第8章滞后变量模型
- 格式:pdf
- 大小:3.42 MB
- 文档页数:35
第8章滞后变量模型8.1 滞后变量模型的基本概念8.1.1 滞后现象与产生滞后现象的原因因变量受其自身或其他经济变量前期水平影响的经济现象,称之为滞后现象(或滞后效应)。
产生滞后现象的原因主要有以下几个方面:1.经济变量自身的原因:有些经济变量的发展变化有很强的继往性,当期水平与前期水平有极为密切的关系。
2.决策者心理上的原因3.技术上的原因4.制度的原因8.1.2 滞后变量与滞后变量模型所谓滞后变量(lagged variable),是指过去时期的、对当前因变量产生影响的变量。
滞后变量可分为滞后解释变量与滞后因变量两类。
把滞后变量(滞后解释变量与滞后因变量)引入回归模型,这种回归模型称为滞后变量模型。
含有滞后解释变量的模型,又称为动态模型。
滞后变量模型的一般形式为(8.1.1)其中,k,p分别为滞后解释变量和滞后因变量的滞后期长度。
为被解释变量的第阶滞后,为解释变量的第阶滞后。
若滞后期长度为有限,称模型为有限滞后变量模型;若滞后期长度为无限,称模型为无限滞后变量模型。
由于模型既含有对自身滞后变量的回归,还包括解释变量分布在不同时期的滞后变量,因此,一般称为自回归分布滞后模型(autoregessive distributed lag model,ADL)。
1.分布滞后模型如果滞后变量模型中没有滞后因变量,因变量受解释变量的影响分布在解释变量不同时期的滞后值上,即模型形如(8.1.2)(8.1.2)*具有这种滞后分布结构的模型称为分布滞后模型(distributed lag model)。
在分布滞后模型中,各系数体现了解释变量的各个滞后值对因变量的不同影响程度。
称为短期影响乘数(或即期乘数、短期乘数、短期效果),表示本期解释变量x变动一个单位对被解释变量y值产生的影响,即短期影响。
称为延期过渡性乘数(或中期乘数、动态乘数)(i=1,2,…,k,…),表示解释变量在各滞后期变动一个单位对y值的影响大小,即x的滞后影响。
第一章 导论三、名词解释经济变量:经济变量是用来描述经济因素数量水平的指标。
解释变量:解释变量也称自变量,是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
它对因变量的变动作出解释,表现为议程所描述的因果关系中的“因”。
被解释变量:被解释变量也称因变量或应变量,是作为研究对象的变量。
它的变动是由解释变量作出解释的,表现为议程所描述的因果关系的果。
内生变量:内生变量是由模型系统内部因素所决定的变量,表现为具有一定概率颁的随机变量,其数值受模型中其他变量的影响,是模型求解的结果。
外生变量:外生变量是由模型统计之外的因素决定的变量,不受模型内部因素的影响,表现为非随机变量,但影响模型中的内生变量,其数值在模型求解之前就已经确定。
滞后变量:滞后变量是滞后内生变量和滞后外生变量的合称,前期的内生变量称为滞后内生变量;前期的外生变量称为滞后外生变量。
前定变量:通常将外生变量和滞后变量合称为前定变量,即是在模型求解以前已经确定或需要确定的变量。
控制变量:控制变量是为满足描绘和深入研究经济活动的需要,在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,它一般属于外生变量。
计量经济模型:计量经济模型是为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,是以数学形式对客观经济现象所作的描述和概括。
四、简答题1、简述计量经济学与经济学、统计学、数理统计学学科间的关系。
答:计量经济学是经济理论、统计学和数学的综合。
经济学着重经济现象的定性研究,而计量经济学着重于定量方面的研究。
统计学是关于如何惧、整理和分析数据的科学,而计量经济学则利用经济统计所提供的数据来估计经济变量之间的数量关系并加以验证。
数量统计各种数据的惧、整理与分析提供切实可靠的数学方法,是计量经济学建立计量经济模型的主要工具,但它与经济理论、经济统计学结合而形成的计量经济学则仅限于经济领域。
第二章 一元线性回归模型1.随机误差项形成的原因:① 在解释变量中被忽略的因素 ② 变量观测值的观测误差 ③ 模型的关系误差或设定误差 ④ 其他随机因素的影响。
2.总体回归方程和样本回归方程的区别和联系:总体回归方程是对总体变量间关系的定量表述,条件均值E(Y|X=x)是x 的一个函数 ,记作:E(Y|X=x)=f(x),其中,f(x)为x 的某个函数 ,它表明在X=x 下,Y 的条件均值与x 之间的关系。
但实际中往往不可能得到总体的全部资料 ,只能先从总体中抽取一个样本,获得样本回归方程 ,并用它对总体回归方程做出统计推断。
通过样本回归方程按照一定的准则近似地估计总体回归方程 ,但由于样本回归方程随着样本的不同而有所不同,所以这种高估或低估是不可避免的。
3.随机误差项的假定条件:(1)零均值:随机误差项具有零均值,即E( )=0,i=1,2,… (2)随机误差项具有同方差: 即每个 对应的随机误差项 具有相同的常数方差。
Var( )=Var( )= ,i=1,2,… (3)无序列相关:即任意两个 和 所对应的随机误差项 、 是不相关的。
Cov( , )=E( )=0,i j,i,j=1,2,… (4)解释变量X 是确定性变量,与随机误差项不相关。
Cov( , )=E( )=0,此假定保证解释变量X 是非随机变量。
(5) 服从正态分布, ~N(0, )4.为什么用决定系数 评价拟合优度,而不用残差平方和作为评价标准?判定系数 = = 1- ,含义为由解释变量引起的被解释变量的变化占被解释变量总变化的比重,用来判定回归直线拟合的优劣。
该值越大说明拟合得越好。
而残差平方和值的大小受变量值大小的影响,不适合具有不同量纲的模型的比较。
5.可决系数 说明了什么?在简单线性回归中它与斜率系数的t 检验的关系是什么?可决系数 是对模型拟合优度的综合度量 ,其值越大,说明在Y 的总变差中由模型作出了解释的部分占得比重越大 ,模 型的拟合优度越高 ,模型总体线性关系的显著性越强。
空间自变量滞后模型在传统的经济学模型中,通常假设变量之间是独立的,即一个地区的变量不受其他地区变量的影响。
然而,现实世界中的经济现象往往具有空间相关性,即一个地区的经济变量受到周边地区经济变量的影响。
空间自变量滞后模型就是为了解决这个问题而提出的。
空间自变量滞后模型的基本思想是,一个地区的经济变量受到周边地区经济变量的影响,而这种影响是通过空间滞后变量来体现的。
空间滞后变量是指一个地区的经济变量在空间上的邻域地区的经济变量的加权平均。
这种加权平均可以通过距离加权矩阵来计算,其中距离越近的地区的权重越大。
通过引入空间滞后变量,空间自变量滞后模型可以更准确地描述地区之间的相互关系。
例如,在研究房价影响因素时,传统模型可能只考虑到地区的人口、收入等变量,而忽略了周边地区的影响。
而空间自变量滞后模型可以在考虑这些传统变量的同时,还考虑到周边地区的房价对该地区房价的影响。
空间自变量滞后模型的应用非常广泛。
在经济学中,它可以用来研究城市发展、区域经济差异、产业布局等问题。
在社会学中,它可以用来研究犯罪率、教育水平等社会现象。
在环境科学中,它可以用来研究空气质量、水资源利用等问题。
总之,只要涉及到空间相关性和空间依赖性的问题,空间自变量滞后模型都可以发挥作用。
虽然空间自变量滞后模型在理论上非常有吸引力,但在实际应用中也存在一些问题。
首先,如何选择合适的距离加权矩阵是一个难题。
不同的加权方式可能会得到不同的结果,因此需要根据具体问题进行选择。
其次,空间自变量滞后模型的估计和推断方法也比较复杂,需要使用专门的统计软件进行计算。
尽管存在这些问题,空间自变量滞后模型仍然是研究空间相关性和空间依赖性的重要工具。
它可以帮助我们更好地理解经济、社会和环境现象之间的相互关系,为政府决策和社会发展提供科学依据。
空间自变量滞后模型是一种用于研究空间相关性和空间依赖性的方法。
它通过引入空间滞后变量来考虑地区之间的相互影响,可以更准确地描述经济、社会和环境现象。
第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。
如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。
这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。
4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。
试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。
解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi其他定性因素可用如下虚拟变量表示:有奖学金无奖学金来自发达地区男性来自欠发达地区女性则引入各虚拟变量后的回归模型如下:Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D3i=1,D2i=D4i=0)=(β0+α1+α3)+β1X i(4) 来自发达地区的城市男生,未得到奖学金时的月消费支出:E(Y i|= X i,D2i=D3i=D4i=1, D1i=0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。