数学分析(上) 9-4定积分的性质
- 格式:ppt
- 大小:1.31 MB
- 文档页数:35
数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。
以下是对数学分析中的一些关键知识要点的整理。
一、函数函数是数学分析的核心概念之一。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。
(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。
(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。
二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。
1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。
揭示定积分的性质定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的根底上,我们还应了解一些定积分的根本性质.〔由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.〕一、定积分根本性质假设下面所涉及的定积分都是存在的,那么有性质1 函数代数和〔差〕的定积分等于它们的定积分的代数和〔差〕. 即[()()]()()b b ba a a f x g x dx f x dx g x dx ±=±⎰⎰⎰. 这个性质可推广到有限多个函数代数和的情形.性质2 被积函数的常数因子可以提到积分号前.即()()b ba a kf x dx k f x dx =⎰⎰〔k 为常数〕. 性质3 不管abc ,,三点的相互位置如何,恒有()()()b c ba a c f x dx f x dx f x dx =+⎰⎰⎰. 这性质说明定积分对于积分区间具有可能性.性质4 假设在区间[]a b ,上,()0f x ≥,那么()0ba f x dx ⎰≥. 推论1 假设在区间[]ab ,上,()()f x g x ≤,那么()()b ba a f x dx g x dx ⎰⎰≤. 推论2 ()()bba a f x dx f x dx ⎰⎰≤. 性质5 〔估值定理〕设函数()f x 在区间[]ab ,上的最小值与最大值分别为m 与M ,那么()()()ba mb a f x dx M b a --⎰≤≤. 证明:因为()m f x M ≤≤,由性质推论1得()b b ba a a mdx f x dx Mdx ⎰⎰⎰≤≤. 即()b b ba a a m dx f x dx M dx ⎰⎰⎰≤≤. 故()()()ba mb a f x dx M b a --⎰≤≤. 利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围.二、定积分性质的应用例1 比拟定积分20x e dx -⎰和20xdx -⎰的大小. 解:令()x f x e x =-,[20]x ∈-,,那么()0f x >, 故02()0f x dx ->⎰,即02()0x e x dx -->⎰.022x e dx xdx -->⎰⎰,从是2200x e dx xdx --<⎰⎰. 例2 估计定积分π30212sin dx x +⎰的值.解:∵当[0π]x ∈,时,0sin 1x ≤≤,320sin 1∴≤≤,由此有3222sin 3x +≤≤,32111322sin x +≤≤, 于是由估值定理有π302π1π322sin dx x +⎰≤≤. 评注:例1是比拟同区间上两个定积分的大小,可以直接求值进行比拟,但本例的构造函数,利用性质比拟防止了大量计算,显得简捷、明了.例2中运用的估值定理为大学涉及内容,不作要求,可以了解.。
小结定积分的性质定积分内容是研究曲边梯形、变速行程等问题的有力工具,在对定义加深理解的基础上,我们还应了解一些定积分的基本性质.(由于这些性质的证明联系到大学《数学分析》的一些内容,所以对证明过程不作要求.) 一、定积分基本性质假设下面所涉及的定积分都是存在的,则有性质1 函数代数和(差)的定积分等于它们的定积分的代数和(差).即[()()]()bbbaaafx g x d xf x d xg x d x±=±⎰⎰⎰. 这个性质可推广到有限多个函数代数和的情形. 性质2 被积函数的常数因子可以提到积分号前,即()()bbaakf x dx k f x dx =⎰⎰(k 为常数).性质3 不论a b c ,,三点的相互位置如何,恒有()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰.这性质表明定积分对于积分区间具有可加性. 性质4 若在区间[]a b ,上,()0f x ≥,则()0baf x dx ⎰≥.推论1 若在区间[]a b ,上,()()f x g x ≤,则()()bbaaf x dxg x dx ⎰⎰≤.推论2()()bbaaf x dx f x dx ⎰⎰≤.性质5 (估值定理)设函数()f x 在区间[]a b ,上的最小值与最大值分别为m 与M ,则()bb baaamdx f x dx Mdx ⎰⎰⎰≤≤.证明:因为()m f x M ≤≤,由推论1得()bb baaamdx f x dx Mdx ⎰⎰⎰≤≤.即()bb baaamdx f x dx M dx ⎰⎰⎰≤≤.故()()()bam b a f x dx M b a --⎰≤≤.利用这个性质,由被积函数在积分区间上的最小值及最大值,可以估计出积分值的大致范围.二、定积分性质的应用 例1 比较定积分2e x dx -⎰和2xdx -⎰的大小.解:令()e xf x x =-,[20]x ∈-,, 则()0f x >, 故2()0f x dx ->⎰,即02(e )0x x dx -->⎰.22e xdx xdx -->⎰⎰,从而22e xdx xdx --<⎰⎰.例2 估计定积分π30212sin dx x+⎰的值.解:∵当[0π]x ∈,时,0sin 1x ≤≤,∴320sin 1x ≤≤,由此有3222sin 3x +≤≤,32111322sin x+≤≤, 于是由估值定理得π302π1π322sin dx x+⎰≤≤. 评注:例1是比较同一区间上两个定积分的大小,可以直接求值进行比较,但本例的构造函数,利用性质比较避免了大量计算,显得简捷、明了.例2中运用的估值定理为大学涉及内容,不作要求,可以了解.。
§5 微积分基本定理.定积分计算(续)教学要求:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点:熟练地掌握换元积分法和分部积分法,并能解决计算问题. 引入当函数的可积性问题告一段落,并对定积分的性质有了足够的认识之后,接着要来解决一个以前多次提到过的问题—在定积分形式下证明连续函数必定存在原函数.一. 变限积分与原函数的存在性设f(x)在[a,b]上可积,根据定积分的性质4,对任何x ∈[a,b],f(x)在[a,x]上也可积,于是由()()xax f t dt Φ=⎰,x ∈[a,b]定义了一个以积分上限x 为自变量的函数,称为变上限的定积分,类似地又可定义变下限的定积分,()()bxx f t dt ψ=⎰,x ∈[a,b],统称为变限积分。
注意在变限积分中不可再把积分变量写成x ,以免与积分上下限的x 相混淆。
变限积分所定义的函数有着重要性质,由于()()bxxbf t dt f t dt =-⎰⎰,因此只讨论变上限积分的情形。
定理9.9 若f(x)在[a,b]上可积,则()()xax f t dt Φ=⎰,x ∈[a,b]是连续函数。
证明 对[a,b]上任一确定的点x ,只要x+∆x ∈[a,b],则()()()x xx x xaaxf t dt f t dt f t dt +∆+∆∆Φ=-=⎰⎰⎰,因f(x)在[a,b]上有界,可设|f(t)|≤M ,t ∈[a,b],于是当∆x>0时有|||()||()|x xx xxxM f t dt f t dt x +∆+∆∆Φ=∆⎰⎰≤≤,当∆x<0时有||||M x ∆Φ∆≤,由此得到lim 0x ∆→∆Φ=,即证得在点x 处连续。
由x 得任意性,Φ(x)在[a,b]上处处连续。
定理9.10原函数存在定理 若f(x)在[a,b]上连续,则Φ(x)在[a,b]上处处可导,且Φ'(x)=f(x),即()()(),[,]xad x f t dt f x x a b dx 'Φ==∈⎰ 证明 对[a,b]上任一确定的x ,当∆x ≠0且x+∆x ∈[a,b]时,根据积分第一中值定理得,1()(),01x xx f t dt f x x x xθθ+∆∆Φ==+∆∆∆⎰≤≤,由于f(x)在点x 处连续,故有00()lim lim ()()x x x f x x f x x θ∆→∆→∆Φ'Φ==+∆=∆,由于x 在[a,b]上的任意性,证得Φ(x)是f(x)在[a,b]上的一个原函数。
第九章 定积分 4 定积分的性质一、定积分的基本性质性质1:若f 在[a,b]上可积,k 为常数,则kf 在[a,b]上也可积,且⎰bakf(x )dx=k ⎰baf(x )dx.证:当k=0时结论成立. 当k ≠0时,∵f 在[a,b]上可积,记J=⎰ba f(x )dx , ∴任给ε>0,存在δ>0,当║T ║<δ时,|i n1i i x △)ξ(f ∑=-J|<|k |ε; 又|i n 1i i x △)ξ(kf ∑=-kJ|=|k|·|i n1i i x △)ξ(f ∑=-J|<|k|·|k |ε=ε,∴kf 在[a,b]上可积, 且⎰b a kf(x )dx=k ⎰ba f(x )dx.性质2:若f,g 都在[a,b]上可积,则f ±g 在[a,b]上也可积,且⎰±bag(x )][f(x )dx=⎰b af(x )dx ±⎰bag(x )dx.证:∵f,g 都在[a,b]上可积,记J 1=⎰ba f(x )dx ,J 2=⎰ba g(x )dx. ∴任给ε>0,存在δ>0,当║T ║<δ时,有|i n1i i x △)ξ(f ∑=-J 1|<2ε,|i n1i i x △)ξ(g ∑=-J 2|<2ε.又|i n1i i i x △)]ξ(g )ξ([f ∑=+-(J 1+J 2) |=|(i n1i i x △)ξ(f ∑=-J 1)+(i n1i i x △)ξ(g ∑=-J 2)|≤|i n1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε;|i n 1i i i x △)]ξ(g )ξ([f ∑=--(J 1-J 2) |=|(i n 1i i x △)ξ(f ∑=-J 1)+( J 2-i n1i i x △)ξ(g ∑=)|≤|i n 1i i x △)ξ(f ∑=-J 1|+|i n1i i x △)ξ(g ∑=-J 2)|<2ε+2ε=ε.∴f ±g 在[a,b]上也可积,且⎰±b a g(x )][f(x )dx=⎰b a f(x )dx ±⎰ba g(x )dx.注:综合性质1与性质2得:⎰±ba βg(x )]αf(x ) [dx=α⎰b a f(x )dx ±β⎰ba g(x )dx.性质3:若f,g 都在[a,b]上可积,则f ·g 在[a,b]上也可积.证:由f,g 都在[a,b]上可积,从而都有界,设A=]b ,a [x sup ∈|f(x)|,B=]b ,a [x sup ∈|g(x)|,当AB=0时,结论成立;当A>0,B>0时,任给ε>0,则存在分割T ’,T ”, 使得∑'T i i f x △ω<B 2ε,∑''T i i g x △ω<A 2ε. 令T=T ’+T ”,则对[a,b]上T 所属的每一个△i ,有 ωi f ·g =]b ,a [x ,x sup ∈'''|f(x ’)g(x ’)-f(x ”)g(x ”)|≤]b ,a [x ,x sup ∈'''[|g(x ’)|·|f(x ’)-f(x ”)|+|f(x ”)|·|g(x ’)-g(x ”)|]≤B ωi f +A ωi g .又∑⋅Ti g f i x △ω≤B ∑Ti f i x △ω+A ∑Ti g i x △ω≤B ∑'T i f i x △ω+A ∑''T i g i x △ω<B ·B 2ε+A ·A2ε=ε. ∴f ·g 在[a,b]上可积.注:一般情形下,⎰ba f(x )g(x )dx ≠⎰b af(x )dx ·⎰bag(x )dx.性质4:f 在[a,b]上可积的充要条件是:任给c ∈(a,b),f 在[a,c]与[c,b]上都可积. 此时又有等式:⎰ba f(x )dx=⎰c a f(x )dx+⎰bc f(x )dx. 证:[充分性]∵f 在[a,c]与[c,b]上都可积.∴任给ε>0,分别存在对[a,c]与[c,b]的分割T ’,T ”,使得∑'''T i i x △ω<2ε,∑''''''T i i x △ω<2ε. 令[a,b]上的分割T=T ’+T ”,则有∑Tiix△ω=∑'''Tiix△ω+∑''''''Tiix△ω<2ε+2ε=ε,∴f在[a,b]上可积.[必要性]∵f在[a,b]上可积,∴任给ε>0,存在[a,b]上的某分割T,使∑Tiix△ω<ε. 在T上增加分点c,得分割T⁰,有∑︒︒︒Tiix△ω≤∑Tiix△ω<ε.分割T⁰在[a,c]和[c,b]上的部分,分别构成它们的分割T’和T”,则有∑'' 'Tiix△ω≤∑︒︒︒Tiix△ω<ε,∑''''''Tiix△ω≤∑︒︒︒Tiix△ω<ε,∴f在[a,c]与[c,b]上都可积.又有∑︒︒︒Tiix)△f(ξ=∑'''Tiix)△ξf(+∑''''''Tiix)△ξf(,当║T⁰║→0时,同时有║T’║→0,║T”║→0,对上式取极限,得⎰b a f(x)dx=⎰c a f(x)dx+⎰b c f(x)dx. (关于积分区间的可加性)规定1:当a=b时,⎰baf(x)dx=0;规定2:当a>b时,⎰baf(x)dx=-⎰a b f(x)dx;以上规定,使公式⎰baf(x)dx=⎰c a f(x)dx+⎰b c f(x)dx对于a,b,c的任何大小顺都能成立.性质5:设f在[a,b]上可积. 若f(x)≥0, x∈[a,b],则⎰baf(x)dx≥0. 证:∵在[a,b]上f(x)≥0,∴f的任一积分和都为非负.又f在[a,b]上可积,∴⎰ba f(x)dx=in1iiTx△)f(ξlim∑=→≥0.推论:(积分不等式性)若f,g在[a,b]上都可积,且f(x)≤g(x), x∈[a,b],则有⎰baf(x)dx≤⎰b a g(x)dx.证:记F(x)=g(x)-f(x)≥0, x ∈[a,b],∵f,g 在[a,b]上都可积,∴F 在[a,b]上也可积.∴⎰b a F(x )dx=⎰b a g(x )dx-⎰b a f(x )dx ≥0,即⎰b a f(x )dx ≤⎰ba g(x )dx.性质5:若f 在[a,b]上可积,则|f|在[a,b]上也可积,且 |⎰b a f(x )dx|≤⎰ba |f(x )|dx.证:∵f 在[a,b]上可积,∴任给ε>0,存在分割T ,使∑Ti i f x △ω<ε,由不等式||f(x 1)|-|f(x 2)||≤|f(x 1)-f(x 2)|可得i ||f ω≤i f ω, ∴∑Ti i ||f x △ω≤∑Ti i f x △ω<ε,∴|f|在[a,b]上可积.又-|f(x)|≤f(x)≤|f(x)|,∴|⎰b a f(x )dx|≤⎰ba |f(x )|dx.例1:求⎰11-f(x )dx ,其中f(x)= ⎩⎨⎧<≤<≤.1x 0 ,e ,0x 1-1-2x x-, 解:⎰11-f(x )dx=⎰01-f(x )dx+⎰10f(x )dx=(x 2-x)01-+(-e -x )10=-2-e -1+1=-e -1-1.例2:证明:若f 在[a,b]上连续,且f(x)≥0,⎰ba f(x )dx =0,则 f(x)≡0, x ∈[a,b].证:若有x 0∈[a,b], 使f(x 0)>0,则由连续函数的局部保号性, 存在的x 0某邻域U(x 0,δ)(当x 0=a 或x 0=b 时,则为右邻域或左邻域), 使f(x)≥21f(x 0)>0,从而有⎰baf(x )dx =⎰δ-x a0f(x )dx+⎰+δx δ-x 00f(x)dx+⎰+bδx 0f(x)dx ≥0+⎰+δx δ-x 0002)f(x dx+0=δf(x 0)>0, 与⎰ba f(x )dx =0矛盾,∴f(x)≡0, x ∈[a,b].二、积分中值定理定理:(积分第一中值定理)若f 在[a,b]上连续,则至少存在一点 ξ∈[a,b],使得⎰ba f(x )dx =f(ξ)(b-a).证:∵f 在[a,b]上连续,∴存在最大值M 和最小值m ,由 m ≤f(x)≤M, x ∈[a,b],得m(b-a)≤⎰ba f(x )dx ≤M(b-a),即m ≤⎰baf(x)a -b 1dx ≤M. 又由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=⎰baf(x)a -b 1dx ,即⎰b a f(x )dx =f(ξ)(b-a).积分第一中值定理的几何意义:(如图)若f 在[a,b]上非负连续,则y=f(x)在[a,b]上的曲边梯形面积等于以f(ξ)为高,[a,b]为底的矩形面积.⎰ba f(x)a-b 1dx 可理解为f(x)在[a,b]上所有函数值的平均值.例3:试求f(x)=sinx 在[0,π]上的平均值. 解:所求平均值f(ξ)=⎰π0f(x)π1dx=π1(-cosx)π0|=π2.定理:(推广的积分第一中值定理)若f 与g 在[a,b]上连续,且g(x)在[a,b]上不变号,则至少存在一点ξ∈[a,b],使得g(x )f(x )ba⎰dx =f(ξ)⎰bag(x )dx.证:不妨设g(x)≥0, x ∈[a,b],M,m 分别为f 在[a,b]上的最大,最小值. 则有mg(x)≤f(x)g(x)≤Mg(x), x ∈[a,b],由定积分的不等式性质,有 m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰b a g(x )dx. 若⎰ba g(x )dx=0,结论成立.若⎰bag(x )dx>0,则有m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.由连续函数的介值性知,至少存在一点ξ∈[a,b],使得f(ξ)=dxg(x )g(x )dxf(x )b aba⎰⎰,即g(x )f(x )b a ⎰dx =f(ξ)⎰ba g(x )dx.习题1、证明:若f 与g 在[a,b]上可积,则i n1i i i 0T x △))g(ηf(ξlim ∑=→=⎰⋅ba g f , 其中ξi , ηi 是△i 内的任意两点. T={△i }, i=1,2,…,n.证:f 与g 在[a,b]上都可积,从而都有界,且fg 在[a,b]上可积. 设|f(x)|<M, x ∈[a,b],则对[a,b]上任意分割T ,有in 1i iix △))g(ηf(ξ∑==in1i iiiix△)]g(ξ-)g(η))[g(ξf(ξ∑=+=i n1i i i x △))g(ξf(ξ∑=+i g in1i i x △ω)f(ξ∑=≤i n1i i i x △))g(ξf(ξ∑=+M i n1i g i x △ω∑=.∴|i n 1i i i x △))g(ηf(ξ∑=-i n 1i i i x △))g(ξf(ξ∑=|≤M i n1i g i x △ω∑=.∴|i n 1i i i 0T x △))g(ηf(ξlim ∑=→-i n 1i i i 0T x △))g(ξf(ξlim ∑=→|≤0T lim →M i n1i g i x △ω∑==0 ∴i n 1i i i 0T x △))g(ηf(ξlim ∑=→=i n1i i i 0T x △))g(ξf(ξlim ∑=→=⎰⋅ba g f .2、不求出定积分的值,比较下列各对定积分的大小.(1)⎰10x dx 与⎰102x dx ;(2)⎰2π0x dx 与⎰2π0sinx dx.解:(1)∵x>x 2, x ∈(0,1),∴⎰10x dx>⎰102x dx.(2)∵x>sinx, x ∈(0,2π],∴⎰2π0x dx>⎰2π0sinx dx.3、证明下列不等式:(1)2π<⎰2π02x sin 21-1dx <2π;(2)1<⎰10x 2e dx<e ;(3)1<⎰2π0x sinx dx<2π;(4)3e <⎰4e e xlnx dx<6. 证:(1)∵1<x sin 21-112<21-11=2, x ∈(0,2π);∴⎰2π0dx <⎰2π02x sin 21-1dx <⎰2π02dx ,又⎰2π0dx =2π;⎰2π02dx=2π; ∴2π<⎰2π2x sin 21-1dx<2π.(2)∵1<2x e <e, x ∈(0,1);∴1=⎰10dx <⎰10x 2e dx<⎰10edx =e.(3)∵π2<x sinx <1,x ∈(0,2π);∴1=⎰2π0dx π2<⎰10x2e dx<⎰2π0dx =2π.(4)令'⎪⎭⎫ ⎝⎛x lnx =x 2lnx -2=0,得x lnx 在[e,4e]上的驻点x=e 2,又e x x lnx ==e 1,e 4x x lnx ==e 2ln4e ,∴在[e,4e]上e 1<x lnx <22elne =e 2;∴3e =⎰4eee1dx <⎰4eexlnx dx<⎰4eee2dx =6.4、设f 在[a,b]上连续,且f(x)不恒等于0. 证明:⎰ba 2[f(x )]dx>0. 证:∵f(x)不恒等于0;∴必有x 0∈[a,b],使f(x 0)≠0. 又由f 在[a,b]上连续,必有x ∈(x 0-δ, x 0+δ),使f(x)≠0,则⎰+δx δ-x 200f >0,∴⎰ba 2[f(x )]dx=⎰δ-x a20f +⎰+δx δ-x 200f +⎰+b δx 20f =⎰+δx δ-x 200f +0>0.注:当x 0为a 或b 时,取单侧邻域.5、若f 与g 都在[a,b]上可积,证明:M(x)=b][a,x max ∈{f(x),g(x)},m(x)=b][a,x min ∈{f(x),g(x)}在[a,b]上也都可积.证:M(x)=21(f(x)+g(x)+|f(x)-g(x)|);m(x)=21(f(x)+g(x)-|f(x)-g(x)|). ∵f 与g 在[a,b]上都可积,根据可积函数的和、差仍可积,得证.6、试求心形线r=a(1+cos θ), 0≤θ≤2π上各点极径的平均值.解:所求平均值为:f(ξ)=⎰2π0a 2π1(1+cos θ)d θ=2πa(θ+sin θ)2π=a.7、设f 在[a,b]上可积,且在[a,b]上满足|f(x)|≥m>0. 证明:f1在[a,b]上也可积. 证:∵f 在[a,b]上可积,∴任给ε>0,有∑Ti i x △ω<m 2ε.任取x ’,x ”∈△i ,则)x f(1''-)x f(1'=)x )f(x f()x f(-)x f(''''''≤2i mω.设f1在△i 上的振幅为ωi -,则ωi -≤2imω. ∴∑Ti -i x △ω≤∑Ti i 2x △ωm 1<2m1·m 2ε=ε,∴f 1在[a,b]上也可积.8、证明积分第一中值定理(包括定理和中的中值点ξ∈(a,b). 证:设f 在[a,b]的最大值f(x M )=M, 最小值为f(x m )=m , (1)对定理:当m=M 时,有f(x)≡m, x ∈[a,b],则ξ∈[a,b]. 当m<M 时,若m(b-a)=⎰b a f(x )dx ,则⎰ba m]-[f(x )dx=0,即f(x)=m , 而f(x)≥m ,∴必有f(x)≡m ,矛盾. ∴⎰ba f(x )dx >m(b-a). 同理可证:⎰ba f(x )dx <M(b-a).(2)对定理:不失一般性,设g(x)≥0, x ∈[a,b]. 当m=M 或g(x)≡0, x ∈[a,b]时,则ξ∈[a,b].当m<M 且g(x)>0, x ∈[a,b]时,若M ⎰ba g dx-⎰ba fg dx=⎰ba f)g -(M dx=0, 由(M-f)g ≥0,得(M-f)g=0. 又g(x)>0,∴f(x)≡M ,矛盾. ∴⎰ba fg dx <M ⎰ba g dx. 同理可证:⎰ba fg dx>m ⎰ba g dx. ∴不论对定理还是定理,都有ξ≠x M 且ξ≠x m .由连续函数介值定理,知ξ∈(x m ,x M )⊂(a,b)或ξ∈(x M ,x m )⊂(a,b),得证.9、证明:若f 与g 都在[a,b]上可积,且g(x)在[a,b]上不变号,M,m 分别为f(x)在[a,b]上的上、下确界,则必存在某实数μ∈[m,M],使得g(x )f(x )ba⎰dx =μ⎰bag(x )dx.证:当g(x)≡0, x ∈[a,b]时,g(x )f(x )ba ⎰dx =μ⎰bag(x )dx=0.当g(x)≠0时,不妨设g(x)>0,∵m ≤f(x)≤M, x ∈[a,b], ∴m ⎰ba g(x )dx ≤g(x )f(x )ba ⎰dx ≤M ⎰bag(x )dx ,即m ≤dxg(x )g(x )dxf(x )b aba⎰⎰≤M.∴必存在μ∈[m,M],使g(x )f(x )b a ⎰dx =μ⎰ba g(x )dx.10、证明:若f 在[a,b]上连续,且⎰b a f(x )dx=⎰ba x f(x )dx=0,则在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0. 又若⎰ba 2f(x )x dx=0,则f 在(a,b)内是否至少有三个零点证:由⎰ba f =0知,f 在(a,b)内存在零点,设f 在(a,b)内只有一个零点f(x 1), 则由⎰ba f =⎰1x a f +⎰b x 1f 可得:⎰1x a f =-⎰bx 1f ≠0. 又f 在[a,x 1]与[x 1,b]不变号,∴⎰ba x f =⎰1x a x f +⎰b x 1xf =ξ1⎰1x a f +ξ2⎰b x 1f =(ξ2-ξ1)⎰bx 1f ≠0, (a<ξ1<x 1<ξ2<b),矛盾.∴f 在(a,b)内至少存在两点x 1,x 2,使 f(x 1)=f(x 2)=0.记函数g=xf(x),则g 在[a,b]上连续,且⎰b a g(x )dx=⎰ba x f(x )dx=0, 又⎰ba x g(x )dx=⎰ba 2f(x )x dx=0,即有⎰b a g(x )dx=⎰ba x g(x )dx=0,∴g=xf(x)在(a,b)内至少存在两个零点,若f 在(a,b)内至少存在三个零点f(x 1)=f(x 2)=f(x 3)=0,则 g(x 1)=x 1f(x 1)=g(x 2)=x 2f(x 2)=g(x 3)=x 3f(x 3)=0,即g=xf(x)在(a,b)内至少存在三个零点g(x 1)=g(x 2)=g(x 3)=0,矛盾, ∴f 在[a,b]上连续,且⎰ba f(x )dx=⎰b a x f(x )dx=⎰ba 2f(x )x dx=0,则 f 在(a,b)内至少存在两个零点.11、设f 在[a,b]上二阶可导,且f ”(x)>0. 证明:(1)f ⎪⎭⎫⎝⎛+2b a ≤⎰-b a f(x)a b 1dx ; (2)又若f(x)≤0, x ∈[a,b],则有f(x)≥⎰-baf(x)a b 2dx, x ∈[a,b].证:(1)令x=a+λ(b-a), λ∈(0,1),则⎰-baf(x)a b 1dx=⎰+10a)]-λ(b f[a d λ, 同理,令x=b-λ(b-a),也有⎰-ba f(x)ab 1dx=⎰-10a)]-λ(b f[b d λ,则 ⎰-b a f(x)a b 1dx=⎰-++10a)]}-λ(b f[b a)]-λ(b {f[a 21d λ. 又f 在[a,b]上二阶可导,且f ”(x)>0,∴f 在[a,b]上凹,从而有21{f[a+λ(b-a)]+f[b-λ(b-a)]}≥f{21[a+λ(b-a)]+21f[b-λ(b-a)]}=f ⎪⎭⎫ ⎝⎛+2b a . ∴⎰-b a f(x)a b 1dx ≥⎰⎪⎭⎫ ⎝⎛+102b a f d λ=f ⎪⎭⎫⎝⎛+2b a . (2)令x=λb+(1-λ)a ,由f 的凹性得⎰-ba f(x)ab 1dx=⎰+10λ)a]}-f[(1b) {f(λd λ≤⎰+10λ)f(a)]-(1f(b) [λd λ =f(b)1022λ+ f(a)1022λ)-(1-=2f(b)f(a)+. 不妨设f(a)≤f(b),则f(a)≤f(x)≤0, x ∈[a,b],又f(b)≤0, ∴⎰-ba f(x)ab 2dx ≤f(a) +f(b)≤f(x).12、证明:(1)ln(1+n)<1+21+…+n1<1+lnn ;(2)lnnn 1211limn +⋯++∞→=1. 证:(1)对函数f(x)=x1在[1,n+1]上取△i =1作分割,并取△i 的左端点为ξi ,则和数∑=n1i i 1是一个上和,∴⎰+1n 1x 1dx<∑=n 1i i1,即ln(n+1)< 1+21+…+n1;同理,取△i 的右端点为ξi ,则和数∑=+1-n 1i 1i 1是一个下和,∴∑=+1-n 1i 1i 1<⎰n 1x 1dx , 即21+…+n 1<lnn ,∴1+21+…+n1<1+lnn. 得证.(2)由(1)知ln(1+n)<1+21+…+n 1<1+lnn ,∴lnn 1)ln(n +<lnnn 1211+⋯++<1+lnn 1; 又lnn 1)ln(n lim n +∞→=1n n lim n +∞→=1;∞→n lim (1+lnn 1)=1;∴lnnn 1211lim n +⋯++∞→=1.。
第九章 定积分§1 定积分的概念(教材上册P204)1. 按定积分定义证明:()bakdx k b a =-⎰知识点窍 定积分的定义. 逻辑推理 按定积分定义证明.解 0ε∀>,对[,]a b 作任意分割T ,并在其上任意选取点集{i ε},因为111(),[,],()()n n ni i i i i i i f x k x a b f x k x k x k b a ε===≡∈∆∆=∆=-∑∑∑任意取定0δ>,当T δ<时 所以k 在[,]a b 上可积,且()bakdx k b a =-⎰.2. 通过对积分区间作等分分割,并取适当的点集,把定积分看作是对应的积分和的极限,求计算下列定积分. (1)130x dx ⎰ (2)1x e dx ⎰(3)bx ae dx ⎰(4)2(0)badxa b x<<⎰知识点窍 定积分的定义.逻辑推理 利用定积分的定义计算定积分,关键是()f x 在区间[,]a b 上是否可积,若可积,则由定积分的定义,()baf x dx ⎰的值就应与区间[,]a b 的分法及点i ξ的取法无关.解 (1)将[0,1]n 等分,分点为,k =0,1,…,n . 在区间1[,]k k n n -上取kn作为k ε 而13311lim()nn k kx dx n n →+∞==⋅∑⎰3411lim nn k kn→+∞==∑224111lim(1)44n n n n →+∞=⋅+=.(2)将[0,1]n 等分,分点为,k =0,1,…,n .在区间1[,]k k n n -上取kn作为k ξ,则 101111lim lim kk nn xnn n n k k e dx e e n n →+∞→+∞===⋅=∑∑⎰ 111(1)lim111[1()](1)1lim 1.111[1()]nn nn e e ne e n n e n n nοο→+∞→+∞-=⋅-++-==--++ (3)将[,]a b n 等分,分点为()ka b a n+-,k =0,1,…,n . 在区间1[(),()]k k a b a a b a n n -+-+-上取()ka b a n+-作为k ξ,则()1lim kna b a bxn a n k b a e dx e n +-→+∞=-=⋅∑⎰()1lim (1)lim 11[1()()](1)lim 11[1()()].k b a n a n n k b ab a na b a n nb a a n b a b a e e n b a e e e ne b a b a e b a n n e b a n b a n ne e οο-→+∞=---→+∞-→+∞-=⋅--=--+-+--=--+-+=-∑ (4)取i ξ后211110111111()()nni i i i ij i n x x x x x x a b -==--=-=-=-∑∑ 将[,]a b n 等分,分点为()ka b a n+-,k =0,1,…,n .在区间1[]k k x x -k ξ则212111lim ()nbk k an k dx x x x a b-→∞==-=-∑⎰. §2 牛顿—莱布尼茨公式(教材上册P206)1. 计算下列定积分.(1)10(23)x dx +⎰ (2)212011x dx x -+⎰ (3)2ln e edxx x⎰(4)102x xe e dx --⎰ (5)23tan xdx π⎰(6)94dx ⎰ (7)4⎰ (8)211(ln )e e x dx x⎰知识点窍 牛顿—莱布尼茨公式. 解(1)1012(23)34x dx xx+=+=⎰.(2)110211220012(1)2arctan 1112x dx dx x x x x π-=-=-=-++⎰⎰.(3)2221(ln )ln ln ln 2ln ln e ee e e e dx d x x x x x===⎰⎰.(4)10110111()12222x x x x e e dx e e e e ----=+=+-⎰. (5)22233322000sin 1cos tan cos cos x x xdx dx dx x xπππ-==⎰⎰⎰30(tan )3x x ππ=-=.(6)9439242144(2)323dx x x =+=⎰. (7)4441)]42ln3==-=-⎰⎰.(8)122311112(ln )(ln )(ln )(ln )33e eee eex dx x d x x x ===⎰⎰. 2. 利用定积分求极限. (1)3341lim(12)n n n→∞+++(2)222111lim (1)(2)()n n n n n n →∞⎡⎤+++⎢⎥+++⎣⎦(3)2222111lim ()122n n n n n →∞+++++(4)121lim (sin sin sin )n n n n n nπππ→∞-+++知识点窍 定积分求极限.逻辑推理 由定积分的定义知,若()f x 在[,]a b 上可积,则可对[,]a b 用某种特定的分法,并取特殊的点,所得积分和的极限就是()f x 在[,]a b 上的定积分.因此,本题可将和式化为某个可积函数的积分和,然后用定积分求此极限. 解(1)记3()f x x =,则()f x 在[0,1]上连续且可积,取 12{0,,,}n T n nn =,,1,2,,i i i ix i n nε==∈∆=则313111lim ()lim nn i i T n i i i x dx f x n nξ→→∞===∆=∑∑⎰33341lim (123)n n n →∞=++++101144==.(2)记21()(1)f x x =+,[0,1]x ∈,则f 在[0,1]上连续,所以可积,取 12{0,,,,}n T n nn =,,1,2,,i i i ix i n nε==∈∆=.则120021111lim ()lim (1)(1)nn i i T n i i ex f x i x n nξ→→∞===∆=++∑∑⎰ 222111lim [](1)(2)()n n n n n n →∞=++++++10111()(1)122x =-=---=+.(3)记21()1f x x=+,[0,1]x ∈,则f 在[0,1]上连续,所以可积.取 12{0,,,,}n T n n n =,,1,2,,i i i ix i n nε==∈∆=.则120021111lim ()lim 11()n n i i T n i i dx f x i x n nξ→→∞===∆=++∑∑⎰2222111lim ()12nn n n n n n →∞=++++++10arctan 4π==.(4)记()sin f x x =,[0,]x π∈,则f 在[0,]π上连续,所以可积,取2(1){0,,,,,}n T n nn ππππ-=,1(1)i i i i xx nξ--==∈∆,1,2,,.i n =则11(1)sin lim ()limsinni i T n i i n xdx f x nnπππξ→→∞==-=∆=∑∑⎰12(1)lim(sin sin sin)n n n n nnππππ→∞-=+++ 0cos 2.x π=-=12()2lim (sin sin sin).n n n n n nn ππππ→∞-⇒+++= §3 可积条件(教材上册P212)1. 证明:若T '是T 增加若干个分点后所得的分割,则 iiiiT Tw x w x '''∆≤∆∑∑解 设T 的分点为:121,,,n x x x -,且012n a x x x x b =<<<<=设T '比T 只多一个分点x ',且1.k k x x x -'<<设()f x 在1[,],[,]k k x x x x -''和1[,]k k x x -的振幅分别为,kk w w '''与k w ,因为函数在子区间上的振幅总大于其在大区间上的振幅,即有,kk k w w w w '''≤≤ 11()()()()kk k k k k k k w x x w x x w x x w x x --'''''''-+-≤-+- 1()k k k w x x -=-除第k 个区间外,()f x 在这些区间上T 和T '的振幅相等.于是iiiiT Tw x w x '''∆≤∆∑∑若T '比T 多若干个分点,则在T 基础上逐次增加一个的办法,则上述结论也成立. 2. 证明:若f 在[,]a b 上可积,[,][,]a b αβ<,则f 在[,]αβ上也可积.知识点窍 可积准则.解 f 在[,]a b 上可积0ε⇔∀>,总存在相应的某一分割T ,使得i iTw xε∆<∑设T 的分点为012n a x x x x b =<<<<=若1[,](,)t t x x αβ-⊂则取T '0:n x x αβ=<=()()iiitT w x w w βαβαε''''∆=-≤-<∑f 在[,]αβ上可积若11t t s s x x x x αβ--≤<≤<≤ 则取0111:t t s T x x x x x αβ+-''''''=<<<<<<1iikkiiT k t Tw x w x w xε''=-''''∆≤∆<∆<∑∑∑f 在[,]αβ上可积,综上得f 在[,]αβ上可积.3. 设f ,g 均为定义在[,]a b 上的有界函数.证明:若仅在[,]a b 中有限个点处()()f x g x ≠,则当f 在[,]a b 上可积时,g 在[,]a b 上也可积,且()()bbaaf x dxg x dx =⎰⎰知识点窍 可积准则.解 不妨设f 和g 仅在一点0[,]x a b ∈处, ()()f x g x ≠.在给分法T ,()k w f 和()k w g 分别为f 和g 在第k 个区间的振幅,()w f 和()w g 为f 和g 在[,]a b 上振幅,则由f ,g 有界M ⇒∃ ()()k w f w f M ≤< ()()w g w g M ≤<0x 最多属于两个相邻小区间1[,]t t x x -和1[,]t t x x +则111()[()()]()n n nkikkikik k k w g x w g w f x w f x===∆=-∆+∆∑∑∑111[()()][()()]t t t t t t w g w f x w g w f x +++=-∆+-∆+1()nkik w f x=∆∑其中111|[()()][()()]|2(t t t t t t t w g w f x w g w f x M x +++-∆+-∆≤∆+1)0(0)t x T +∆→→1()0(0)nkik w f xT =∆→→∑∴1()0(0)nkik w g xT =∆→→∑∴ g 在[,]a b 上也可积任给[,]a b 分法T ',取特殊0,0,1,,.k x k n ξ≠=则11()()nn kkk k k k f x g x ξξ'==''∆=∆∑∑ 011lim ()lim ()n n k kk k T T k k f x g x ξξ'→→==''∆=∆∑∑ ∴()()bbaaf x dxg x dx =⎰⎰4. 设f 在[,]a b 上有界,{}[,]n a a b <,lim n n a c →∞=,证明:若f 在[,]a b 上只有(1,2,)n a n =为其间断点,则f 在[,]a b 上可积.知识点窍 可积准则.逻辑推理 设lim n n a c a →∞==,取合适的0δ>,使0ωδ>,再利用()f x在[,]a b δ+上可积,存在[,]a b δ+上的分割T '使2i i Tx εω∆<∑,最后将[,]a a δ+与T '合并,得[,]a b 上的分割T ,有i iTxωε∆<∑,即得证f 在[,]a b 上可积.解 不妨设lim n n a c a →∞==,()f x 在[,]a b 上的振幅为ω.0ε∀>,取02εδω<<, 因lim n n a a →∞=,所以存在N ,使当n N >时,[,]n a a a δ∈+,从而()f x在[,]a b δ+上至多只有有限个间断点,由定理9.5知()f x 在[,]a b δ+上可积,再有可积准则知,存在[,]a b δ+上的分割T ',使2i i T x εω'∆<∑.把[,]a a δ+与T '合并,就构成[,]a b 的一个分割T ,设0ω为()f x 在[,]a a δ+上的振幅,则**0.22i ii i i i TT T xx x εεωωδωωδωε∆=+∆≤+∆<+=∑∑∑故由可积准则知,()f x 在[,]a b 上可积. 5. 证明:若f 在区间∆上有界,则知识点窍 确界的定义.逻辑推理 对两个上确界和一个下确界,不便同时处理,可选定两个看作常数,而对第三个用确界定义证明.解 记sup ().inf ()x x A f x B f x ∈∆∈∆==(1) 如果()A B f x A =⇒≡,x ∈∆.上述等式两边为零,成立. (2) 如A B >,则对10()2A B ε∀<<-,及x '∀,x ''∈∆,有 ()()f x f x A B '''-≤-,()()f x f x A B '''-≤-|()()|f x f x A B '''⇒-≤-同时x '∃,x ''∈∆,使()2f x A ε'>-,()2f x B ε''<+|()()|()()().22f x f x A B A B εεε'''⇒->--+=--,sup |()()|sup ()inf ().x x x x f x f x A B f x f x ∈∆'''∈∆∈∆'''⇒-=-=-§4 定积分的性质(教材上册P219)1. 证明:若f 与g 都在[,]a b 上可积,则 01lim()()()()nbi i i aT i f g x f x g x dx ξη→=∆=∑⎰其中i ξ,i η是T 所属小区间i ∆中的任意两点, 1,2,,.i n =知识点窍 定积分的性质. 逻辑推理 设01()()lim ()()nbi i i aT i I f x g x dx f g x εε→===∆∑⎰,则只需证0,0εδ∀>∃>,当T δ→时11||()()|[()()()()]|n ni i i i i i i i i i f g x I f g f g x εηεηεε==∆-≤-∆+∑∑1|()()|niiii f g x I εηε=∆-<∑ 即可.解 f 在[,]a b 上可积,则f 有界,即0M ∃>,有||f M <设1()()()()nbi i i ai I f x g x dx f g x ξη===∆∑⎰11()()()[()()]nniiiiiiii i f g x f g g x ξξξηξ===∆+-∆∑∑f ,g 在[,]a b 上可积()()f x g x ⇒在[,]a b 上可积.1lim()()()()nbi i i aT i f g x f x g x dx ξξ→=∆=∑⎰以k w 表示()g x 在1[,]k k x x -上振幅. 因为g 可积,所以01lim0ni iT i w x→=∆=∑11|()[()()]|0(0)nniiiiii i f g g M w xT ξηξ==-≤∆→→∑∑11lim()()lim ()()()()nnbi i i i i i aT T i i f g x f g x f x g x dx ξηξξ→→==∴∆=∆=∑∑⎰2. 不求出定积分的值,比较下列各对定积分的大小. (1)1xdx ⎰与12x dx ⎰ (2)20xdx π⎰与20sin xdx π⎰知识点窍 积分不等式性. 逻辑推理 根据积分不等式,要比较两个积分区间相同的积分的大小,只要比较在该积分区间上两个被积函数的大小.解 (1)在[0,1]上2x x ≥, 112200xdx x dx ∴≥⎰⎰(2)在[0,]2π上, sin x x ≥, 220sin xdx xdx ππ∴≥⎰⎰3. 证明下列不等式(1)202ππ<<⎰(2)2101x e dx e <<⎰ (3)10sin 12x dx x π<<⎰ (4)46e e <<⎰ 解 (1)原式化为22200011dx πππ<<⎰⎰⎰(0,)2x π∈时, 1>>11∴<<22ππ∴<<⎰ (2) 原式可化为211110x e dx edx e dx <<⎰⎰⎰(0,1)x ∈时, 201x << 2111010x e dx e dx e dx ∴<<⎰⎰⎰211x e dx e ∴<<⎰(3)(0,1]x ∈时, sin x x ≤,sin 1xx≤ 10sin 1xdx x∴≤⎰,原题有误. 此题应改为在(0,)2x π∈上.在此区间上2sin 1xxπ<<,所以有 222002sin 12x dx dx dx x πππππ=<<=⎰⎰⎰(4<44ee ee=<⎰⎰44442ln 2eeee eeeex==-⎰⎰⎰4426e e eex =-=-<46ee∴<<⎰4. 设f 在[,]a b 上连续,且()f x 不恒等于零,证明2(())0baf x dx >⎰知识点窍 函数连续的性质,定积分基础性质中的性质4. 逻辑推理 只要证明2()f x 在[,]a b 上连续即可解 因为f 在[,]a b 是连续2f ⇒在[,]a b 上连续,且2(())0f x ≥, [,]x a b ∈.又因为()f x 不恒等于零,即0[,]x a b ∃∈,使20()0()0f x f x ≠⇒>.可得2(())0baf x dx >⎰5. 设f 与g 都在[,]a b 上可积,证明[,]()max{(),()}x a b M x f x g x ∈=,[,]()min{(),()}x a b m x f x g x ∈=在[,]a b 上也都可积.知识点窍 定积分基本性质中的性质6,性质2. 逻辑推理 借助||min{,}2A B A B A B +--=,||max{,}2A B A B A B ++-=,然后利用定积分性质即可得证.解 [,]1()max{(),()}(||)2x a b M x f x g x f g f g ∈==++-2[,]1()min{(),()}(||)2x a b m x f x g x f g f g ∈==+--由f ,g 在[,]a b 上可积||f g ⇒-在[,]a b 上可积()M x ⇒, ()m x 在[,]a b 上也都可积.6. 试求心形线(1cos )r a θ=+, 02θπ≤≤上各点,极径的平均值. 知识点窍 积分中值定理的几何意义.解 极径的平均值为202011(1cos )(sin )22a d a a ππθθθθππ+=⋅+=⎰.§5 微积分基本定理定积分计算(续)(教材上册P229)1. 设f 为连续函数,u ,v 均为可导函数,且可实行复合f u 与f v ,证明:()()()(())()(())()v x u x d f t dt f v x v x f u x u x dx''=-⎰ 知识点窍 原函数存在定理,符合函数求导法则. 逻辑推理 0()()yG y f t dt ∆⎰,由原函数存在定理,()G y 可导,且()()G y f y '=解 由复合函数求导法则()(()){[()]}v x f t dt G v x '=⎰[()]()[()]()G v x v x f v x v x '''==()()()()00()()()v x v x u x u x d d d f t dt f t dt f t dt dx dx dx ∴=-⎰⎰⎰ (())()(())()f v x v x f u x u x ''=- 2. 设f 在[,]a b 上连续, ()()()xaF x f t x t dt =-⎰.证明()()F x f x ''=,[,]x a b ∈.知识点窍 分部积分法. 逻辑推理 积分()()xaf t x t dt -⎰是以t 为积分变量的定积分,在积分过程中x 是常量。