象限B.第二象限C.第三象限D.第四象限10.(2021春•武陵区期末)对于实数a,b,我们定义符号max{a,b}的意义为:当a ≥b时,max{a,b}=a;当a<b时,max{a,b}=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max(2x﹣1,﹣x+2},则该函数的最小值是()A.2B.1C.0D.﹣1 11.(2020秋•成安县期末)如图,若直线y=kx+b与x轴交于点A(﹣4,0),与y 轴正半轴交于B,且△OAB的面积为4,则该直线的解析式为()A.B.y=2x+2C.y=4x+4D.12.(2021春•饶平县校级期末)已知2y﹣3与3x+1成正比例,则y与x的函数解析式可能是()A.y=3x+1B.C.D.y=3x+2 13.(2021秋•榆林期末)已知直线l1交x轴于点(﹣3,0),交y轴于点(0,6),直线l2与直线l1关于x轴对称,将直线l1向下平移8个单位得到直线l3,则直线l2与直线l3的交点坐标为()A.(﹣1,﹣4)B.(﹣2,﹣4)C.(﹣2,﹣1)D.(﹣1,﹣1)1.(2021•长沙)下列函数图象中,表示直线y=2x+1的是()A.B.C.D.2.(2021•嘉峪关)将直线y=5x向下平移2个单位长度,所得直线的表达式为()A.y=5x﹣2B.y=5x+2C.y=5(x+2)D.y=5(x﹣2)3.(2021•陕西)在平面直角坐标系中,将直线y=﹣2x向上平移3个单位,平移后的直线经过点(﹣1,m),则m的值为()A.﹣1B.1C.﹣5D.5 4.(2021•抚顺)如图,直线y=2x与y=kx+b相交于点P(m,2),则关于x的方程kx+b=2的解是()A.x=B.x=1C.x=2D.x=4 5.(2020•牡丹江)两个一次函数y=ax+b和y=bx+a,它们在同一个直角坐标系的图象可能是()A.B.C.D.6.(2021•乐山)如图,已知直线l1:y=﹣2x+4与坐标轴分别交于A、B两点,那么过原点O且将△AOB的面积平分的直线l2的解析式为()A.y=x B.y=x C.y=x D.y=2x 7.(2021•娄底)如图,直线y=x+b和y=kx+4与x轴分别相交于点A(﹣4,0),点B(2,0),则解集为()A.﹣4<x<2B.x<﹣4C.x>2D.x<﹣4或x>2 8.(2019•苏州)若一次函数y=kx+b(k,b为常数,且k≠0)的图象经过点A(0,﹣1),B(1,1),则不等式kx+b>1的解集为()A.x<0B.x>0C.x<1D.x>19.(2021•德阳)关于x,y的方程组的解为,若点P(a,b)总在直线y=x上方,那么k的取值范围是()A.k>1B.k>﹣1C.k<1D.k<﹣1 10.(2021•呼和浩特)在平面直角坐标系中,点A(3,0),B(0,4).以AB为一边在第一象限作正方形ABCD,则对角线BD所在直线的解析式为()A.y=﹣x+4B.y=﹣x+4C.y=﹣x+4D.y=4 11.(2019•江西)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣,0),(,1),连接AB,以AB为边向上作等边三角形ABC.(1)求点C的坐标;(2)求线段BC所在直线的解析式.1.(2021•庐阳区校级一模)一次函数y=﹣2x﹣3的图象和性质.叙述正确的是()A.y随x的增大而增大B.与y轴交于点(0,﹣2)C.函数图象不经过第一象限D.与x轴交于点(﹣3,0)2.(2021•陕西模拟)平面直角坐标系中,直线y=﹣2x+m沿x轴向右平移4个单位后恰好经过(1,2),则m=()A.﹣1B.2C.﹣4D.﹣3 3.(2021•商河县校级模拟)若一次函数y=kx+b的图象经过一、二、四象限,则一次函数y=﹣bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(2021•萧山区一模)已知y﹣3与x+5成正比例,且当x=﹣2时,y<0,则y关于x的函数图象经过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.(2021•陕西模拟)一次函数y=kx+b的图象经过点A(2,3),每当x增加1个单位时,y增加3个单位,则此函数表达式是()A.y=x+3B.y=2x﹣3C.y=3x﹣3D.y=4x﹣4 6.(2021•蕉岭县模拟)在平面直角坐标系中,一次函数y=mx+b(m,b均为常数)与正比例函数y=nx(n为常数)的图象如图所示,则关于x的方程mx=nx﹣b的解为()A.x=3B.x=﹣3C.x=1D.x=﹣17.(2021•奉化区校级模拟)八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l将这八个正方形分成面积相等的两部分,则该直线l的解析式为()A.y=﹣x B.y=﹣x C.y=﹣x D.y=﹣x8.(2021•遵义一模)如图,直线y=kx+b(k<0)与直线y=x都经过点A(3,2),当kx+b>x时,x的取值范围是()A.x<2B.x>2C.x<3D.x>3 9.(2021•饶平县校级模拟)如图,函数y=ax+b和y=﹣x的图象交于点P,则根据图象可得,关于x,y的二元一次方程组中的解是()A.B.C.D.10.(2021•杭州模拟)已知直线l:y=kx+b经过点A(﹣1,a)和点B(1,a﹣4),若将直线l向上平移2个单位后经过原点,则直线的表达式为()A.y=2x+2B.y=2x﹣2C.y=﹣2x+2D.y=﹣2x﹣2 11.(2021•南山区校级二模)我国古代很早就对二元一次方程组进行了研究,古著《九章算术》记载用算筹表示二元一次方程组,发展到现代就是用矩阵式=来表示二元一次方程组,而该方程组的解就是对应两直线(不平行)a1x+b1y=c1与a2x+b2y=c2的交点坐标P(x,y)据此,则矩阵式=所对应两直线交点坐标是.12.(2021•杭州模拟)已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.。
中考数学人教版专题复习:一次函数的图象与性质考点考纲要求分值考向预测一次函数的图象与性质1. 理解函数、变量,正比例函数、一次函数定义;2. 掌握函数图象的性质,能够画出相应的函数图象;3. 掌握图象的运动变化规律,并能应用性质解决问题5~15分主要考查方向是自变量的取值范围,函数图象的性质,动点变化形成的图象,应用函数图象性质解决问题。
其中动点与图象问题难度较大一次函数1. 函数概念:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y 称为因变量,y是x的函数。
用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式。
提示:判断y是否为x的函数,只要看x取值确定的时候,y是否有唯一确定的值与之对应。
【方法指导】自变量的取值范围:(1)关系式为整式时,自变量的取值范围为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开方数大于等于零;1(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,自变量的取值范围还要和实际情况相符合,使之有意义。
【随堂练习】x中的自变量x的取值范围是()(济宁)函数y=x1A. x≥0B. x≠﹣1C. x>0D. x≥0且x≠﹣1答案:解:根据题意得:x≥0且x+1≠0,解得x≥0,故选:A。
2. 一次函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数。
【重要提示】(1)一次函数的自变量的取值范围是一切实数,实际问题中要根据函数的实际意义来确定。
(2)一次函数y=kx+b(k,b为常数,k≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数。
2012年全国中考数学试题分类解析汇编(159套63专题)专题16:一次函数(正比例函数)的图像和性质一、选择题1. (2012山西省2分)如图,一次函数y=(m ﹣1)x ﹣3的图象分别与x 轴、y 轴的负半轴相交于A .B ,则m 的取值范围是【 】A . m >1B . m <1C . m <0D . m >02. (2012陕西省3分)下列四组点中,可以在同一个正比例函数图象上的一组点是【 】 A .(2.-3),(-4,6) B .(-2,3),(4,6)C .(-2,-3),(4,-6)D .(2,3),(-4,6)3. (2012陕西省3分)在同一平面直角坐标系中,若一次函数y x 3=-+与y 3x 5=-图象交于点M ,则点M 的坐标为【 】A .(-1,4)B .(-1,2)C .(2,-1)D .(2,1)4. (2012浙江温州4分)一次函数y=-2x+4图象与y 轴的交点坐标是【 】 A. (0, 4) B. (4, 0) C. (2, 0) D. (0, 2 )5. (2012江苏苏州3分)若点(m ,n )在函数y=2x+1的图象上,则2m-n 的值是【 】 A.2 B.-2 C.1 D. -16. (2012江苏徐州3分)一次函数y=x -2的图象不经过【 】 A .第一象限 B .第二象限 C .第三象限D .第一象限7. (2012福建宁德4分)一次函数y 1=x +4的图象如图所示,则一次函数y 2=-x +b 的图象与y 1=x +4的图象的交点不可能...在【 】A .第一象限B .第二象限C .第三象限D .第四象限8. (2012福建泉州3分)若y kx 4=-的函数值y 随着x 的增大而增大,则k 的值可能是下列的【 】.A .4- B.21-C.0D.3 9. (2012湖南娄底3分)对于一次函数y=﹣2x+4,下列结论错误的是【 】 A . 函数值随自变量的增大而减小 B . 函数的图象不经过第三象限C . 函数的图象向下平移4个单位长度得y=﹣2x 的图象D . 函数的图象与x 轴的交点坐标是(0,4)10. (2012四川乐山3分)若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是【 】A .B .C .D .11. (2012四川南充3分)下列函数中是正比例函数的是【 】( A )y=-8x(B )y=8x-( C )y=5x 2+6 (D )y= -0.5x-112. (2012辽宁沈阳3分)一次函数y=-x+2的图象经过【 】A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限 13. (2012山东滨州3分)直线1y x =-不经过【 】A .第一象限B .第二象限C .第三象限D .第四象限14. (2012江西南昌3分)已知一次函数y=kx+b (k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过【 】 A . 第一象限 B . 第二象限C . 第三象限D .第四象限15. (2012吉林长春3分)有一道题目:已知一次函数y=2x+b ,其中b <0,…,与这段描述相符的函数图像可能是【 】二、填空题1. (2012上海市4分)已知正比例函数y=kx (k≠0),点(2,﹣3)在函数上,则y 随x 的增大而 ▲ (增大或减小).2. (2012浙江湖州4分)一次函数y=kx+b (k ,b 为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x 的方程kx+b=0的解为 ▲3. (2012江苏南京2分)已知一次函数y kx k 3=+-的图像经过点(2,3),则k 的值为 ▲4. (2012湖南长沙3分)如果一次函数y=mx+3的图象经过第一、二、四象限,则m 的取值范围是 ▲ .5. (2012湖南永州3分)一次函数y=﹣x+1的图象不经过第 ▲ 象限.6. (2012湖南怀化3分)如果点()()1122P 3,y ,P 2,y 在一次函数y 2x 1=-的图像上,则1y ▲ 2y .(填“>”,“<”或“=”)7. (2012湖南衡阳3分)如图,一次函数y=kx+b 的图象与正比例函数y=2x 的图象平行且经过点A (1,﹣2),则kb= ▲ .8. (2012湖南株洲3分)一次函数y=x+2的图象不经过第▲ 象限.9. (2012贵州贵阳4分)在正比例函数y=﹣3mx中,函数y的值随x值的增大而增大,则P(m,5)在第▲ 象限.10. (2012江西省3分)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则其图像不经过...第▲ 象限。
一次函数的图象和性质一、知识要点:1、一次函数:形如y=kx+b (k≠0, k, b为常数)的函数。
注意:(1)k≠0,否则自变量x的最高次项的系数不为1;(2)当b=0时,y=kx,y叫x的正比例函数。
2、图象:一次函数的图象是一条直线,(1)两个常有的特殊点:与y轴交于(0,b);与x轴交于(-,0)(2)由图象可以知道,直线y=kx+b与直线y=kx平行,例如直线:y=2x+3与直线y=2x-5都与直线y=2x 平行。
3、性质:(1)图象的位置:(2)增减性k>0时,y随x增大而增大 k<0时,y随x增大而减小4.求一次函数解析式的方法求函数解析式的方法主要有三种(1)由已知函数推导或推证(2)由实际问题列出二元方程,再转化为函数解析式,此类题一般在没有写出函数解析式前无法(或不易)判断两个变量之间具有什么样的函数关系。
(3)用待定系数法求函数解析式。
“待定系数法”的基本思想就是方程思想,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,转化为方程(组)来解决,题目的已知恒等式中含有几个等待确定的系数,一般就需列出几个含有待定系数的方程,本单元构造方程一般有下列几种情况:①利用一次函数的定义构造方程组。
②利用一次函数y=kx+b中常数项b恰为函数图象与y轴交点的纵坐标,即由b来定点;直线y=kx+b 平行于y=kx,即由k来定方向。
③利用函数图象上的点的横、纵坐标满足此函数解析式构造方程。
④利用题目已知条件直接构造方程。
二、例题举例:例1.已知y=,其中=(k≠0的常数),与成正比例,求证y与x也成正比例。
证明:∵与成正比例,设=a(a≠0的常数),∵y=, =(k≠0的常数), ∴y=·a=akx,其中ak≠0的常数,∴y与x也成正比例。
例2.已知一次函数=(n-2)x+-n-3的图象与y轴交点的纵坐标为-1,判断=(3-)是什么函数,写出两个函数的解析式,并指出两个函数在直角坐标系中的位置及增减性。