高阶线性微分方程
- 格式:pdf
- 大小:67.95 KB
- 文档页数:3
高阶线性微分方程的解法实变量复值函数——预备知识常系数线性方程的解法求变系数齐线性方程特解的幂级数法要存在注意极限 ,) sin (cos )(t i t e e t t i b b a b a ±=± , )(21 t i t i e e t b b b -+=. )(21 sin t i t i e e t b b b --=; )()(lim 00t z t z t t =®)()()(t i t t z y j +=; )(lim )(lim )(lim 000t i t t z t t t t t t y j ®®®+=连续,若在0)(t t z 实变量复值函数——预备知识导数定义:; )()(lim )()(0000000dtt d i dt t d t t t z t z dt t dz t z t t )(+)(=--=º¢®y j,)()()]()([2121dt t dz dt t dz t z t z +=+,)()](dt t dz c t cz =.)()()()()]()(212121dt t dz t z t z dt t dz t z t ××=×+,t k t k e =,)(2121t k t k t k k e e e ×=+,)3( t k tk ke .)( )4( tk n t k n n e k e dt d =的性质)( b i a k t k +=.(4.2)中所有系数都是),,2,1( )(n i t a i L =)()()( t i t t z x y j +==是它的复值解,则.)2.4( )( )(的解都是方程和共轭复值函数t z t y 非齐线性微分方程有复值解)( )(][ t V i t U x L +=、及解中的和这里)( )()(),,2,1( )(t u t 、V t U n i t a i L =分别是方程和虚部的实部都是实值函数,则该解)()( t v t u 的实)(t z , ))(][t U x L =)(][t V x L =和的解.变换法. 求常系数齐线性方程通解的特征根法(4.19)0][1111 =++++º---x a dtdx a dt x d a dt x d x n n n n n n L .,,2为实常数n a L 由希望它有指数函数形式的解,t e x l =, 0)( )(][111=º++++º--t t n n n n t e F ea a a e L l l l l l l l L 数方程(4.20) 0)(111 =++++º--n n n n a a a F l l l l L . 这个方程称为(4.19)对应的特征根.特征方程,它的根称为特征根是单根的情形.个解有 (4.19)n 个彼此不相等的的是特征方程 (4.20) ,,,21 n n l l L ,,,, 21t t t n e e e l l l L 无关的,从而组成方程的基本解组. 这时,若的通解为均为实根,方程(4.19)),,2,1(n i L =; 2121tn t t n e c e c e c x l l l +++=L 复也一定是特征根,则( b a l b a l i i -=+=),它们对应方程(4.19)的两个实值解.sin ,cos t e t e t t b b a a 特征根有重根的情形.111(4.19)(4.20) k k 的重根,则它对应的是特征方程设 l 线性无关的解;,,,,1111112t k t t t e t e t te e l l l l -L;,,, ,,,3232m m k k k L L 的重数依次为l l l 则当 , )( , ),,,2,1 21j i n k k k n j i m ¹¹=+++l l L L 还有解;,,,,2222212t k t t t e te t te e l l l l -L .,,,,12tk t t t m m m m m e t e t te e l l l l -L L L L L n 个解, 是线性无关的, 构成了(4.19)的基本解组.b a l b a l l i i k -=+=则重复根是某个特征根,我们将用以下的2k 个实值解来替代:,cos ,,cos ,cos ,cos 12t e tt e t t te t e t k t t t b b b b a a a a -L . sin ,,sin ,sin ,sin 12 t e t t e t t te t e tk t t t b b b b a a a a -L. 0 44的通解=-x dtx d ,014=-l ., , 1, 14321i i -==-==l l l l .sin, cos , , t t e e t t -了4 个线性无关的解,故通解为.sin cos 4321t c t c e c e c x t t +++=-. 012167223的通解=-+x dtdx dt x d 出特征方程, 01216723=+--l l l,0)1(2222246=+=++l l l l l , 0)2)(3(2=--l l ,2, 3321===l l l .)(23231t t e t c c e c x ++=. 02 224466的通解=++dt x d dt x d dt x d ., ,0654321i i -======l l l l l l 通解为.sin )(cos )(654321t t c c t t c c t c c x ++++=+(4.32) )(]1111t f x a dtdx a dt x d a dt x d n n n n n n =++++º---L 最广泛而常见的右端函数是,]sin )(cos )([)( t t B t t A e t f t b b a +=次的实系数多项式,最高是t t B t A )(),(代数方程(4.20)仍然称为(4.32)对应的特征,)( )()(1110 m m m m t t b t b t b t b e t A e t f ++++==--L a a 时,即0=b 1.是单根的根时它的重数是特征方程a l a (0)(=F 是待定常数,将上是特征根m B B B k ,,, );0 10L =t 的同次项系数来确定.,]sin )(cos )([~ t k e t t Q t t P t x a b b +=),( ;0)(t P F i 的根时它的重数 是特征方程=+l b a .次实系数待定多项式. 13322的通解+=--t x dtdx dt 应的特征方程是, 0)1)(3( 0322=+-=--l l l l 或有形如下式的特解时,方程(4.32)0有如下形式的特解,)(~ 110t m m m k e B t B t B t x a +++=-L,0 13)( =+=b ,对应一般形式中的t t f ,故特解形式为不是特征根,因此00==k a .~Bt A x +=,13332+º---t Bt A B 系数,得îíì=--=-,132, 33A B B 特解为 ; 1 , 31-==B , 31~t x -=原方程通解为.31231+-+=-t e c e c x t t 的通解是因此对应的齐线性方程.1,321-==l l .231t t e c e c x -+=. 32 2的通解t e x dtdt -=--对应一,这里特征方程,特征根同上 ,)( t e t f -=确定正是单根,所以而, 11 , 1 , 0=-=-==k a a b .~ t Ate x -=一步,其余略.. )5(332233的通解-=+++-t e x dtdx dt x d dt x d t 特征方程为,0)1(133323=+=+++l l l l 形正是这三重根,故特解三重根 1; 1321-=-===a l l l ,)(~3 t e Bt A t x -+=其余步骤略.. 2cos 44 2的通解+t x dtdt =+一特征方程为,0)2(4422=+=++l l l ,对应一般形右端函数 t t f 2cos )( , 2 21=-==l l 而; 0)(, 1)( , 2 ,ºº=t B t A b ii 2=+b a .故特解形式为2sin 2cos ~t B t A x +=化简得2sin 82cos 8t A t B º-从而特解是 同类项系数,得. 81,0==B A , 2sin 81~t x =.2sin 81)(221t e t c c x t ++=-二因为右端函数)Re(2cos )(2it e t t f ==的结论,先求方程itex dt dx dt x d 22244 =++再取其实部,就是原方程的解.不是特征根,故对应的右端函数i e it 22=a ,~2it Ae x =,得方程并消去因子 it e 2 , 8 18iA iA -==或为. 2sin 812cos 88~2t t i e i x it +-=-=原方程的实特解为{}, 2sin 81~Re t x =. 2sin 81)(221t e t c c x t ++=-。
第七章常微分方程7.8 高阶齐次线性微分方程数学与统计学院赵小艳1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构解 受力分析 1 高阶线性微分方程的概念 例1 (弹簧的机械振动)如图,弹簧下挂一物体.设在垂直方向有一随时间变化的外力作用在物体上,物体将受外力驱使而上下振动,求物体的振动规律.pt H t f sin )(1= 以物体的平衡位置为坐标原点,x 轴的方向垂直向下. x xo )(1t f ;sin )()1(1pt H t f =外力;)2(kx f -=弹性力v f μ-=0)3(介质阻力,ma F =由x kx t f x m d d μ--=)(2可得.t x d d μ-= 设振动开始时刻为0,t 时刻物体离开平衡位置的位移为x (t ).,ma F =由x kx t f x m d d μ--=)(2可得t t 2d d 物体自由振动的微分方程.0,000====t t t x x d d 还应满足初始条件:一般地,称 )()()(2122t F x t P t x t P t x =++d d d d 为二阶线性微分方程, ,0)(时当≡t F 称为二阶齐次线性微分方程,,0)(时当≠t F 称为二阶非齐次线性微分方程. )()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程 ,0)(时当≡t F n 阶齐次线性微分方程,t t 2d d .0,000====t t t x x d d 还应满足初始条件:物体自由振动的微分方程)1()()()()()()()()(1)1(1)(t F t x t P t x t P t x t P t x n n n n =++++-- n 阶线性(微分)方程,0)(时当≡t F n 阶齐次线性微分方程, ,0)(时当≠t F n 阶非齐次线性微分方程.其初始条件的一般形式为 )2(.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 解的存在唯一性定理].,[,),()2()1(,],[)()(,),(),()1(021b a t t t x b a t F t P t P t P n ∈的解件存在唯一的满足初始条则方程上连续均在区间及中的系数若1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构为线性微分算子. ),()()()()(1111t x t P t x t P t x t P t x x L n n n n n n ++++=---d d d d d d 记 称 )()()()(1111t P t t P t t P t L n n n n n n ++++=---d d d d d d 性质;0)0()1(=L ;),()()2(为任一常数C x CL Cx L =,x L C x L C x L C x C x C x C L n n n n )()()()()3(22112211+++=+++ .,,,为任意常数其中C C C 2 高阶齐次线性微分方程解的性质 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t xt P t x n n n n 0)(=x L定理1(解的叠和性) ,)3(,,,21的解均是齐次线性方程若n x x x ,)3(2211的解也是齐次线性方程则n n x C x C x C x +++= 问题: 例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 也是它的解, 2211x C x C x +=.sin )2(21t C C x +=这是因为但不是该方程的通解. )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n .,,,21为任意常数其中n C C C 不一定! 的通解呢?情况下才是方程个任意常数的解在什么具有)3(n 的通解?是否是)3(2211n n x C x C x C x +++=1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I ,,,,21维向量是一组设n s ααα 的常数如果存在一组不全为零,02211=+++s s k k k ααα 使得,,,1s k k s ααα,,,21 则称.,则称它是线性无关的关一个向量组不是线性相.是线性相关的在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关.I n i t f i 在区间则称函数组),,2,1)(( =定义1(线性相关与线性无关) ,)(,),(),(21个函数内的为定义在区间设n I t f t f t f n 使得个不全为零的常数如果存在),,,2,1(n i C n i =0)()()(2211=+++t f C t f C t f C n n ),,2,1)((n i t f i =则称函数组,值均成立中任何对区间t I 在区间 I 线性相关; ,),,2,1(全为零时成立若上式仅当n i C i =线性无关. I n i t f i 在区间则称函数组),,2,1)(( =例如 t t 22sin ,cos ,1线性相关; 一般地, ,)()(21常数上若在≠t y t y I 上在与则函数I t y t y )()(21线性无关. .,线性无关而te t例1 .,,,,112上线性无关在任何区间证明函数组I x x x n - 证 反证法. 零的常数 使得()0,1,2,,1,i C i n =-0112210=++++--n n x C x C x C C 对区间 I 上的所有x 都成立, 但以上n -1 次方程在实数范围内最多有n -1个根. .,,,,112上线性无关在任何区间所以,函数组I x x x n - 即方程有无穷多个根.例如 ,0=+x x,sin 1t x =t x sin 22=都是它的解, 是它的解, t C C x C x C x sin )2(212211+=+=但不是通解. 矛盾!.个线性无关的特解关键是求微分方程的n 则必存在n 个不全为 假设这n 个函数线性相关, ,要求微分方程的通解t t t e e e 2,,-是否线性无关?,),(时当∞+-∞∈t 例2 解 两边同时关于变量t 求一阶和二阶导数, 得:假设 02321=++-t t t e C e C e C 042321=++-t t t e C e C e C 022321=+--t t t e C e C e C 联立, t t t t t t t t t e e e e e e e e e D 22242----=4112111112-=t e ,0≠t e 26-=().,+∞∞-∈t 因此 ,0321===C C C 即tt t e e e 2,,-线性无关. ,),(时当∞+-∞∈t 321,,C C C 关于变量的线性方程组的系数行列式为1 2 高阶线性微分方程的概念1主要内容3 4 高阶齐次线性微分方程解的性质函数的线性相关与线性无关高阶齐次线性微分方程通解的结构定理2(解的线性无关判别法) 线性无关则)(,),(),(21t x t x t x n 0)()()()()()()()()()(0)1(0)1(20)1(100201002010≠=---t x t x t x t x t x t x t x t x t x t w n n n n n n使得中存在一点在,0t I ,)3()(,),(),(21的解的定义于区间是方程若I t x t x t x n 4 高阶齐次线性微分方程通解的结构)3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 行列式Wronski .)3(个线性无关的特解的关键是求n ,)3(的通解要求微分方程定理3(齐次线性微分方程通解的结构)个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 证明 下证任一解 x (t ) 具有以上形式.由齐次方程解的叠加性质,可知上式中的 x (t ) 是(3)的解.任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n 均可表示为则它的任一解x任取(3)的解 x (t ) ,且满足初值条件.)(,,)(,)()1(00)1(0000--===n n x t x x t x x t x 构造方程组 由于Wronski 行列式不等于零,所以以上方程组关于变量 n C C C ,,,21 且满足初值条件. )()()()(0202101t x C t x C t x C t x n n+++= 于是 .,,,00201nC C C )()()()(2211t x C t x C t x C t x n n +++= ⎪⎪⎩⎪⎪⎨⎧)()()()(00220110t x C t x C t x C t x n n +++= )()()()(00220110t x C t x C t x C t x n n +++=)()()(0)1(0)1(110)1(t x C t x C t xn n n n n ---++=存在唯一一组解定理3(齐次线性微分方程通解的结构) )()()()(2211t x C t x C t x C t x n n +++= .,,,21为任意常数其中n C C C 均可表示为则它的任一解x .,0)(')(",21求其通解的解是方程已知=++y x a y x a y e x x 例1 解 ,011110)0(≠-==w 由于.,线性无关所以x e x ,21x e C x C y +=该方程的通解为.,21为任意常数其中C C 个线性无关的解,的是微分方程若n t x t x t x n )3()(,),(),(21 )3(0)()()()()()()(1)1(1)(=++++--t x t P t x t P t x t P t x n n n n。
高阶线性微分方程
一、 引例(1):
悬挂在弹簧上的物体在静止状态时,
重力和弹性力大小相等,方向相反。
如果物体具有一个初速度00v ≠,那末
物体将在平衡位置做振荡运动,且运动轨迹是时间 的函数。
()x x t = 在分析振荡运动时,只考虑弹性恢复力和阻尼介质的阻力作用(使振荡作用逐渐趋近于静止):
弹性恢复力:
f cx =−。
C 为弹簧的弹性系数,负号表示与物体位
移方向相反。
阻力作用:dx R dt
μ=−。
其大小与物体的运动速度成正比。
μ为比例系数,负号表示与物体运动方向相反。
则有公式:
22d x dx m cx dt dt
μ=−−,如果2u n m =,2c k m =。
则上式化成:22220d x dx n k x dt dt
++= 此式表示物体自由振动的全微分方程。
如果物体在振动过程中,还受到铅直干扰力sin F H pt =的作用,
则有:2222s d x dx n k x h dt dt
++=in pt 其中H h m
=,这就是强迫振动的微分方程。
二、 引例(2)
R
L
L di E L dt =−,dq i dt
=,q=cu, 则回路KVL 方程为:
22sin C C C m d u du LC RC u E wt dt dt
++
= 令2R L β=,01w =这就是串联电路的振荡方程。
如果撤去电源E ,则方程变为:220C C C d u du LC RC u dt dt
++= 三、 二阶线性微分方程
由上两个引例。
可得到微分方程的一个共有形式: 22()()()d y dy P x Q x y f x dx dx
++=
f x≡时,方程为齐次的。
此式叫做二阶线性微分方程,当()0
f x≠,方程为非齐次的。
当()0。