微课(利用一元一次方程解决销售中的盈亏问题)
- 格式:doc
- 大小:76.00 KB
- 文档页数:2
《实际问题与一元一次方程--销售中的盈亏》教学设计一、教材分析《数学课程标准》对本节的要求是:能够找出实际问题中的已知量和未知量,分析他们之间的关系,找出问题中的相等关系,体会建立数学模型的思想。
通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决实际问题的过程,感受数学的应用价值,提高分析问题解决问题的能力。
本节课在全章中的地位:一元一次方程的实际应用问题是本章的重点难点,蕴涵了一种十分重要的数学思想——建模思想,也体现了一种关键的数学技能---翻译,通过列一元一次方程来解决实际问题中的数量关系。
本节选择了“销售中的盈亏”,这是在有理数、整式加减之后,设置了盈亏问题的探究点,具有承上启下的作用。
盈亏问题贴近人们的生活,这类题目的解决能大大提高学生的学习积极性,使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,提高学生分析问题和解决问题的能力。
二、设计思想对于七年级的学生来说,往往比较畏惧应用题,首先题目长,文字多,学生容易产生厌倦情绪,其社会经验少,盈亏问题中的专业名词不熟悉,甚至不理解,难以找出相应的等量关系,加之将应用题的语言文字转化成数学式子的翻译能力较差。
因此更应选择贴近生活,易于理解的问题情境层层深入探究。
让学生通过审题,根据应用题的实际意义,找出等量关系,列出相关的一元一次方程。
进而提高解决实际问题的能力,培养他们对数学的兴趣,为后续的学习准备了必要的知识和能力条件。
在教材分析和学情分析的基础上,结合预设的教学方法,确定了本节课的教学目标如下:1、学会分析盈亏问题中的数量关系,并列方程。
2、学生估算盈亏,然后再通过列方程计算,从而验证自己的判断。
3、让学生分析问题中的数量关系,在不可直接设未知数的情况下,讨论如何设未知数,如何找相等关系,进一步提高学生分析问题、解决问题的能力。
4、通过对盈亏问题的探索,让学生体验数学源于生活,服务于生活,从而提高学习的积极性。
实际问题与一元一次方程(1)——销售中的盈亏问题说课稿各位老师你们好,今天我说课的内容是人教版七年级数学上册第三章《一元一次方程》中的3.4实际问题与一元一次方程(第一课时)销售中的盈亏。
下面,我将从教材分析、学情分析、教法分析、教学过程设计、板书设计这几个方面进行说课。
一、教材分析1、教材的地位和作用本课是义务教育课程标准实验教材《数学》(新人教版)七年级(上)第三章第4节《实际问题与一元一次方程》中的“销售中的盈亏”问题。
本章是继第一章《有理数》和《整式的加减》之后属于新课标的数与代数领域,是代数学的核心内容。
既是最简单的代数方程,也是所有代数方程的基础,而本课时是在已经讨论过由实际问题抽象出一元一次方程模型和解它的一般步骤的基础上安排的,内容比前几节复杂些,情境与实际情况更近,这样的安排主要是为了通过探究培养学生分析、创新精神和实践意识及解决问题的能力。
2、学情分析学生才从小学毕业进入初中对中学的学习环境,学习方法,对中学的教师教法都还不是很适应,又特别是数学学科,这就要求教师更多的关注学生,上课准备要更加充分,把教师的教建立在学生的学习基础上。
3、教学目标(1)知识与技能○1经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力;○2初步认识运用方程解决实际问题的关键是建立相等关系,进一步体会运用方程解决问题的关键是抓住等量关系,认识方程模型的重要性;○3整体把握销售中的盈亏问题的基本量之间的关系,建立一元一次方程;○4进一步经历运用方程解决实际问题的过程,总结运用一元一次方程解决实际问题的一般步骤;(2)过程与方法通过实际问题的探究活动,先大体估算,再准确计算检验自己的判断,从而体会数学在日常生活中的应用,经过引导、讨论和交流,让学生理解实际问题设未知数的含义,初步认识运用方程解决实际问题必须把握好三个重要环节。
(3)情感与态度针对一系列生活有趣且富有挑战性的问题的探究,鼓励学生大胆尝试,通过交流合作,讨论让学生获取成功的体验等,激发学生学习热情,增强学习信心,培养学生敢于面对挑战和勇于克服困难的意志。
一元一次方程---销售中的盈亏1、随州某琴行同时卖出两台钢琴,每台售价为960元。
其中一台盈利20%,另一台亏损20%。
这次琴行是盈利还是亏损,或是不盈不亏?2、某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?3、某商场把进价为1980元的商品按标价的八折出售,仍获利10%, 求该商品的标价为多少元?4、一商店把某商品按标价的九折出售仍可获得20%的利润。
若该商品的进价是每件30元,问该商品的标价是多少元?5、某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售,但又要保证利润率为5%,那么商店可降多少元出售此商品?6、某商场将某种DVD产品按进价提高35%, 然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD仍获利208元,则每台DVD的进价是多少元?参考答案1、解:设盈利20%的那台钢琴进价为x元,依题意,得(1+ 20% )x=960 解得x=800设亏损20%的那台钢琴进价为y元,依题意,得(1- 20%)y=960 解得y=1200所以两台钢琴进价为2000元,而售价1920元,进价大于售价,因此两台钢琴总的盈利情况为亏本80元。
2、解:设盈利60%的那个计算器进价为X元,依题意,得(1+60%)X=64 解得X=40设亏本20%的那个计算器进价为y元,依题意,得(1- 20%)y=64 解得y=80所以两个计算器进价为120元,而售价128元,进价小于售价,因此两个计算器总的盈利情况为盈利8元.3、解析:(标价×打折率)(利润率×进价)售价- 进价= 利润0.8x –1980 = 10%×1980X=2722.54、解析:由题意可知0.9x –30 = 20%×30X=405、解析:由题意可知(1500-x) –1000 = 5%×1000X=4506、解析:由题意可知0.9(1+ 35%)x –x = 208+50X=1200。
人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)教学设计一. 教材分析人教版数学七年级上册3.4《实际问题与一元一次方程》(销售中的盈亏)这一节主要讲述了一元一次方程在实际销售问题中的应用。
通过本节课的学习,学生能够理解盈亏问题的实质,掌握用一元一次方程解决实际问题的方法,培养学生的数学应用能力。
二. 学情分析七年级的学生已经掌握了二元一次方程的知识,对于一元一次方程也有了一定的了解。
但是,将一元一次方程应用于实际问题的解决中,对于他们来说还是一个新的领域。
因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.理解盈亏问题的实质,能够找出关键的等量关系。
2.掌握一元一次方程在解决实际问题中的应用方法。
3.培养学生的数学应用能力和解决实际问题的能力。
四. 教学重难点1.重点:理解盈亏问题的实质,掌握解决盈亏问题的方法。
2.难点:如何引导学生将实际问题转化为数学模型,并用一元一次方程进行求解。
五. 教学方法1.情境教学法:通过创设生动的实际问题情境,激发学生的学习兴趣,引导学生主动参与学习。
2.案例分析法:通过分析具体的盈亏问题案例,让学生理解并掌握解决盈亏问题的方法。
3.小组合作学习法:引导学生分组讨论,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的盈亏问题案例,用于课堂分析和讨论。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际的销售盈亏问题,如商品打折、农产品销售等,引导学生关注盈亏问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的盈亏问题案例,如某商品原价为100元,打八折后售价为80元,问商家是否盈利?引导学生分析问题,找出关键的等量关系。
3.操练(10分钟)让学生分组讨论,尝试用一元一次方程来解决这个盈亏问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组不同的盈亏问题,让学生独立解决,巩固所学知识。
《实际问题与一元一次方程-----销售中的盈亏》课堂教学设计一、指导思想与理论依据《数学课程标准》明确提出:让学生“初步学会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识.”本节课通过“打折销售”这一素材,创设真实生活情景,使原本枯燥乏味的数学知识变得生动、鲜活和富有意义,让学生将经历过的一些实际问题抽象为数学问题,培养学生学会对现实生活中遇到的实际问题进行思考,能主动尝试从数学的角度和数学思维方式去寻求解决问题的策略.真正体会“人人学有价值的数学,人人都能获得必需的数学”这一新课程理念.二、教学背景分析教材背景分析:本节内容的重点是渗透数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。
由于本节问题的背景和表达都比较贴近实际,数量关系比较隐蔽,所以在探究过程中正确地列方程是主要难点。
突破难点的关键是弄清问题背景,分析清楚有关数量关系,特别是找出可以作为列方程依据的主要相等关系。
随着市场经济的发展,经营活动越来越被人们重视。
数学教学适当结合这方面问题,可以增加学生的经济知识和经营意识,使他们能更了解市场运作。
学生情况分析:前面我们结合实际问题,讨论了如何分析数量关系和利用相等关系列方程,本班有一部分学生喜欢数学,有展示自己的欲望.本设计针对学生的学习心态,抓住难点作为突破口,通过教师的组织、引导和学生的自主探索、合作交流,揭示各种数量关系和内在的客观规律,使他们能以愉快的心情,树立信心、循序渐进、层层深入,逐步解决问题。
使探究过程活跃起来,在这样的氛围中可以更好的激发学生积极思维,得到更大收获。
教学策略设计:针对学生的认知障碍和学习过程中的困难分析:直接给出探究题,激发学生的学习热情,通过三个活动,分散难点。
活动一让学生理解销售中的术语,探索“利润、售价、进价之间的数量关系”。
活动二应用“利润、售价、进价之间的数量关系”寻找等量关系列方程,解决实际问题。
一元一次方程的应用——销售中的盈亏问题一、教学内容:人教版教材:P104-P105二、教学目标(一)、知识与技能(1)、了解利润,利润率的联系与区别,能利用利润或利润率建立方程。
理清进价、售价之间的区别与联系。
能利用商品销售中的重要等量关系:售价=进价+利润 =进价+进价×利润率列方程。
(2)、能将实际问题转化为数学问题进行求解。
(二)、过程与方法(1)、通过实际问题引发学生的兴趣,激发探究问题的热情。
(2)、学生经历猜想、探究、思考、归纳等过程,体会数学知识在生活中的应用。
(三)、情感态度与价值观学生经历猜想、探究、思考、归纳等数学活动,感受数学活动的探索性和创造性,激发学生的探究热情。
三、教学重、难点教学重点:利用利润率、进价、售价间的关系正确建立方程。
教学难点:在探究过程中正确建立方程。
四、教法与学法教学方法:针对学生的情况和教学目标,本节课主要采用探究式的教学方法,给学生思考的空间和探索的机会,通过多种形式探究,解决销售中的盈亏问题,体现方程思想在实际中的运用。
教学手段:采用多媒体辅助教学,加大课堂教学容量,通过对例题的题型训练,由浅入深,逐步解决问题,体现用数学知识解决实际问题的一般过程。
同时对例题做几种变式训练,通过比较,反思为什么会有不同的结果,深化对销售中的盈亏问题的理解。
五、教学过程(一)课前基础训练:(1)、一商品进价为10元,售价为12元,则利润为________,利润率为________。
(2)、一商品进价为10元,售价为8元,则利润为_________,利润率为________。
(3)、将原价(进价)20元的商品售出,结果获利10%,则售价为________。
(4)、将原价(进价)20元的商品售出,结果亏损10%,则售价为________。
(二)合作探究,解决问题活动1 销售中的盈亏某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?思考一:若将问题变为“将进价为60元的两件衣服售出,其中一件盈利25%,另一件亏损25%”,则卖这两件衣服总的盈亏情况如何?思考二:两种情况产生了不同的结果,原因是什么?(三)变式练习,应用新知活动2 练习新知(1)、一玩具以22元售出,结果获利10%,求原价(2)、一钢笔以20元售出,结果亏损10%,求原价(3)、某服装店同时卖出两套服装,每套均卖168元,其中一套盈利20%,另一套亏本20%,问这次出售服装,该店是赚钱还是赔钱?(四)、回顾反思,升华提高活动3 拓展思考(1)、在销售过程中以相同的价格卖出两件商品,且两件商品盈利的利润率和亏损的亏损率相等,可以判断两次销售总的盈亏情况吗?(2)、服装店同时卖出两套服装,每套均卖120元,其中一套亏本20%,问另一套盈利百分之几,才能使这次出售服装没有盈利也没有亏损?(五)、归纳总结,形成能力活动4 课堂小结(1)、利润和利润率是不同的两个量,利润是售价与进价的差,利润率是利润与进价的百分比。
火石中学课程改革数学学案
备课人: 钟华林 备课时间: 2016年11 月27日 审印人:
课题 利用一元一次方程解决销售中的盈亏问题
学习 目标
★知道商品销售中的“进价”,“标价”,“售价”,“利润”,“利润率”等概念的含义及之间的关系; ★★能够根据商品销售问题中的数量关系找出等量关系,列出方程; ★★★让学生知道商品销售中的盈亏的算法;
学习流程 任务分工 主要方法
1.仔细浏览学案,带着问题认真阅读教材第102页,把有疑问的做上记号;
2.独自完成学案,1、2、3、4号同学完成1、2星活动,5、6号完成所有活动;
3.有困难的问题提交小组讨论,组长对小组的完成情况进行检查;
4.严禁抄袭或借给其他同学抄袭;
5.学习方法:自主学习,小组合作探索,归纳总结。
学习 程序
学习活动 学法指导
活动一:自主学习
1.复习旧知★
口述列一元一次方程解应用题的步骤:
(1)______ (2)______ (3 )______(4)______(5)______(6)_______ 2.自主探索,感知新知★
一、销售中的各种问题练习。
(1) 商品原价200元,九折出售,卖价是________元。
(2)商品进价是150元,售价是180元,则利润是________多少元。
利润率是________。
(3)某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是_______元。
(4)某商品按定价的八折出售,售价是14.8元,则原定售价是_______。
二、销售中的基本概念《概念梳理》
(1)进价 : (2)标价 :
(3)售价 : (4)利润: (5)打折 : (6)利润率: 三:各个量之间的关系式:《等量关系》 (1) 售价、进价、利润的关系式: 利润=售价—_______ 进价= _______—利润 售价=进价+_______(1)
(2) 进价、利润、利润率的关系式:利润率=_______×100%
利润率、售价、进价的关系式:利润率=[(_______—进价)/进价] ×100%
要解决这类问题必
须理解并熟记下列
式子:
1、售价=标价×打折数
2、利润=售价-进价 利润率=[(售价-进价)/进价]×100%
3、售价=进价×(1-利润率)
4、售价=标价×打折数
(3) 售价、进价、利润率的关系式:售价=进价×(1+利润率)(2) (4) 售价、标价、打折数的关系式:售价=标价×打折数(3)
活动二:合作探索,《销售中的盈亏》
★★某商店的某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%, 另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?
讨论交流,解决问题
(1)大至估算盈亏情况。
(2)讨论:两件衣服售价相同为何一件盈利,一件亏损? (3)要知道每件衣服盈亏情况,要知道什么量? (4)得出结果之后与自己的估算的情况比较。
解:
活动三:新知应用 ★★★
1、 商店对某种商品作调价按原价的8折出售, 此时商品的利润率是10%,此
商品的进价为1600元,商品的原价是多少?
活动四:知识小结
1、利润=售价-进
价.
2、利润/进价=利润率.
解题过程和格式仿照教材102页书写。
1、售价=进价×(1+利润率)
2、售价=标价×打折数
学习收
获
学习困惑
(需要帮助)
星级评价
(数字+★)
项目
自我评价
学对互评
学组评价
教师抽评
家长评价
星级 签名 时间。