《求解一元一次方程》第1课时》示范公开课教学设计【北师大版七年级数学上册】
- 格式:doc
- 大小:1.08 MB
- 文档页数:5
北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教案一. 教材分析《一元一次方程(第1课时)》这一节的内容是北师大版七年级数学上册第三章第一节的第一课时,主要介绍一元一次方程的概念、解法以及应用。
通过这一节课的学习,学生能够理解一元一次方程的含义,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
二. 学情分析学生在进入七年级之前,已经学习了代数的基础知识,对于方程的概念有一定的了解。
但是,对于一元一次方程的定义、解法以及应用可能还不够清晰。
因此,在教学过程中,需要引导学生从实际问题中抽象出一元一次方程,并通过例题讲解让学生掌握一元一次方程的解法,培养学生的解题能力。
三. 教学目标1.知识与技能:让学生理解一元一次方程的概念,掌握一元一次方程的解法,并能够运用一元一次方程解决实际问题。
2.过程与方法:通过实例引入一元一次方程,培养学生从实际问题中抽象出方程的能力;通过讲解和练习,让学生掌握一元一次方程的解法,提高解题能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:一元一次方程的概念、解法以及应用。
2.难点:一元一次方程的解法,以及如何从实际问题中抽象出一元一次方程。
五. 教学方法采用问题驱动法、实例教学法、合作学习法等教学方法。
通过设置问题情境,引导学生从实际问题中抽象出一元一次方程,并运用实例讲解一元一次方程的解法。
在教学过程中,鼓励学生积极参与,进行小组讨论,培养学生的团队合作意识。
六. 教学准备1.教案准备:提前编写好详细的教学计划,明确教学目标、教学内容、教学方法、教学步骤等。
2.课件准备:制作与教学内容相关的课件,以便在课堂上进行演示和讲解。
3.习题准备:挑选一些适合巩固一元一次方程知识点的习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元一次方程的概念,例如:某商店举行打折活动,原价100元的商品打8折后售价是多少?让学生思考并尝试解答,从而引出一元一次方程。
第五章一元一次方程5.1认识一元一次方程第1课时教学设计一、教学目标1.了解方程和一元一次方程的概念,能正确辨析一元一次方程.2.培养学生获取信息、分析问题、处理问题的能力.3.理解方程的解,并能正确判定是否为方程的解.二、教学重点及难点重点:在实际问题中分析、找到等量关系,准确列出方程,并总结所列方程的共同特点,归纳出一元一次方程的概念.难点:寻找等量关系,列出方程,归纳一元一次方程的概念.三、教学准备多媒体课件四、相关资源微课《一元一次方程》,动画《猜年龄》,知识卡片《一元一次方程的基本概念》等.五、教学过程【复习回顾】1.回忆小学学过的方程的概念:的等式叫方程。
2.判断下面各式是不是方程(是方程的画“√”不是方程的画“×”)(1)3 x-5= x;( ) (2)5+4=4+5;( ) (3)4-2 x; ( )](4) x +y=1( ) (5)16-5﹤10;( )设计意图:通过回顾知识,更好学习方程.我们在这个基础上,进一步探究方程有关知识.板书:认识5.1一元一次方程(1)【新课讲解】合作交流,探究新知探究一:一元一次方程定义活动1.根据实际问题情境列方程问题(1):猜年龄如果设小彬的年龄为x 岁,那么“乘2减3” 就是 ,因此可列方程 .问题(2):小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约5厘米,大约几周后树苗长高到1米?如果设x 周后树苗长高到1米,那么可以得到方程为________.答案:0.40.51x +=(注意统一单位)设计意图:通过联系生活中的实际问题,以互动游戏的方式导入新课,可以使学生在心理上缩短与教师间的距离,以放松、愉快的状态顺利开始新课,同时还激发了学生的好奇心和主动学习的欲望,为引出方程的概念作准备.问题(3):根据第六次全国人口普查统计数据,截至2010年11月1日0时,全国每10万人中具有大学文化程度的人数为8 930人,与2000年第五次全国人口普查相比增长了147.30%.问:2000年第五次全国人口普查时每10万人中约有多少人具有大学文化程度?分析:本题数据较多,辨别有用数据是重要环节,弄清“单位1”是关键.如果设2000年第五次全国人口普查时每10万人中约有x 人具有大学文化程度,那么可以得到方程 为________.答案:(1+147.30%)x =8930问题(4):甲、乙两地相距 22 km ,张叔叔从甲地出发到乙地,每时比原计划多行走1km ,因此提前12min 到达乙地,张叔叔原计划每时行走多少千米?设张叔叔原计划每时行走x km ,可以得到方程:6112222=+-x x 问题(5):某长方形操场的面积为5 850 m 2,长和宽之差为25米,这个操场的长与宽分别是多少米?画图展示一些操场的图片,激发学生的学习兴趣,同时教师做适当讲解,让学生认识到场地的整体设计、座位的安排等等都和数学有着密切联系,使学生认识到现实生活中处处有数学.本题的做法可以让学生仿照前面教师的讲解,自己设计问题串分析题意.如果设这个足球场的宽为x 米,那么长为________米,由此可得到方程为____________________.答案:x +25 x (x +25)=5850设计意图:教科书中提供了多个实际问题,通过分析都可以列出方程,即把同一个数量用不同的形式表示出来,由此既使学生体会到方程作为实际问题的数学模型的作用,又引导学生对方程形式进行辨析,对一元一次方程的概念有更深刻了解.活动2.议一议观察上面问题中得到的方程,哪些是你熟悉的,它们之间有什么异同?①2 x - 3= 21;②0.40.51x +=;③(1+147.30%)x =8930;④6112222=+-x x ;⑤x (x +25)=5 850 师生活动:学生讨论,得出结论,可提醒学生从未知数的个数,次数两个角度分析. 方程①、②、③都只含有一个未知数,且次数为1,叫做一元一次方程;方程④的未知数在分母上,是分式方程;方程⑤中未知数的次数为2,是一元二次方程.我们先来学习一元一次方程.一元一次方程定义:在一个方程中,只含有一个未知数,且未知数的次数都是1,这样的方程叫做一元一次方程.设计意图:趁热打铁,引导学生展开对所列方程的共同点的讨论,归纳出一元一次方程的概念,实现了由感性到理性的上升,这样逐渐提高思维要求,较好地突出了重点,突破了难点.探究二:方程的解当x 下列各数时,方程5 x -2=7+2 x 是否成立,写出检验过程.(1)x =2; (2)x =3.解析:将未知数的值代入,看左边是否等于右边,即可.解:(1)将x =2代入方程,左边=8,右边=11,左边≠右边,故x =2不能使方程5 x -2=7+2 x 成立;(2)将x =3代入方程,左边=13,右边=13,左边=右边,故x =3能使方程5 x -2=7+2 x 成立.定义:方程的解:使方程左、右两边的值相等的未知数的值,叫做方程的解.(也叫方程的根)对于方程5 x -2=7+2 x ,x =2不是方程的解,x =3是方程的解.一元一次方程有唯一的一个解.设计意图:经过学生验证得到方程解的定义,理解更清楚.【典型例题】1.(1)3x -1是方程吗?(2)1+2=3是方程吗?(3)列式表示a 与3的差等于-2.上题中列出的式子是方程吗?如果是,未知数是什么?方程的解是什么?如果不是,请说明原因.解:(1)不是,因为不是等式;(2)不是,因为没有未知数;(3)是,未知数是a ;方程的解是1.2.(1)列式表示:①比a 小9的数; 9a -②x 的2倍与3的和; 23x +③5与y 的差的一半; ()152y - ④a 与b 的7倍的和. 7a b +(2)根据下列条件,列出关于x 的方程:①12与x 的差等于x 的2倍; 122x x -=②x 的三分之一与5的和等于6.1563x += 3.根据下列条件,列出关于x 的方程:(1)x 与18的和等于54; 1854x +=(2)27与x 的差的一半等于x 的4倍.()12742x x -= 4. 2x =是下列方程的解吗? ()()131020x x +-= ()22267x x +=设计意图:明确方程的定义,能利用定义解题.【随堂练习】1.根据题意列出方程.(2)设甲队胜了x 场,则平局为(10-x )场,根据题意可得:3x +10-x =22,2.下列各题中,哪些是方程?哪些是一元一次方程?(1)3x +1=5;(2)1+a =2;(3)2a +3b ;(4)3x =4-5;(5)x +1>0;(6)2x +2=5;(7)3x -12+4=2x ;(8)y 2+3y =0;(9)9x -y =2. 答案:方程为(1)(2)(4)(6)(7)(8)(9);一元一次方程为(1)(2)(4)(7).3.下列方程中,解为-2的是( C )A .3x -2=2xB .4x -1=2x +3C .3x +1=2x -1D .5x -3=6x -24.如果5x m -2=8是一元一次方程,那么m =________.答案:35.若关于x 的方程ax -6=2的解为x =2,则a =________.答案:4设计意图:设计的题目以落实本节重点知识为目的,让学生充分理解方程、方程的解、一元一次方程的概念,并会使用,以形成初步技能.六、课堂小结1.本节课你学习了什么?2.本节课你有哪些收获?3.通过今天的学习,你想进一步探究的问题是什么?可以归纳为如下几点:1.本节主要学习方程和一元一次方程的概念及方程的解的定义,并能利用定义解题.2.能正确找出题目中的等量关系,并用式子表示,列出方程.七、板书设计。
北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教学设计一. 教材分析《一元一次方程》是北师大版七年级数学上册3.1.1的内容,这部分内容是在学生已经学习了有理数的运算、不等式的性质等知识的基础上进行学习的。
一元一次方程是初中数学中的一个重要概念,也是学习更高级数学的基础。
本节课的主要内容是一元一次方程的定义、性质和解法,通过学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的运算、不等式的性质等知识有一定的了解。
但是,对于一元一次方程的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
同时,学生可能对于解方程的过程和技巧还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.理解一元一次方程的概念和性质。
2.掌握一元一次方程的解法。
3.能够应用一元一次方程解决实际问题。
4.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.一元一次方程的概念和性质。
2.一元一次方程的解法。
3.应用一元一次方程解决实际问题。
五. 教学方法采用讲授法、案例分析法、练习法、小组合作学习法等方法进行教学。
通过实例和练习,引导学生理解一元一次方程的概念和性质,掌握一元一次方程的解法,并通过小组合作学习,培养学生的合作意识和解决问题的能力。
六. 教学准备1.PPT课件。
2.教学案例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引入一元一次方程的概念,例如:小明的年龄问题是这样的:小明的年龄加上3等于13,请问小明的年龄是多少?引导学生思考和解答,从而引出一元一次方程的概念。
2.呈现(10分钟)通过PPT课件,呈现一元一次方程的定义和性质,让学生直观地了解一元一次方程的形式和特点。
同时,通过实例和练习,让学生进一步理解和掌握一元一次方程的性质。
求解一元一次方程第1课时合并同类项与移项(1)【教学目标】知识与技能理解合并同类项的法那么,会用合并同类项法那么解一元一次方程,并在此根底上探索一元一次方程的一般解法.过程与方法通过探索合并同类项法那么的过程培养学生观察、思考、归纳的能力,积累数学探究活动的经验.情感、态度与价值观通过探索合并同类项法那么并进一步探索一元一次方程一般解法的过程,感受数学活动的创造性,激发学生学习数学的兴趣.【教学重难点】重点:合并同类项法那么的探索及应用.难点:合并同类项法那么的理解和灵活运用.【教学过程】一、温故知新师:你们知道等式的根本性质是什么吗?学生答复,教师点评.师:利用等式的根本性质解方程:(1)2x+3=x+4;(2)5x+4=5-3x.学生解答,然后集体订正.问题展示:问题1:某校三年共购置计算机140台,去年购置数量是前年的2倍,今年购置数量又是去年的2倍,前年这个学校购置了多少台计算机?师:设前年购置计算机x台,那么去年购置计算机多少台?生:2x台.师:今年购置计算机多少台?生:4x台.师:题目中的等量关系是什么?师生共同分析,列出方程:x+2x+4x=140.用框图表示出解这个方程的具体过程:x+2x+4x=140合并同类项7x=140系数化为1x=20二、例题讲解【例】解以下方程:(1)2x-x=6-8;(2)7x-2.5x+3x-1.5x=-15×4-6×3.解:(1)合并同类项,得-x=-2,系数化为1,得x=4.(2)合并同类项,得6x=-78,系数化为1,得x=-13.三、稳固练习解以下方程:1.3x+4x-2x=18-7.2.y-y+y=×6-1.【答案】1.x= 2.y=四、课堂小结师:这节课你学习了哪些知识?获得了哪些经验?学生发言,教师予以补充.第2课时合并同类项与移项(2)【教学目标】知识与技能使学生掌握移项的概念,并用移项解方程.过程与方法根据具体问题的数量关系,形成方程模型,使学生形成利用方程的观点认识现实世界的意识和能力.通过分组合作学习的活动,在活动中学会与他人合作,并能与他人交流思维的过程.情感、态度与价值观通过由具体实例的抽象概括的独立思考与合作学习的过程培养学生实事求是的态度以及善于质疑和独立思考的良好学习习惯.【教学重难点】重点:移项法那么的探索及其应用.难点:对移项法那么的理解和灵活应用.【教学过程】一、新课引入师:新课开始之前,我们先来看这样一个问题.问题展示:【例1】把一些图书分给某班学生阅读,如果每人分3本,那么剩余20本;如果每人分4本,那么还缺25本,这个班有多少学生?问题分析:师:设这个班有x名学生,如果每人分3本,这批书共多少本?生:(3x+20)本.师:每人分4本,这批书共多少本?生:(4x-25)本.师:这批书的总数有几种表示法?它们之间有什么关系?此题哪个相等关系可作为列方程的依据呢?学生分组讨论,合作探究,教师总结.师:我们可以列出方程3x+20=4x-25我们可以利用等式的性质解这个方程,得3x-4x=-25-20.师:请同学们仔细观察上面的变形,你发现了什么?学生分组合作、讨论,教师总结.师:上面的变形,相当于把原方程左边的20移到右边变成-20,把4x从右边移到左边变成-4x.及时引出移项的概念:把等式一边的某项变号后移到另一边,叫做移项.教师及时总结并强调移项要变号.【例2】解以下方程:(1)2x+6=1;(2)3x+3=2x+7.解:(1)移项,得2x=1-6,化简,得2x=-5.方程两边同除以2,得x=-.(2)移项,得3x-2x=7-3.合并同类项,得x=4.【例3】有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…,其中某三个相邻数的和是-1701,这三个数各是多少?师:同学们,这列数的变化规律是什么?生:前面一个数乘以-3得到后面的数.师:如果设第一个数是x,那么第二、三个数怎么表示呢?生:-3x,9x.师:请同学们思考并列出方程.生:x-3x+9x=-1701.解得x=243,所以这三个数分别是243,-729,2187.【例4】某制药厂制造一批药品,如用旧工艺,那么废水排量要比环保限制的最大量还多200 t;如用新工艺,那么废水排量比环保限制的最大量少100 t.新、旧工艺的废水排量之比为2∶5,两种工艺的废水排量各是多少?分析:因为新旧工艺的废水排量之比为2∶5,所以可设它们分别为2x t和5x t,再根据它们与环保限制的最大量之间的关系列方程.解:设新、旧工艺的废水排量分别为2x t和5x t.根据废水排量与环保限制最大量之间的关系,得5x-200=2x+100.移项,得5x-2x=100+200.合并同类项,得3x=300.系数化为1,得x=100.所以2x=200,5x=500.答:新、旧工艺产生的废水排量分别为200 t和500 t.二、稳固练习解以下方程:1.4x-20-x=6x-5-x.2.32y+1=21y-3y-13.3.2|x|-3=3-|x|.【答案】1.x=- 2.y=-1 3.x=-或三、课堂小结师:学习了移项法那么后,你认为用逆运算的方法和用移项的方法解方程哪个更简便?对于解一元一次方程,你有了哪些新的领悟?学生发言,教师予以点评.第3课时去括号与去分母(1)【教学目标】知识与技能理解并掌握解含有括号的一元一次方程的方法,能用多种方法灵活地解一元一次方程.过程与方法经历对一元一次方程解法的探究过程,深入理解等式的根本性质在解方程中的作用,学会多角度寻求解决问题的方法.情感、态度与价值观通过探索含有括号的一元一次方程的解法体验整体探索思想的意义,培养学生善于观察、总结的良好思维习惯.【教学重难点】重点:含括号的一元一次方程的解法.难点:结合方程的特点选择不同的方法解方程,并解释解法的合理性.【教学过程】一、问题展示,合作探究师:请同学们解方程:6x+6(x-2000)=150000.如果去括号,就能简化方程的形式,那么我们一起来解这个方程.6x+6(x-2000)=150000去括号6x+6x-12000=150000移项6x+6x=150000+12000合并同类项12x=162000系数化为1x=13500二、例题讲解教师出例如题.【例1】解方程:4(x+0.5)+x=7.解:去括号,得4x+2+x=7.移项,得4x+x=7-2.合并同类项,得5x=5.方程两边同除以5,得x=1.【例2】解方程:-2(x-1)=4.解法一:去括号,得-2x+2=4.移项,得-2x=4-2.化简,得-2x=2.方程两边同除以-2,得x=-1.解法二:方程两边同除以-2,得x-1=-2.移项,得x=-2+1,即x=-1.【例3】一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.水流的速度是3千米/时,求船在静水中的速度.师:如果设船在静水中的平均速度为x千米/时,请同学们答复以下问题.船顺流速度为多少?生甲:(x+3)千米/时.师:逆流速度为多少?生乙:(x-3)千米/时师:那么这个方程的等量关系是什么?生丙:往返的路程相等.师生共同探讨,列出方程:2(x+3)=2.5(x-3)师:下面请一位同学在黑板上写出这道题的解题过程.学生完成,然后集体订正.三、稳固练习解以下方程:1.2y+3=8(1-y)-5(y-2).2.3(2y+1)=2(1+y)+3(y+3).【答案】1.y=1 2.y=8四、课堂小结师:本节课主要学习了什么?同学们有哪些收获?学生发言,教师予以点评.第4课时去括号与去分母(2)【教学目标】知识与技能会解含分母的一元一次方程,掌握解一元一次方程的根本步骤和方法,能根据方程的特点灵活地选择解法.过程与方法经历一元一次方程一般解法的探究过程,理解等式根本性质在解方程中的作用,学会通过观察结合方程的特点选择合理的思考方向进行新知识探索.情感、态度与价值观通过尝试不同角度寻求解决问题的方法体会解决问题策略的多样性;在解一元一次方程的过程中,体验“化归〞的思想.【教学重难点】重点:解一元一次方程的根本步骤和方法.难点:含有分母的一元一次方程的解题方法.【教学过程】一、新课引入师:同学们,我们先来看这样一道题.教师出示问题:一个数,它的三分之二、它的一半、它的七分之一、它的全部加起来总共是33,求这个数.师:设这个数为x,那么它的三分之二、二分之一、七分之一、它的全部加起来怎么表示呢?生:x+x+x+x=33解这个方程关键是去分母,那么怎样才能去掉分母?根据是什么?学生合作探究,尝试去分母,并与同伴交流自己的解法是否正确.问题解答:根据等式的根本性质2,在方程两边同乘以各分母的最小公倍数42,即可将方程化为熟悉的类型.28x+21x+6x+42x=1386合并同类项得97x=1386系数化为1,x=答:所求的数是师生共同探讨解含有分数系数的一元一次方程的步骤.-2=-去分母(方程两边也同乘以各分母的最小公倍数)5(3x+1)-10×2=(3x-2)-2(2x+3)去括号15x+5-20=3x-2-4x-6移项15x-3x+4x=-2-6-5+20合并同类项16x=7系数化为1x=师:同学们能不能总结解一元一次方程的一般步骤?学生分组讨论,合作交流.二、例题讲解【例1】解方程:(x+14)=(x+20).解法一:去括号,得x+2=x+5.移项、合并同类项,得-x=3.两边同除以-(或同乘-),得x=-28.解法二:去分母,得4(x+14)=7(x+20).去括号,得4x+56=7x+140移项、合并同类项,得-3x=84.方程两边同除以-3,得x=-28.【例2】解方程:(x+15)=-(x-7).解:去分母,得6(x+15)=15-10(x-7).去括号,得6x+90=15-10x+70.移项、合并同类项,得16x=-5.方程两边同除以16,得x=-.三、稳固练习解以下方程:1.-=1.2.-3=.【答案】1.x=-5 2.x=-四、课堂小结师:下面我们一起来回忆一下解一元一次方程的一般步骤:1.去分母.2.去括号.3.移项.4.合并同类项.5.系数化为1.字母表示数【学习目标】课标要求:1.能用字母和代数式表示以前学过的运算律和计算公式。
《求解一元一次方程(第1课时)》教学教案教师引导学生思考:(1)与原方程相比,哪些项的位置发生了改变?哪些没变?(2)改变位置的项的符号是否发生了变化?没改变位置的项的符号是否发生了变化?与原方程相比常数项-2的位置发生了改变,一次项5x 和常数项8没变常数项-2的位置由等号的左边移动到了右边,符号由“-”变成了“+”,一次项5x 和常数项8的位置没变,符号也没变.师生总结出移项:移项:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。
做一做:例1下列计算,其中属于移项变形的是(C)A.由5+3x-2,得3x-2+5B.由-10x-5=-2x,得-10x-2x=5C.由5x+3=-4x+1,得5x+4x=1-3D.由5x=15,得x=3易错提醒:1.移项时必须是从等号的一边到另一边,并且不要忘记对移动的项变号,如从3+6x=7得到6x=7+3是不对的.鼓励学生积极思考,主动解决问题,小组交流,总结发言,教师及时纠正.培养了学生用符号语言表示等式的两个基本性质.加深学生对方程概念的理解,同时还可以锻炼学生思维的主动性.2.没移项时不要误认为移项,如从-2=x得到x=2,犯这样的错误,其原因在于对等式的基本性质(对称性)与移项的区别没有分清.3、出示课件做一做:教师引导学生利用移项求解一元一次方程例1解下列方程:(1)2x+6=1;(2)3x+3=2x+7;解:(1)移项,得2x=1-6.合并同类项,得2x=-5.方程两边同除以2,得x=-5 2 .(2)移项,得3x-2x=7-3.合并同类项,得x=4.例2解方程:14x=-12x+3.解:移项,得14x+12x=3.合并同类项,得34x=3.方程两边同除以34(或同乘以43),得x=4.师生共同总结:利用移项解方程的步骤:(1)移项;(2)合并同类项;(3)系数化为1.做一做:1.用移项法解方程:7-2x=3-4x;解:(1)移项,得4x-2x=3-7.合并同类项,得2x=-4.方程两边同除以2,得x=-2.2.x为何值时,代数式4x+3与15-2x的值相等?解:4x+3=15-2x 鼓励学生积极思考,自主解决问题,小组交流,总结发言,大胆提出自己的观点,教师及时鼓励和纠错。
第五章一元一次方程5. 2 求解一元一次方程第 1 课时教学设计1.通过例题和练习,让学生进一步熟悉方程的变形法则.2.在上节课的基础上,让学生对较复杂方程的解法作自主探索,体会方程的不同解法中所经历的转化思想,让学生亲身体验成功的感觉.3.使学生掌握解方程的基本方法,同时体验方法的多样性,培养学生的实践能力和创新精神.4.在教与学中渗透转化的数学思想.【教学重点】由方程的变形法则在解方程过程中自主探索、归纳解方程的一般步骤.【教学难点】方法的灵活应用和多样性.通过复习、练习,让学生在解题过程中自主探索、合作交流,归纳解方程的一般步骤.由于学生亲自参与教学活动,所以对知识的巩固和延伸都有较深刻的认识.在解题过程中会产生很多方法,这就让学生有充分发展能力的空间,体验数学活动是充满着探索创造,同时感受数学的严谨性和数学结论的正确性,还可以获得成功的体验,锻炼克服困难的意志,建立学习的自信心.一、创设情境,引入新知请用6、x、24编一道一元一次方程,并求方程的解.你们会求解吗?二、合作交流,探究新知上节课我们学习了简单形式的一元一次方程的求解.1. 明白了方程的基本思想是经过对方程一系列的变形,最终把方程转化为“x=d”的形式.即:①等号左、右分别都只有一项,且左边是未知数项,右边是常数项;②未知数项的系数为1.2. 目前为止,我们用到的对方程的变形有:等号两边同加减(同一代数式)、等号两边同乘除(同一非零数).等号两边同加减的目的是: 使项的个数减少;等号两边同乘除的目的是: 使未知项的系数化为1.3. 解方程: 5x – 2 = 8 .试用新方法解一元一次方程.解方程:5 x -2 = 8解: 移项,得:5x=8+2化简,得:5x=10两边同时除以5,得:x=2.三、应用新知在前面的解方程中,移项后的“化简”只用到了对常数项的合并.试看看下述的解方程.例1 解下列方程:(1) 3x+3=2x+7 (2) 113 42x x=-+解题后的反思(1) 移项实际上是对方程两边进行,使用的是等式的性质;(2) 系数化为1 实际上是对方程两边进行, 使用的是等式的性质.四、巩固新知1. 解下列方程:(1) 10x - 3=9; (2) 5x - 2=7x + 16;(3)3162x x=+; (4)351322x x-=+五、归纳小结1.解方程的一般步骤,各步骤的注意点.2.解方程的方法不是惟一的,各步骤的先后顺序也不惟一.3.解方程的结果,一定要转化到x=a的形式.略.。
北师大版七年级数学上册3.1.1《一元一次方程(第1课时)》优质教学设计一. 教材分析《一元一次方程(第1课时)》这一节内容是北师大版七年级数学上册的重点内容。
本节课的主要内容是一元一次方程的定义、性质和解法。
通过本节课的学习,学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
教材中通过丰富的实例和具体的操作,引导学生逐步掌握一元一次方程的知识,同时培养学生的数学思维和解决问题的能力。
二. 学情分析七年级的学生已经具备了一些基本的数学知识,比如代数的初步知识,能够进行简单的代数运算。
但是学生对于一元一次方程的概念和解法可能还比较陌生,需要通过具体的实例和操作来理解和掌握。
学生的学习兴趣和积极性较高,对于新的知识有较强的求知欲,但也有一部分学生可能对于一些抽象的概念和理论感到困惑,需要教师耐心引导和讲解。
三. 教学目标1.知识与技能:学生能够理解一元一次方程的概念,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养自己的数学思维和解决问题的能力。
3.情感态度与价值观:学生能够积极参与课堂学习,克服困难,自主探索,增强对数学的兴趣和信心。
四. 教学重难点1.重点:一元一次方程的概念、性质和解法。
2.难点:一元一次方程的解法和应用。
五. 教学方法1.情境教学法:通过具体的实例和实际问题,引发学生的思考和兴趣,引导学生主动参与学习。
2.启发式教学法:教师提出问题,引导学生思考和探索,激发学生的学习积极性和创造力。
3.合作学习法:学生通过小组合作,共同解决问题,培养学生的合作意识和团队精神。
六. 教学准备1.教师准备:教师需要准备相关的教学材料,如PPT、教案、例题、练习题等。
2.学生准备:学生需要预习相关的知识,了解一元一次方程的基本概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入一元一次方程的概念,激发学生的兴趣和思考。
北师大版七年级数学上册3.1.1《一元一次方程》(第一课时)优质教案一. 教材分析《一元一次方程》是北师大版七年级数学上册3.1.1的内容,本节课主要让学生了解一元一次方程的概念,学会解一元一次方程,并能够应用一元一次方程解决实际问题。
教材通过引入实际问题,引导学生认识一元一次方程,并通过对方程的变形和求解,让学生掌握一元一次方程的解法。
二. 学情分析学生在进入七年级之前,已经学习了代数的基本概念,如代数式、运算等,但对一元一次方程的了解还不够深入。
学生在解决实际问题时,往往不能将问题转化为方程形式,对于方程的解法和应用也还不够熟练。
因此,在教学过程中,需要注重引导学生将实际问题转化为方程,并通过实践操作,让学生掌握一元一次方程的解法。
三. 教学目标1.了解一元一次方程的概念,掌握一元一次方程的解法。
2.能够将实际问题转化为方程,并应用一元一次方程解决问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重难点:一元一次方程的概念和解法。
2.难点:将实际问题转化为方程,并应用一元一次方程解决问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过引入实际问题,引导学生认识一元一次方程,并通过案例教学,让学生掌握一元一次方程的解法。
同时,小组合作学习,让学生在讨论中巩固知识,提高解决问题的能力。
六. 教学准备1.准备相关实际问题,用于引导学生认识一元一次方程。
2.准备一元一次方程的案例,用于讲解和练习。
3.准备小组讨论的问题和任务。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,如购物问题、速度问题等,引导学生将这些实际问题转化为方程。
让学生认识到方程是解决问题的一种方法。
2.呈现(10分钟)呈现一元一次方程的定义和性质,通过示例讲解一元一次方程的解法。
让学生了解一元一次方程的基本概念和解法。
3.操练(10分钟)让学生独立完成一些一元一次方程的练习题,巩固所学知识。
北师大版七年级上册5.2《求解一元一次方程1》教案北师大版七年级上册《求解一元一次方程1》教学案一、教学目标1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.3.在理解移项法则的基础上,能灵活应用移项法则熟练解简单的一元一次方程.二、教学重难点重点:移项法则.难点:移项法则变形的推理过程及应用.三、教学过程(一)新课引入师:重建后的台儿庄古城,古色古香,金碧辉煌,令人向往。
老师要求外地的老师到台儿庄古城游玩,其中男教师有8人,他们比女教师的5倍少2人,你能帮我算算女教师来了多少人么?生1:设女教师x人,男教师的人数可以表示为5x-2,由此,可列方程5x-2=8.(教师板书)【教师板书课题:5.2求解一元一次方程(1)】(二)探索新知师:同学们,如何利用等式的基本性质来求解方程x-285=方程8x-5=2师:两种方法哪种更简便?生:移项。
师:移项的依据是什么?生:等式的基本性质1.(三)课堂展示,体验成果课堂展示(一)师:我们可以仿照移项的方法求解下面两个方程。
(投影出示(1)3x=5x-14;(2)5x-3=2x+7 .课堂展示(二)(四)畅谈收货,知识升华师:课上到这里,老师相信大家收货很多,那就敞开心扉说一说吧!生:我学会了利用移项求解一元一次方程的方法;生:移项是从等号的一边移到另一边,通常习惯把未知项移到方程的左边,常数项移到方程的右边;生:移项时要变号;生:求解一元一次方程的步骤是:移项、合并同类项、系数化为1(五)分层检测,当堂达标基础题1、下列移项正确的是()A.由15=x15--5=x,得5B.由123--=x x ,得123=+x xC.由x x 437=-,得734=--x xD.由x x 3248+=-,得x x 3428+=-2、如果x x 352-=,那么2x+ =53、方程x x 536+=的解是 .4、解下列方程:(1)1136=-x(2)x x 3.15.67.05.0-=-拓展题5、代数式12+a 与a 37+互为相反数,求a 的值6、当k 为何值时,单项式3222+k b a 与k b a 61123-的差仍然是单项式?答案:1、D 2、3x 3、x=3 4、(1)37=x (2)4=x5、58-=a 6、k=1 (六)布置作业.1、完成课本P 136 习题5.3 1.(1)(2)(3)(4)(做在作业本上)2、完成课本P 136 习题5.3 2、3题;。
第五章一元一次方程
5.2 求解一元一次方程
第1课时教学设计
一、教学目标
1.进一步熟悉利用等式的基本性质解一元一次方程的基本技能.
2.在解方程的过程中分析、归纳出移项法则,并能运用这一法则解方程.
3.体会学习移项法则解一元一次方程必要性,使学生在动手、独立思考的过程中,进一步体会方程模型的作用,体会学习数学的实用性.
二、教学重点及难点
重点:理解移项法则,会解简单的一元一次方程
难点:用移项法则解方程,注意移项要变号.
三、教学准备
多媒体课件
四、相关资源
微课《利用“移项”解一元一次方程》,知识卡片《解一元一次方程(一)--移项》
五、教学过程
【复习回顾】复习回顾,引入新课
1.利用等式的性质解下列方程
(1)x-2=8;
(2)3x=2x+1.
解:(1)利用等式的性质1,两边都加上2得:x-2+2=8+2.即x=10.
(2)利用等式的性质1,两边都减去2x得:3x-2x=2x+1-2x.即x=10.
2.比较原方程3x=2x+1与变形后的方程3x-2x=1,你又发现了什么?
解:通过变形,可以简化方程,使含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式.
设计意图:本节直接用复习上节所学重点知识的方式导入新课,一是可以反馈学生对知识点的落实情况,二是其中的等式基本性质1就是新课中移项法则的理论依据,有一举两得的功效.
【新知讲解】合作交流,探求新知
探究:移项的定义及法则
活动1.阅读解方程的过程:
解:(1)5x-2=8,方程两边都加上2,得5x-2+2=8+2,
即5x=10,
即x=2.
(2)7x=6x-4,方程两边都减去6x,得7x-6x=6x-6x-4,
即7x-6x=-4,
即x=-4.
活动2.观察归纳,解答问题
问题(1):分别将变化前后的两组方程进行对比,方程中哪些项改变了原来的位置?怎样变的?(可以用下图进行演示)
学生很容易找到:一是项的位置发生变化(从方程的一边移到了另一边);二是项的符号发生变化(移动前后符号相反).
问题(2):归纳出规律,说出这个规律产生的依据和法则.(在学生回答的基础上,投影显示以下内容)
移项定义:将方程中的一项改变符号后,从方程的一边移到另一边.
变形依据:等式的基本性质1.
法则:移项时必须要变号.
注意:所移动的是方程中的项,并且是从方程的一边移到另一边,而不是从方程的一边交换两项的位置.
设计意图:通过“探索练习——观察归纳”的逻辑顺序,让学生经历自主观察发现规律并进行描述的过程,从而提升抽象问题的能力.
活动三3:解一元一次方程的步骤:
设计意图:教师通过书写解方程的过程,可以提高学生解题的规范性.而采用框图表示解方程的过程,是为使解法中各步骤的先后顺序清晰,渗透算法程序的思想.教学中不要求学生也画框图.
【典型例题】
例1.解下列方程:
(1)3x +3=2x +7;(2)2x +6=1.
解:(1)移项,得3x -2x =7-3.
合并同类项,得x =4.
(2)移项,得2x =1-6.
合并同类项,得2x =-5.
方程两边同除以2,得x =-52
. 例2.判断下列移项是否正确,正确的在题后的括号里打“√”,错误的打“×”.
(1)从135x -=-得到135x -=; ( ×
) (2)从173132x x -+=--得到131732x x -=--. ( √ )
例3.下列方程的变形是移项的是( D ).
(A )由240x +=得24x = (B )由21x x =+得21x x =+
(C )由21x =-得12
x =- (D )由321x x -=+得231x x -=+ 本题可以采用学生口述,教师板演的方法,因为这是解方程一节安排的第一组例题,教学时必须强调解题的规范步骤和格式,同时教师还应及时纠正学生可能出现的错误,适时组织学生交流改错.
例4.解方程:14x =-12
x +3. 解:移项,得14x +12
x =3. 合并同类项,得34
x =3. 方程两边同除以34(或同乘以43
),得x =4. 本题建议首先放手让学生去做.学生可能采取多种方法解答,教学时不应拘泥于教材提供的解法,只要合理都应该给予鼓励.
设计意图:进一步巩固利用移项、合并同类项解方程的方法.
【随堂练习】
1.把下列方程进行移项变换
2x -5=12移项2x =12+
7x =-x +2移项7x + =2
4x =-x +10移项4x + =10
8x -5=3x +1移项8x + =1+
-x +3=-9x +7移项-x + =7+
2.解方程:
(1)3x +5=4x +1;(2)9-3y =5y +5.
解: (1)移项,得:3x -4x =1-5.
合并同类项,得:-x =-4.
系数化为1,得:x =4.
(2)移项,得:-3y -5y =5-9.
合并同类项,得:-8y =-4.
系数化为1,得:y =12
. (3)6745x x -=-
移项,得6475x x -=-
合并同类项,得:22x =
系数化为1,得:x=1.
(4)移项,得
13624
x y -= 合并同类项,得:164x -= 系数化为1,得:24x =-.
3.下列移项对不对?如果不对,错在哪里?应当怎样改正?
(1)从3x +6=0得3x =6;
(2)从2x =x -1得到2x -x =1;
(3)从2+x -3=2x +1得到2-3-1=2x -x ;
解:(1)不对,移项要变号;应该得:3x =-6;
(2)不对,不移项的部分不用变号;应该得:2x -x =-1;
(3)对.
4.根据下列条件列出方程,然后求出某数:
(1)某数的1
9
等于32;
(2)某数的2倍比某数的5倍小24.
解:(1)设某数为x,则1
32
9
x .解得x=288.
(2)设某数为x,则5x-2x=24.解得x=8.
设计意图:通过练习,及时巩固新知识,加深对化归思想的理解.
六、课堂小结
1.谈谈你对解方程的认识.
2.谈谈你本节课还有什么收获.
设计意图:教师引导学生归纳本节课的知识要点和思想方法,使学生对列方程和解方程有一个整体全面的认识,同时也帮助学生养成良好的学习习惯.
七、板书设计。