一元一次方程微课
- 格式:doc
- 大小:75.50 KB
- 文档页数:3
可编辑修改精选全文完整版《一元一次方程》的优秀教案《一元一次方程》的优秀教案(精选9篇)《一元一次方程》的优秀教案篇1知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1.3x+1=42.x-2=33.2x+0.5x=-104.3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
一元一次方程教案一元一次方程教案(通用11篇)作为一名老师,就不得不需要编写教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。
怎样写教案才更能起到其作用呢?以下是小编精心整理的一元一次方程教案范文,希望对大家有所帮助。
一元一次方程教案篇1教学目标:1、能说出什么叫一元一次方程;2、知道“元”和“次”的含义;3、熟练掌握最简一元一次方程的解法及理论依据;能力目标:1、培养学生准确运算的能力;2、培养学生观察、分析和概括的能力;3、通过解方程的教学,了解化归的数学思想.德育目标:1、渗透由特殊到一般的辩证唯物主义思想;2、通过对方程的解进行检验的习惯的培养,培养学生严谨、细致的学习习惯和责任感;3、在学习和探索知识中提高学生的学习能力、合作精神及勇于探索的精神;重点:1、一元一次方程的概念;2、最简方程的解法;难点:正确地解最简方程。
教学方法:引导发现法教学过程一、旧知识的复习:1.什么叫等式?等式具有哪些性质?2.什么叫方程?方程的解?解方程?二、新知识的教学:(1)只含有一个未知数;(2)未知数的次数都是一次。
想一想:(1)你认为最简单的一元一次方程是什么样的?(2)怎样求最简方程(其中是未知数)的解?三、巩固练习1、通过练习,请你总结一下,解方程(是未知数)把系数化为1时,怎样运用等式的性质2,使计算比较简单。
2、检测:3、课堂小结:四、本节学习的主要内容1、一元一次方程定义;2、最简方程(其中是未知数);3、解最简方程的主要思路和解题的关键步骤及依据。
五、课堂作业。
一元一次方程教案篇2一、活动内容:课本第110页111页活动1和活动3二、活动目标:1、知识与技能:运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。
2、过程与方法:(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。
(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。
七年级上册数学网课人教版一元一次方程一、什么是一元一次方程一元一次方程,也称简单一元方程,是最基本的代数方程形式,它是关于一个未知数的方程,形式为 ax+b=0 或ax+b=c( a≠0,b,c 为常数)。
本课程中,我们将讨论一元一次方程 x+2=5 的解法,以及解决其它一元一次方程的基本方法。
二、解一元一次方程的方法1、情况一:ax+b=0,此时只有一个解 x=-b/a。
2、情况二:ax+b=c,此时有两种解法:(1)通过“加减法”:先分别加上b和c,使右边变为0,得到:ax=−b+c,再将两边同乘以a的倒数,得到 x = (c-b)/a。
(2)通过“乘除法”:先将两边同除以a,得到 x + b/a=c/a,再将两边同加b/a,得到 x = c/a-b/a。
三、解一元一次方程的技巧1、利用模式:当出现常见方程形式时,可利用相应模式去解,以提高效率。
比如开头无系数和以系数1开头的一元一次方程都可以用“加减法”去解。
2、错题巩固:针对一些主观性题目,由于其特殊性,需要考生熟记一些模式及其解法方法,以减少出错的几率。
3、把问题转化为容易解的形式:当出现一些比较复杂的一元一次方程时,可以尝试把新的问题转形为两步去解,第一步在原方程中消去未知数,第二步再利用该方程两边相加得到答案。
四、一元一次方程的应用一元一次方程在日常生活中广泛应用,尤其是在财务管理、物价调研、文体活动绩效评估、人口统计、理财投资等方面,都会用到一元一次方程。
比如我们在购买衣服时,以某件衣服的售价减去优惠的金额,得到所付的金额:假设某件衣服的售价为50元,优惠的金额为20元,我们只需要把50减去20,就可以得到最后要付的金额30元,可以用一元一次方程的形式表示为“50 - x = 30”,x等于20。
一元一次方程讲课逐字稿【课程导入】同学们,大家好!今天我们要一起学习的是数学中的一个基础而重要的概念——一元一次方程。
在日常生活中,我们经常会遇到需要解决的问题,而这些问题很多都可以转化为方程来求解。
一元一次方程是最简单的方程类型之一,它涉及到一个变量,并且这个变量的最高次数是1。
接下来,我们将一起探索一元一次方程的世界。
【新课内容】首先,我们来看一元一次方程的定义。
一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。
它的一般形式是ax+b=0,其中a和b是已知数,x是未知数,且a≠0。
接下来,我们来学习如何解一元一次方程。
解一元一次方程的基本步骤包括去分母、去括号、移项、合并同类项、系数化为1。
我们可以通过以下步骤来解方程:1. 去分母:如果方程中有分母,我们需要消除分母,使方程两边同时乘以分母的最小公倍数。
2. 去括号:如果方程中有括号,我们需要展开括号,使方程中的项更加清晰。
3. 移项:将含有未知数的项移到方程的一边,将常数项移到方程的另一边。
4. 合并同类项:将方程两边的同类项合并,简化方程。
5. 系数化为1:将未知数的系数化为1,从而得到未知数的值。
【例题讲解】现在,我们来看一个具体的例题。
假设我们有这样一个方程:2x - 3= 7。
我们按照解一元一次方程的步骤来求解这个方程。
1. 去分母:这个方程没有分母,所以这一步可以跳过。
2. 去括号:这个方程没有括号,所以这一步也可以跳过。
3. 移项:我们将-3移到等式的右边,得到2x = 7 + 3。
4. 合并同类项:将右边的常数项合并,得到2x = 10。
5. 系数化为1:将2x除以2,得到x = 5。
所以,这个方程的解是x=5。
【课堂练习】接下来,我们来做几个练习题来巩固一下我们今天学到的知识。
请大家拿出练习本,我们一起来解以下几个方程:1. 3x + 5 = 142. 2x - 4 = 63. 5x = 20请大家按照我们刚才讲过的步骤,一步一步来解这些方程。
初中数学微课教案
科目数学年级七年级课题一元一次方程的应用
教学目标借助“线段图”分析行程问题中的数量关系,继续利用路程时间速度三个量之间的关系,列方程解应用题。
通过观察、类比进一步培养学生的数学创新能力,培养学生与人合作的能力,培养学生学习数学的热情。
学情简析通过新课的学习,学生已经掌握一元一次方程应用基本的解题思路、方法,会分析解决简单的实际问题,但整个知识掌握不系统、不全面,解题正确率不高。
教法发现法、练习法、讨论法教具多媒体课件、彩色粉笔、小黑板等
教学过程
教学环节教学内容教师活动学生活动
创设问题情境回顾旧知
例题赏析
巩固练习趣味数学:
小明和小刚从相距6千米的两地同时出发同向而行,小明
每小时走7千米,小刚每小时走5千米,小明带了一只小狗,
小狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,
碰到小刚后就立即回头向小明跑去,碰到小明后再回头跑
向小刚……,直到小明追上小刚时才停住,求这条小狗一共
跑了多少路?
温故知新
1.路程问题中路程速度时间三者的关系:
2.列方程解应用题的一般步骤:
3.路程问题中的两种基本题型:
例1:一列慢车从某站开出,每小时行驶48千米,45分钟
后,一列快车也从该站出发,与慢车同向而行,如要1.5小
时追上慢车,快车每小时需行多少千米?
过程展示:
相等关系:快车路程=慢车先行路程+慢车后行路程
解:设快车每小时行x千米,由题意得
1.5x=48×3/4 +48×1.5
解得:x=72
答:快车每小时需行72千米
练习1:小红和小明家距离300米,两人沿同一条路线出
发去某地,小明每秒跑4米,小红骑自行车每秒行10米,
若小明在小红的前面,则小红多长时间可追上小明?
练习2:一队学生去校外进行军事野营训练,以5千米/时的
速度行进,走了12分钟的时候,学校要将一个紧急通知传
给队长,通讯员从学校出发骑自行车以14千米/时的速度,
按原路追上去,通讯员用多少时间可以追上学生队伍?
引导观察
提问
提出问题
讲解分析
个别指导
反馈纠正
思考回答
思考回答
计算
计算
走进生活
巩固练习
导入题目求解开拓发展
小结在一次环城自行车比赛中,已知最快的运动员每小时行30
千米,最慢运动员每小时行10千米,环城一周为60千米,
则速度最快的运动员第一次遇到速度最慢的运动员需用多
少小时?
1、和小明每天绕1个长为400米的环形跑道练习跑步,小
彬每秒跑6米,小明每秒跑4米,若二人同时同地同向跑步,
经几秒后首次相遇?
若二人同时同地反向跑步,经几秒后首次相遇?
2、两站间路程384千米,一列慢车从甲站开出,速度为48
千米/时,慢车开出30分钟后,一列快车从乙站开出,速度
为72千米/时,两车相遇需多长时间?
小明和小刚从相距6千米的两地同时出发同向而行,小明
每小时走7千米,小刚每小时走5千米,小明带了一只小狗,
小狗每小时跑10千米,小狗随小明同时出发,向小刚跑去,
碰到小刚后就立即回头向小明跑去,碰到小明后再回头跑
向小刚……,直到小明追上小刚时才停住,求这条小狗一共
跑了多少路?
1、火车用26秒的时间,通过一座长为256米的隧道(即从
车头进入入口到列车车尾离开出口),这列火车又用16秒的
时间通过了一座长96米的桥,求火车的车长?
2、某初一学生在做作业时,不慎将墨水瓶打翻,使一道作
业题只看到如下字样:“甲乙两地相距40千米,摩托车从甲
地出发,每小时行45千米,运货车从乙站出发,每小时行
35千米,————?(横线部分表示被墨水覆盖的若干文
字)”请将这道作业题补充完整,并列出方程。
通过本节课的学习:
1.你有哪些收获?
2.你还有什么困惑?
完成学案中其它练习。
引导分析
启发提问
引导分析
启发引导
拓展提问
观察思考
计算
合作交流
思考讨论解答
思考解答
思考总结
作业
教后记
本节复习一元一次方程的应用,由于复习课重视的是知识的系统和提高,练习密度大,学生往往感到单调,所以本节课我通过一道趣味数学题来创设情境,引起学生兴趣。
放在最后求解达到首尾呼应效果,借此题还复习了间接设法,一题多用。
在知识的复习上围绕两种基本题型展开,着重分析等量关系,在讲解追及问题的特例---环城自行车比赛问题时,我设计了动画演示使学生轻松得到了相等关系。
在教学中适当运用讨论法,将一些较难问题如求火车长放手给学生,通过小组合作交流将问题轻松愉快地解决,学生的积极性也被充分调动起来,营造了良好的课堂氛围,还培养了学生的协作能力。
但在一些个别问题的处理上,我有些急于功成,不能大胆的放手给学生;题目形式的设计过于单一,各环节的衔接不够紧凑,今后教学中我会注意这些问题并及时改进。